CHI 2011 • Session: Research Methods May 7–12, 2011 • Vancouver, BC, Canada The Aligned Rank Transform for Nonparametric Factorial Analyses Using Only ANOVA Procedures Jacob O. Wobbrock,1 Leah Findlater,1 Darren Gergle,2 James J. Higgins3 1The Information School 2School of Communication 3Department of Statistics DUB Group Northwestern University Kansas State University University of Washington Evanston, IL 60208 USA Manhattan, KS 66506 USA Seattle, WA 98195 USA
[email protected] [email protected] wobbrock,
[email protected] ABSTRACT some methods for handling nonparametric factorial data Nonparametric data from multi-factor experiments arise exist (see Table 1) [12], most are not well known to HCI often in human-computer interaction (HCI). Examples may researchers, require advanced statistical knowledge, and are include error counts, Likert responses, and preference not included in common statistics packages.1 tallies. But because multiple factors are involved, common Table 1. Some possible analyses for nonparametric data. nonparametric tests (e.g., Friedman) are inadequate, as they Method Limitations are unable to examine interaction effects. While some statistical techniques exist to handle such data, these General Linear Models Can perform factorial parametric analyses, (GLM) but cannot perform nonparametric analyses. techniques are not widely available and are complex. To address these concerns, we present the Aligned Rank Mann-Whitney U, Can perform nonparametric analyses, but Kruskal-Wallis cannot handle repeated measures or analyze Transform (ART) for nonparametric factorial data analysis multiple factors or interactions. in HCI. The ART relies on a preprocessing step that “aligns” Wilcoxon, Friedman Can perform nonparametric analyses and data before applying averaged ranks, after which point handle repeated measures, but cannot common ANOVA procedures can be used, making the ART analyze multiple factors or interactions.