1. Introduction

Total Page:16

File Type:pdf, Size:1020Kb

1. Introduction Pré-Publicações do Departamento de Matemática Universidade de Coimbra Preprint Number 14–18 A CRITERION FOR REFLECTIVENESS OF NORMAL EXTENSIONS WITH AN APPLICATION TO MONOIDS ANDREA MONTOLI, DIANA RODELO AND TIM VAN DER LINDEN Dedicated to Manuela Sobral on the occasion of her seventieth birthday Abstract: We prove that the so-called special homogeneous surjections are reflec- tive amongst surjective homomorphisms of monoids. To do so, we use the recent result that these special homogeneous surjections are the normal (= central) extensi- ons with respect to the admissible Galois structure ΓMon determined by the Grothen- dieck group adjunction together with the classes of surjective homomorphisms. It is well known that such a reflection exists when the left adjoint functor of an admissible Galois structure preserves all pullbacks of fibrations along split epimorphic fibrati- ons, a property which we show to fail for ΓMon. We give a new sufficient condition for the normal extensions in an admissible Galois structure to be reflective, and we then show that this condition is indeed fulfilled by ΓMon. Keywords: categorical Galois theory; admissible Galois structure; central, nor- mal, trivial extension; Grothendieck group; group completion; homogeneous split epimorphism, special homogeneous surjection of monoids. AMS Subject Classification (2010): 20M32, 20M50, 11R32, 19C09, 18F30. 1. Introduction The original aim of our present work was to answer the following question: Is the category of special homogeneous surjections of monoids [3, 4] a reflective subcategory of the category of surjective monoid homomorphisms? Since we recently showed [17] that these special homogeneous surjections are the normal extensions in an admissible Galois structure [10, 11], we were at first convinced that this would be an immediate consequence of some known abstract Galois- theoretical result such as the ones in [13, 12]. At a second glance, we could not find any result to apply in the given situation. Received June 16, 2014. The first and the second author were supported by the Centro de Matemática da Universidade de Coimbra (CMUC), funded by the European Regional Development Fund through the program COMPETE and by the Portuguese Government through the FCT–Fundação para a Ciência e a Tecnologia under the projects PEst-C/MAT/UI0324/2013 and PTDC/MAT/120222/2010 and grant number SFRH/BPD/69661/2010. The third author is a Research Associate of the Fonds de la Recherche Scientifique–FNRS. 1 2 ANDREA MONTOLI, DIANA RODELO AND TIM VAN DER LINDEN The case of commutative monoids is after all not too difficult. Here we can just use Theorem 7.1 of [13], since the reflector from commutative mo- noids to abelian groups preserves pullbacks of surjective homomorphisms along split epimorphisms (Proposition 4.2). The problem is that, for general (non- commutative) monoids, the Grothendieck group construction need not preserve such pullbacks—see Example 5.1. It turns out, however, that the special homogeneous surjections of monoids do indeed form a reflective subcategory. The process of proving this result leads naturally to a new criterion for reflectiveness of normal extensions amongst the fibrations of an admissible Galois structure (our Theorem 2.12, closely related to the subject of the recent article [7]): if the categories under consideration are Barr-exact and all fibrations in the Galois structure are regular epimorphisms, then it suffices that the category of normal extensions is closed under coequa- lisers of reflexive graphs in the category of fibrations. This sufficient condition holds for monoids (Theorem 5.5). Thus a problem in the category of monoids lead to a general result in catego- rical Galois theory. Conversely, Galois theory helped us to better understand a non-obvious result on monoids, which we believe is interesting for its own sake: it allowed us to extended Proposition 2.3.5 in [4] twice, first to Proposi- tion 5.4, then to Theorem 5.5 which says that the category of special homoge- neous surjections is closed under coequalisers of reflexive graphs of surjective homomorphisms of monoids. Before specialising to monoids, we first focus on reflectiveness results in a general Galois-theoretic setting (Section 2). In Subsection 2.8 we use the cons- truction of the normalisation functor proposed in [8] to prove our main result (Theorem 2.12). We then, in Section 3, recall the definitions and main results concerning special homogenous surjections from [3, 4] as well as the main re- sults from [17], giving the link between special homogeneous surjections and normal extensions, which are needed throughout the subsequent sections. In Section 4 we treat the commutative case, which easily leads to Theorem 4.3, the reflectiveness of special homogeneous surjections of commutative monoids. The non-commutative case is treated in the final Section 5, where we first give a counterexample against the preservation of pullbacks of split epimorphisms along spit epimorphisms by the Grothendieck group functor (Example 5.1), to prove then that the technique of Section 2 is applicable (Theorem 5.5) and to obtain Theorem 5.6—thus answering our original question. REFLECTIVENESS OF NORMAL EXTENSIONS 3 2. Reflectiveness of normal extensions In this section we work towards a general result on reflectiveness of normal extensions in an admissible Galois structure: Theorem 2.12 which says that, if the fibrations in the Galois structure are regular epimorphisms, and normal extensions are closed under coequalisers of reflexive graphs, then the normal extensions are reflective amongst the fibrations. 2.1. Galois structures. We start by recalling the definition of (admissible) Galois structure as well as the concepts of trivial, normal and central extension arising from it [10, 11, 12]. We consider the context of Barr-exact categories [1] which is general enough for our purposes and allows us to avoid some technical difficulties. Ô Õ Definition 2.2. A Galois structure Γ C , X ,H,I,η,ǫ, E , F consists of an adjunction I ,2 C à X lr H ñ with unit η : 1C ñ HI and counit ǫ: IH 1X between Barr-exact categories C and X , as well as classes of morphisms E in C and F in X such that: (G1) E and F contain all isomorphisms; (G2) E and F are pullback-stable; (G3) E and F are closed under composition; Õ (G4) H ÔF E ; Õ (G5) I ÔE F . We call the morphisms in E and F fibrations [11]. The following definitions are given with respect to a Galois structure Γ. Definition 2.3. A trivial extension is a fibration f : A Ñ B in C such that the square ηA Õ A ,2 HI ÔA Õ f HI Ôf Õ ,2 HI ÔB B ηB ¦ Õ is a pullback. A central extension is a fibration f whose pullback p Ôf along some fibration p is a trivial extension. A normal extension is a fibration such that its kernel pair projections are trivial extensions. 4 ANDREA MONTOLI, DIANA RODELO AND TIM VAN DER LINDEN It is well known and easy to see that trivial extensions are always central extensions and that any normal extension is automatically central. For any object B in C , there is an induced adjunction IB ,2 Ã Ô Ó Õ Ó Ô ÕÕ ÔE F B lr I B , HB Ó Õ Ô Ó Õ where we write ÔE B for the full subcategory of the slice category C B B Ó Ô ÕÕ determined by morphisms in E ; similarly for ÔF I B . The functor I is B Ô Õ the restriction of I, and H sends a fibration g : X Ñ I B to the pullback Õ A ,2 H ÔX B Ô Õ Õ H Ôg H g Õ ,2 HI ÔB B ηB Õ of H Ôg along ηB. Ô Õ Definition 2.4. A Galois structure Γ C , X ,H,I,η,ǫ, E , F is said to be admissible when, for every object B in C , the functor HB is full and faithful. The admissibility condition amounts to reflectiveness of trivial extensions amongst fibrations. More precisely, we have that: (1) by Proposition 2.5 below, the replete image of the functor HB is precisely Õ the category Triv ÔB of trivial extensions over B; Õ Ô Ó Õ (2) Triv ÔB is a reflective subcategory of E B ; B B Ó Õ Ñ Ô Õ (3) H I : ÔE B Triv B is its reflector. By Proposition 5.8 in [9], we obtain a left adjoint, called the trivialisation functor Õ Ñ Ô Õ Triv: FibÔC TExt C , Õ to the inclusion of the category TExtÔC of trivial extensions in C into the full Õ subcategory FibÔC of the category of arrows in C determined by the fibrations. Proposition 2.5. [13, Proposition 2.4] If Γ is an admissible Galois structure, then I : C Ñ X preserves pullbacks along trivial extensions. Hence a fibration is a trivial extension if and only if it is a pullback of some fibration in X . In particular, the trivial extensions are pullback-stable, so that every trivial extension is a normal extension. REFLECTIVENESS OF NORMAL EXTENSIONS 5 2.6. A result on reflectiveness of central extensions. Consider an ad- missible Galois structure Γ as in Definition 2.4. Given an object B in C , we Õ Ô Ó Õ let Centr ÔB denote the full subcategory of E B determined by the central extensions over B. When it exists, the left adjoint to the inclusion functor Õ ãÑ Ô Ó Õ Ô Ó Õ Ñ Ô Õ Centr ÔB E B is written Centr: E B Centr B and called the centralisation functor. In [8], it is explained how Theorem 7.1 in [13] gives us: Ô Õ Theorem 2.7.
Recommended publications
  • Coreflective Subcategories
    transactions of the american mathematical society Volume 157, June 1971 COREFLECTIVE SUBCATEGORIES BY HORST HERRLICH AND GEORGE E. STRECKER Abstract. General morphism factorization criteria are used to investigate categorical reflections and coreflections, and in particular epi-reflections and mono- coreflections. It is shown that for most categories with "reasonable" smallness and completeness conditions, each coreflection can be "split" into the composition of two mono-coreflections and that under these conditions mono-coreflective subcategories can be characterized as those which are closed under the formation of coproducts and extremal quotient objects. The relationship of reflectivity to closure under limits is investigated as well as coreflections in categories which have "enough" constant morphisms. 1. Introduction. The concept of reflections in categories (and likewise the dual notion—coreflections) serves the purpose of unifying various fundamental con- structions in mathematics, via "universal" properties that each possesses. His- torically, the concept seems to have its roots in the fundamental construction of E. Cech [4] whereby (using the fact that the class of compact spaces is productive and closed-hereditary) each completely regular F2 space is densely embedded in a compact F2 space with a universal extension property. In [3, Appendice III; Sur les applications universelles] Bourbaki has shown the essential underlying similarity that the Cech-Stone compactification has with other mathematical extensions, such as the completion of uniform spaces and the embedding of integral domains in their fields of fractions. In doing so, he essentially defined the notion of reflections in categories. It was not until 1964, when Freyd [5] published the first book dealing exclusively with the theory of categories, that sufficient categorical machinery and insight were developed to allow for a very simple formulation of the concept of reflections and for a basic investigation of reflections as entities themselvesi1).
    [Show full text]
  • Monomorphism - Wikipedia, the Free Encyclopedia
    Monomorphism - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Monomorphism Monomorphism From Wikipedia, the free encyclopedia In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from X to Y is often denoted with the notation . In the more general setting of category theory, a monomorphism (also called a monic morphism or a mono) is a left-cancellative morphism, that is, an arrow f : X → Y such that, for all morphisms g1, g2 : Z → X, Monomorphisms are a categorical generalization of injective functions (also called "one-to-one functions"); in some categories the notions coincide, but monomorphisms are more general, as in the examples below. The categorical dual of a monomorphism is an epimorphism, i.e. a monomorphism in a category C is an epimorphism in the dual category Cop. Every section is a monomorphism, and every retraction is an epimorphism. Contents 1 Relation to invertibility 2 Examples 3 Properties 4 Related concepts 5 Terminology 6 See also 7 References Relation to invertibility Left invertible morphisms are necessarily monic: if l is a left inverse for f (meaning l is a morphism and ), then f is monic, as A left invertible morphism is called a split mono. However, a monomorphism need not be left-invertible. For example, in the category Group of all groups and group morphisms among them, if H is a subgroup of G then the inclusion f : H → G is always a monomorphism; but f has a left inverse in the category if and only if H has a normal complement in G.
    [Show full text]
  • Classifying Categories the Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories
    U.U.D.M. Project Report 2018:5 Classifying Categories The Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories Daniel Ahlsén Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Juni 2018 Department of Mathematics Uppsala University Classifying Categories The Jordan-Holder¨ and Krull-Schmidt-Remak theorems for abelian categories Daniel Ahlsen´ Uppsala University June 2018 Abstract The Jordan-Holder¨ and Krull-Schmidt-Remak theorems classify finite groups, either as direct sums of indecomposables or by composition series. This thesis defines abelian categories and extends the aforementioned theorems to this context. 1 Contents 1 Introduction3 2 Preliminaries5 2.1 Basic Category Theory . .5 2.2 Subobjects and Quotients . .9 3 Abelian Categories 13 3.1 Additive Categories . 13 3.2 Abelian Categories . 20 4 Structure Theory of Abelian Categories 32 4.1 Exact Sequences . 32 4.2 The Subobject Lattice . 41 5 Classification Theorems 54 5.1 The Jordan-Holder¨ Theorem . 54 5.2 The Krull-Schmidt-Remak Theorem . 60 2 1 Introduction Category theory was developed by Eilenberg and Mac Lane in the 1942-1945, as a part of their research into algebraic topology. One of their aims was to give an axiomatic account of relationships between collections of mathematical structures. This led to the definition of categories, functors and natural transformations, the concepts that unify all category theory, Categories soon found use in module theory, group theory and many other disciplines. Nowadays, categories are used in most of mathematics, and has even been proposed as an alternative to axiomatic set theory as a foundation of mathematics.[Law66] Due to their general nature, little can be said of an arbitrary category.
    [Show full text]
  • Representable Epimorphisms of Monoids Compositio Mathematica, Tome 29, No 3 (1974), P
    COMPOSITIO MATHEMATICA MATTHEW GOULD Representable epimorphisms of monoids Compositio Mathematica, tome 29, no 3 (1974), p. 213-222 <http://www.numdam.org/item?id=CM_1974__29_3_213_0> © Foundation Compositio Mathematica, 1974, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 29, Fasc. 3, 1974, pag. 213-222 Noordhoff International Publishing Printed in the Netherlands REPRESENTABLE EPIMORPHISMS OF MONOIDS1 Matthew Gould Introduction Given a universal algebra 8l, its endomorphism monoid E(u) induces a monoid E*(8l) of mappings of the subalgebra lattice S(çX) into itself. Specifically, for 03B1 ~ E(u) define 03B1*: S(u) ~ S(u) by setting X (1* = {x03B1|x ~ X} for all X E S(u). (Note that 03B1* is determined by its action on the singleton-generated subalgebras.) The monoid of closure endo- morphisms (cf. [1], [3], [4]) is then defined as E*(u) = {03B1*|a ~ E(u)}. Clearly E*(8l) is an epimorphic image of E(u) under the map 03B1 ~ 03B1*; this epimorphism shall be denoted 03B5(u), or simply e when there is no risk of confusion. Given an epimorphism of monoids, 03A6 : M ~ MW, let us say that W is representable if there exist an algebra 91 and isomorphisms (J : M - E(W) and r : M03A8 ~ E*(u) such that 03A803C4 = 03C303B5.
    [Show full text]
  • Math 395: Category Theory Northwestern University, Lecture Notes
    Math 395: Category Theory Northwestern University, Lecture Notes Written by Santiago Can˜ez These are lecture notes for an undergraduate seminar covering Category Theory, taught by the author at Northwestern University. The book we roughly follow is “Category Theory in Context” by Emily Riehl. These notes outline the specific approach we’re taking in terms the order in which topics are presented and what from the book we actually emphasize. We also include things we look at in class which aren’t in the book, but otherwise various standard definitions and examples are left to the book. Watch out for typos! Comments and suggestions are welcome. Contents Introduction to Categories 1 Special Morphisms, Products 3 Coproducts, Opposite Categories 7 Functors, Fullness and Faithfulness 9 Coproduct Examples, Concreteness 12 Natural Isomorphisms, Representability 14 More Representable Examples 17 Equivalences between Categories 19 Yoneda Lemma, Functors as Objects 21 Equalizers and Coequalizers 25 Some Functor Properties, An Equivalence Example 28 Segal’s Category, Coequalizer Examples 29 Limits and Colimits 29 More on Limits/Colimits 29 More Limit/Colimit Examples 30 Continuous Functors, Adjoints 30 Limits as Equalizers, Sheaves 30 Fun with Squares, Pullback Examples 30 More Adjoint Examples 30 Stone-Cech 30 Group and Monoid Objects 30 Monads 30 Algebras 30 Ultrafilters 30 Introduction to Categories Category theory provides a framework through which we can relate a construction/fact in one area of mathematics to a construction/fact in another. The goal is an ultimate form of abstraction, where we can truly single out what about a given problem is specific to that problem, and what is a reflection of a more general phenomenom which appears elsewhere.
    [Show full text]
  • A Short Introduction to Category Theory
    A SHORT INTRODUCTION TO CATEGORY THEORY September 4, 2019 Contents 1. Category theory 1 1.1. Definition of a category 1 1.2. Natural transformations 3 1.3. Epimorphisms and monomorphisms 5 1.4. Yoneda Lemma 6 1.5. Limits and colimits 7 1.6. Free objects 9 References 9 1. Category theory 1.1. Definition of a category. Definition 1.1.1. A category C is the following data (1) a class ob(C), whose elements are called objects; (2) for any pair of objects A; B of C a set HomC(A; B), called set of morphisms; (3) for any three objects A; B; C of C a function HomC(A; B) × HomC(B; C) −! HomC(A; C) (f; g) −! g ◦ f; called composition of morphisms; which satisfy the following axioms (i) the sets of morphisms are all disjoints, so any morphism f determines his domain and his target; (ii) the composition is associative; (iii) for any object A of C there exists a morphism idA 2 Hom(A; A), called identity morphism, such that for any object B of C and any morphisms f 2 Hom(A; B) and g 2 Hom(C; A) we have f ◦ idA = f and idA ◦ g = g. Remark 1.1.2. The above definition is the definition of what is called a locally small category. For a general category we should admit that the set of morphisms is not a set. If the class of object is in fact a set then the category is called small. For a general category we should admit that morphisms form a class.
    [Show full text]
  • Lecture 10: Giraud's Theorem
    Lecture 10: Giraud's Theorem February 12, 2018 In the previous lecture, we showed that every topos X is a pretopos. Our goal in this lecture is to prove a converse to this assertion, due to Giraud. Roughly speaking, Giraud's theorem asserts that a pretopos X is a topos if and only if it has infinite coproducts which are compatible with pullback, and satisfies a mild set-theoretic condition guaranteeing that it is not \too big" to arise as a category of sheaves on a small category. Definition 1. Let X be a pretopos which admits infinite coproducts. We will say that a collection of morphisms ffi : Ui ! Xgi2I is a covering if it induces an effective epimorphism qUi ! X. Equivalently, ffi : Ui ! Xg is a covering if, for every subobject X0 ⊆ X such that each fi factors through X0, we must have X0 = X (as subobjects of X). Warning 2. In Lecture 8, we defined a Grothendieck topology on any coherent category C using a very similar notion of covering. However, Definition 1 is different because we do not require that every covering family admits a finite subcover. Theorem 3. Let X be a category. The following conditions are equivalent: (1) The category X is a topos: that is, it can be realized as a category of sheaves Shv(C), where C is a small category with finite limits which is equipped with a Grothendieck topology. (2) There exists a small category C and a fully faithful embedding X ,! Fun(Cop; Set) which admits a left adjoint L : Fun(Cop; Set) ! X for which L preserves finite limits.
    [Show full text]
  • Show That in the Catgeory Abgroups of Abelian Groups, A
    PROBLEMS SET 5 SOLUTIONS OF SOME EXERCISES 1.{ Show that in the catgeory AbGroups of abelian groups, a morphism is a monomorphism if and only if it is injective, and a morphism is an epi- morphism if and only if it is surjective (the latter needs a little more care). Show that the same holds in the category FGAbGroups of finitely generated abelian groups (the same proof should work). Solution: Since two morphisms of groups f1; f2 : G1 ! G2 are equal if and only if they are equal as maps of sets, we see immediately that a morphism of groups which is a monomorphism (resp. an epimorphism) as map of sets is a monomorphism (resp. an epimorphism) as map of groups. Since in the category of sets, injective=mono, surjective=epi, an injective morphism of group is a monomorphism, a surjective morphism of groups is an epimorphism. Let's prove the two converses. If f : G1 ! G2 is a morphism of abeian groups, which is not injective. Then consider two maps i; z : ker f ! G1, defined as follows: i is the canonical inclusion, z is the zero map. Since ker f 6= 0, one has i 6= z. Yet f ◦ i = f ◦ z since both are the zero map: ker f ! G2. Hence f is not a monomorphism If f : G1 ! G2 is a morphism of abelian groups, which is not surjective. Since G2 is abelian, imf is a normal subgroup of G2 and one can consider the factor group G2=imf, which is not the zero group since imf 6= G2.
    [Show full text]
  • ON COMPARABILITY in a TOPOS Then E Has COMP
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 98, Number 3. November 1986 ON COMPARABILITYIN A TOPOS RADU DIACONESCU Dedicated to EJA Abstract. While studying the category of "finite" sets associated to a nonstandard model of arithmetic [4], it became apparent that the law of trichotomy plays an important role in that context. The object of this note is to point out the strength of the obvious variants of trichotomy in a general topos. At it turns out even its mildest form (COMP) is quite restrictive, the usual variants (M-COMP, E-COMP) force the topos to be equivalent to a category of sets with AC. Definition. A topos E satisfies comparability (COMP) if for any two objects A, B there is a morphism A -» B or B -* A. Observations, a. If E satisfies COMP, so does any full subcategory of E, in particular SHj(E) for some topology j, and EG, the topos of coalgebras for an idempotent left exact cotriple G. b. Any filtered colimit of toposes with COMP has COMP. c. In a topos with COMP the lattice of subobjects of 1 is totally ordered. d. COMP is not stable (S, the category of sets with AC, has COMP, but S/A doesn't). Proposition 1. If supports split in E and the subobjects of 1 are totally ordered, then E has COMP. Proof. Given A, B we have epimorphisms to their supports A -» o(A), B -» a(B), also their splittings going in the opposite direction, as well as, say o(A) >-»a(B), thus by composition, a morphism from A to B.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk University of Southampton Faculty of Social and Human Sciences School of Mathematics Covers of Acts over Monoids Alexander Bailey Thesis for the degree of Doctor of Philosophy July 2013 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF SOCIAL AND HUMAN SCIENCES SCHOOL OF MATHEMATICS Doctor of Philosophy COVERS OF ACTS OVER MONOIDS by Alexander Bailey Since they were first defined in the 1950's, projective covers (the dual of injective envelopes) have proved to be an important tool in module theory, and indeed in many other areas of abstract algebra. An attempt to generalise the concept led to the introduction of covers with respect to other classes of modules, for example, injective covers, torsion-free covers and flat covers. The flat cover conjecture (now a Theorem) is of particular importance, it says that every module over every ring has a flat cover.
    [Show full text]
  • Introduction to Category Theory
    Introduction to Category Theory David Holgate & Ando Razafindrakoto University of Stellenbosch June 2011 Contents Chapter 1. Categories 1 1. Introduction 1 2. Categories 1 3. Isomorphisms 4 4. Universal Properties 5 5. Duality 6 Chapter 2. Functors and Natural Transformations 8 1. Functors 8 2. Natural Transformations 12 3. Functor Categories and the Yoneda embedding 13 4. Representable Functors 14 Chapter 3. Special Morphisms 16 1. Monomorphisms and Epimorphisms 16 2. Split and extremal monomorphisms and epimorphisms 17 Chapter 4. Adjunctions 19 1. Galois connections 19 2. Adjoint Functors 20 Chapter 5. Limits and Colimits 23 1. Products 23 2. Pullbacks 24 3. Equalizers 26 4. Limits and Colimits 27 5. Functors and Limits 28 Chapter 6. Subcategories 30 1. Subcategories 30 2. Reflective Subcategories 31 3 1. Categories 1. Introduction Sets and their notation are widely regarded as providing the “language” we use to express our mathematics. Naively, the fundamental notion in set theory is that of membership or being an element. We write a ∈ X if a is an element of the set X and a set is understood by knowing what its elements are. Category theory takes another perspective. The category theorist says that we understand what mathematical objects are by knowing how they interact with other objects. For example a group G is understood not so much by knowing what its elements are but by knowing about the homomorphisms from G to other groups. Even a set X is more completely understood by knowing about the functions from X to other sets, f : X → Y . For example consider the single element set A = {?}.
    [Show full text]
  • Notes on Category Theory
    Notes on Category Theory Mariusz Wodzicki November 29, 2016 1 Preliminaries 1.1 Monomorphisms and epimorphisms 1.1.1 A morphism m : d0 ! e is said to be a monomorphism if, for any parallel pair of arrows a / 0 d / d ,(1) b equality m ◦ a = m ◦ b implies a = b. 1.1.2 Dually, a morphism e : c ! d is said to be an epimorphism if, for any parallel pair (1), a ◦ e = b ◦ e implies a = b. 1.1.3 Arrow notation Monomorphisms are often represented by arrows with a tail while epimorphisms are represented by arrows with a double arrowhead. 1.1.4 Split monomorphisms Exercise 1 Given a morphism a, if there exists a morphism a0 such that a0 ◦ a = id (2) then a is a monomorphism. Such monomorphisms are said to be split and any a0 satisfying identity (2) is said to be a left inverse of a. 3 1.1.5 Further properties of monomorphisms and epimorphisms Exercise 2 Show that, if l ◦ m is a monomorphism, then m is a monomorphism. And, if l ◦ m is an epimorphism, then l is an epimorphism. Exercise 3 Show that an isomorphism is both a monomorphism and an epimor- phism. Exercise 4 Suppose that in the diagram with two triangles, denoted A and B, ••u [^ [ [ B a [ b (3) A [ u u ••u the outer square commutes. Show that, if a is a monomorphism and the A triangle commutes, then also the B triangle commutes. Dually, if b is an epimorphism and the B triangle commutes, then the A triangle commutes.
    [Show full text]