Heterogeneous CO2 and CH4 Content of Glacial Meltwater from the Greenland Ice Sheet and Implications for Subglacial Carbon Processes

Total Page:16

File Type:pdf, Size:1020Kb

Heterogeneous CO2 and CH4 Content of Glacial Meltwater from the Greenland Ice Sheet and Implications for Subglacial Carbon Processes The Cryosphere, 15, 1627–1644, 2021 https://doi.org/10.5194/tc-15-1627-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Heterogeneous CO2 and CH4 content of glacial meltwater from the Greenland Ice Sheet and implications for subglacial carbon processes Andrea J. Pain1,a, Jonathan B. Martin1, Ellen E. Martin1, Åsa K. Rennermalm2, and Shaily Rahman1,b 1Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA 2Department of Geography, Rutgers, The State University of New Jersey, Piscataway NJ 08854, USA anow at: University of Maryland Center for Environmental Science, Horn Point Lab, Cambridge, MD 21613, USA bnow at: Department of Marine Science, University of Southern Mississippi, Stennis Space Center, MS 39529, USA Correspondence: Andrea J. Pain ([email protected]) Received: 18 June 2020 – Discussion started: 3 July 2020 Revised: 22 February 2021 – Accepted: 24 February 2021 – Published: 1 April 2021 Abstract. Accelerated melting of the Greenland Ice Sheet Sheet. Future work should constrain the extent and controls has increased freshwater delivery to the Arctic Ocean and of heterogeneity to improve our understanding of the impact amplified the need to understand the impact of Greenland of Greenland Ice Sheet melt on Arctic greenhouse gas bud- Ice Sheet meltwater on Arctic greenhouse gas budgets. We gets, as well as the role of continental ice sheets in green- evaluate subglacial discharge from the Greenland Ice Sheet house gas variations over glacial–interglacial timescales. for carbon dioxide (CO2) and methane (CH4) concentrations and δ13C values and use geochemical models to evaluate sub- glacial CH4 and CO2 sources and sinks. We compare dis- charge from southwest (a sub-catchment of the Isunnguata 1 Introduction Glacier, sub-Isunnguata, and the Russell Glacier) and south- ern Greenland (Kiattut Sermiat). Meltwater CH4 concentra- Glaciers play an important role in global chemical cycles tions vary by orders of magnitude between sites and are sat- due to the production of fine-grained sediments that partic- urated with respect to atmospheric concentrations at Kiattut ipate in carbonate and silicate mineral weathering reactions Sermiat. In contrast, meltwaters from southwest sites are su- (Table 1), which are the principal sink of atmospheric CO2 persaturated, even though oxidation reduces CH4 concentra- over geologic timescales (Berner et al., 1983; Walker et al., tions by up to 50 % during periods of low discharge. CO2 1981). Variations in the weathering intensity of comminuted concentrations range from supersaturated at sub-Isunnguata sediments may contribute to glacial–interglacial atmospheric to undersaturated at Kiattut Sermiat. CO2 is consumed by CO2 variations as sediments are alternately covered by ice mineral weathering throughout the melt season at all sites; and exposed following ice retreat. However, the importance however, differences in the magnitude of subglacial CO2 of CO2 consumption by mineral weathering is poorly un- sources result in meltwaters that are either sources or sinks derstood, including effects from the advance and retreat of of atmospheric CO2. At the sub-Isunnguata site, the predom- continental ice sheets (Ludwig et al., 1999). Recent eval- inant source of CO2 is organic matter (OM) remineralization. uations of carbon budgets in proglacial environments indi- However, multiple or heterogeneous subglacial CO2 sources cate that mineral weathering results in net sequestration of maintain atmospheric CO2 concentrations at Russell but not atmospheric CO2, suggesting that proglacial systems are un- at Kiattut Sermiat, where CO2 is undersaturated. These re- derrecognized as Arctic CO2 sinks (St Pierre et al., 2019); sults highlight a previously unrecognized degree of hetero- however, alternate processes could lead to the production of geneity in greenhouse gas dynamics under the Greenland Ice greenhouse gases in glacial systems. For instance, CH4 pro- duction in anaerobic subglacial environments driven by the Published by Copernicus Publications on behalf of the European Geosciences Union. 1628 A. J. Pain et al.: Heterogeneous CO2 and CH4 content of glacial meltwater remineralization of organic matter (OM) contained in soils and forests covered during glacial margin fluctuations has been suggested as a potential carbon feedback to drive warm- ing (Sharp et al., 1999; Wadham et al., 2008). Because the global warming potential of CH4 is 25 times greater than CO2, even limited subglacial methanogenesis has the po- tential to strongly impact the greenhouse gas composition of glacial meltwater. Combined inorganic and organic sub- glacial processes may therefore produce glacial meltwater that is a source or sink of greenhouse gas. While the net im- pact of these processes on modern carbon fluxes is poorly constrained, determining these impacts will improve mod- ern carbon budgets as well as depictions of how fluxes may have evolved during the advance and retreat of continental ice sheets. In subglacial environments where remineralization is lim- ited by low OM availability, the major element solute load of glacial meltwater is typically dominated by products of mineral weathering reactions (Tranter, 2005). The extent of mineral weathering in subglacial environments depends in Figure 1. Conceptual diagram of subglacial sources and sinks of part on the availability of acids to drive reactions, namely CO2 and CH4. Arrows indicate the direction of fluxes. Boxes rep- sulfuric and carbonic acids (Table 1). Sulfuric acid is de- resent processes, and sources of gases to subglacial meltwaters are rived from the oxidation of reduced sulfur species, which indicated by blue text, while sinks of gases to subglacial meltwater largely occur as iron sulfide minerals including pyrite (Tran- are indicated by red text. Gas bubbles, mechanical grinding, and ter, 2005). Sulfide oxidation may occur abiotically; however, OM remineralization are grouped because all are CO2 and CH4 sources. the kinetics of microbially mediated sulfide oxidation is sev- eral orders of magnitude faster and may lead to local deple- tion of oxygen given a sufficient supply of sulfide minerals (Sharp et al., 1999). In contrast, carbonic acid may be derived land Ice Sheet (Wadham et al., 2019). The is the last re- from multiple external or in situ sources of CO2 to the sys- maining ice sheet in the Northern Hemisphere following col- tem. The dominant external source is supraglacial meltwa- lapse of other ice sheets since the Last Glacial Maximum ter that flows to the subglacial system through moulins fol- (∼ 20 ka). It has been losing mass at increasing rates that av- lowing equilibration with atmospheric CO2 (Fig. 1). Unlike eraged 286 ± 20 Gt/yr between 2010–2018, representing a 6- proglacial environments where free exchange between water fold increase since the 1980s (Mouginot et al., 2019). While and the atmosphere may resupply CO2 consumed by weath- mineral weathering significantly modifies the chemical com- ering, subglacial environments may be partially or fully iso- position of Greenland Ice Sheet subglacial discharge (e.g., lated from the atmosphere, limiting further atmospheric CO2 Hindshaw et al., 2014; Deuerling et al., 2018; Urra et al., invasion and thus the extent of mineral weathering with car- 2019) and should consume CO2 similar to other glacial and bonic acid. However, additional atmospheric CO2 may be de- proglacial environments, the recent identification of micro- livered in open portions of the subglacial environment though bially driven reactions (including methanogenesis) in sub- exchange in fractures or moulins along subglacial flow paths glacial environments of the Greenland Ice Sheet indicates or in partially air filled conduits, allowing a much greater that organic processes may also play a role (Dieser et al., magnitude of carbonic acid mineral weathering (Graly et al., 2014; Lamarche-Gagnon et al., 2019). The relative impor- 2017). CO2 may also be derived from in situ sources, such tance of subglacial greenhouse gas sinks (CO2 consumption as gaseous CO2 contained in ice bubbles of basal ice or fluid through mineral weathering) and sources (such as OM rem- inclusions in rocks that release volatiles (including CO2) fol- ineralization) determines the greenhouse gas composition of lowing mechanical grinding (Macdonald et al., 2018). When subglacial discharge, which may then serve as a source or a OM is available, its remineralization also generates CO2 (and sink of atmospheric greenhouse gases. Constraining the rela- potentially CH4) along with nutrients, but low OM availabil- tive impacts and variability of these processes underneath the ity in many subglacial systems limits remineralization as a Greenland Ice Sheet will provide important information re- CO2 source (Fig. 1). garding the current and future impact of Greenland Ice Sheet The role of subglacial carbon processes may play an in- loss on Arctic carbon budgets, as well the role of continental creasingly important role in modern Arctic carbon budgets ice sheets on carbon cycle feedbacks. as disproportionate warming increases glacial meltwater and To evaluate the net impact of carbon processes on the sediment fluxes to the ocean, particularly from the Green- greenhouse gas composition of subglacial discharge of the The Cryosphere, 15, 1627–1644, 2021 https://doi.org/10.5194/tc-15-1627-2021 A. J. Pain et al.: Heterogeneous CO2 and CH4 content of glacial meltwater 1629 Table 1. Mineral weathering reactions and
Recommended publications
  • Safeguarding the Arctic Why the U.S
    Safeguarding the Arctic Why the U.S. Must Lead in the High North By Cathleen Kelly and Miranda Peterson January 22, 2015 “As the United States assumes the Chairmanship of the Arctic Council, it is more important than ever that we have a coordinated national effort that takes advantage of our combined expertise and efforts in the Arctic region to promote our shared values and priorities.” — President Obama, Executive Order on Enhancing Coordination of National Efforts in the Arctic, January 21, 20151 While many Americans do not consider the United States to be an Arctic nation, Alaska—which constitutes 16 percent of the country’s landmass and sits on the Arctic Circle—puts the country solidly in that category.2 Consequently, it is with good reason that the United States has a seat on the Arctic Council. As Arctic warming accelerates, U.S. leadership in the High North is key not only to the public health and safety of Americans and other people in the region, but also to U.S. national security and the fate of the planet. In just three months, U.S. Secretary of State John Kerry will become chairman of the Arctic Council. The two-year position rotates among the eight Arctic nations3—Canada, Finland, Iceland, Norway, Russia, Sweden, the United States, and Denmark, including Greenland and the Faroe Islands—and is a powerful platform for shaping how the risks and opportunities of increasing commercial activity at the top of the world are managed. To ready the administration for Secretary Kerry’s turn to hold the Arctic Council gavel from 2015 to 2017, President Barack Obama recently issued an executive order to better coordinate national efforts in the Arctic.4 The executive order is the latest signal from the White House that President Obama and Secretary Kerry are focused on preparing the nation for dramatic changes in the Arctic and protecting U.S.
    [Show full text]
  • Pdf Dokument
    Udskriftsdato: 2. oktober 2021 BEK nr 517 af 23/05/2018 (Historisk) Bekendtgørelse om ændring af den fortegnelse over valgkredse, der indeholdes i lov om folketingsvalg i Grønland Ministerium: Social­ og Indenrigsministeriet Journalnummer: Økonomi­ og Indenrigsmin., j.nr. 2017­5132 Senere ændringer til forskriften LBK nr 916 af 28/06/2018 Bekendtgørelse om ændring af den fortegnelse over valgkredse, der indeholdes i lov om folketingsvalg i Grønland I medfør af § 8, stk. 1, i lov om folketingsvalg i Grønland, jf. lovbekendtgørelse nr. 255 af 28. april 1999, fastsættes: § 1. Fortegnelsen over valgkredse i Grønland affattes som angivet i bilag 1 til denne bekendtgørelse. § 2. Bekendtgørelsen træder i kraft den 1. juni 2018. Stk. 2. Bekendtgørelse nr. 476 af 17. maj 2011 om ændring af den fortegnelse over valgkredse, der indeholdes i lov om folketingsvalg i Grønland, ophæves. Økonomi- og Indenrigsministeriet, den 23. maj 2018 Simon Emil Ammitzbøll-Bille / Christine Boeskov BEK nr 517 af 23/05/2018 1 Bilag 1 Ilanngussaq Fortegnelse over valgkredse i hver kommune Kommuneni tamani qinersivinnut nalunaarsuut Kommune Valgkredse i Valgstedet eller Valgkredsens område hver kommune afstemningsdistrikt (Tilknyttede bosteder) (Valgdistrikt) (Afstemningssted) Kommune Nanortalik 1 Nanortalik Nanortalik Kujalleq 2 Aappilattoq (Kuj) Aappilattoq (Kuj) Ikerasassuaq 3 Narsaq Kujalleq Narsaq Kujalleq 4 Tasiusaq (Kuj) Tasiusaq (Kuj) Nuugaarsuk Saputit Saputit Tasia 5 Ammassivik Ammassivik Qallimiut Qorlortorsuaq 6 Alluitsup Paa Alluitsup Paa Alluitsoq Qaqortoq
    [Show full text]
  • Impacts of Glacial Meltwater on Geochemistry and Discharge of Alpine Proglacial Streams in the Wind River Range, Wyoming, USA
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2019-07-01 Impacts of Glacial Meltwater on Geochemistry and Discharge of Alpine Proglacial Streams in the Wind River Range, Wyoming, USA Natalie Shepherd Barkdull Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd BYU ScholarsArchive Citation Barkdull, Natalie Shepherd, "Impacts of Glacial Meltwater on Geochemistry and Discharge of Alpine Proglacial Streams in the Wind River Range, Wyoming, USA" (2019). Theses and Dissertations. 8590. https://scholarsarchive.byu.edu/etd/8590 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Impacts of Glacial Meltwater on Geochemistry and Discharge of Alpine Proglacial Streams in the Wind River Range, Wyoming, USA Natalie Shepherd Barkdull A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Gregory T. Carling, Chair Barry R. Bickmore Stephen T. Nelson Department of Geological Sciences Brigham Young University Copyright © 2019 Natalie Shepherd Barkdull All Rights Reserved ABSTRACT Impacts of Glacial Meltwater on Geochemistry and Discharge of Alpine Proglacial Streams in the Wind River Range, Wyoming, USA Natalie Shepherd Barkdull Department of Geological Sciences, BYU Master of Science Shrinking alpine glaciers alter the geochemistry of sensitive mountain streams by exposing reactive freshly-weathered bedrock and releasing decades of atmospherically-deposited trace elements from glacier ice. Changes in the timing and quantity of glacial melt also affect discharge and temperature of alpine streams.
    [Show full text]
  • Geological Survey of Denmark and Greenland Bulletin 11, 87-99
    Zircon geochronology from the Kangaatsiaq– Qasigiannguit region, the northern part of the 1.9–1.8 Ga Nagssugtoqidian orogen, West Greenland Kristine Thrane and James N. Connelly The Kangaatsiaq–Qasigiannguit region in the northern part of the Palaeoproterozoic Nagssugto- qidian orogen of West Greenland consists of poly-deformed orthogneisses and minor occurrences of interleaved, discontinuous supracrustal belts. Laser ablation ICP-MS 207Pb/206Pb analyses of detrital zircons from four metasedimentary rocks (supplemented by ion probe analysis of one sample) and igneous zircons from six granitoid rocks cutting metasedimentary units indicate that the supracrustal rocks in the Kangaatsiaq–Qasigiannguit (Christianshåb) region are predominantly Archaean in age. Four occurrences of metasedimentary rocks are clearly Archaean, two have equivocal ages, and only one metasedimentary unit, from within the Naternaq (Lersletten) supracrustal belt, is demonstrably Palaeoproterozoic and readily defines a large fold complex of this age at Naternaq. The 2.9–2.8 Ga ages of detrital Archaean grains are compatible with derivation from the local basement orthogneisses within the Nagssugtoqidian orogen. The detrital age patterns are similar to those of metasediments within the central Nagssugtoqidian orogen but distinct from age patterns in metasediments of the Rinkian belt to the north, where there is an additional component of pre-2.9 Ga zircons. Synkine- matic intrusive granitoid rocks constrain the ages of some Archaean deformation at 2748 ± 19 Ma and some
    [Show full text]
  • [BA] COUNTRY [BA] SECTION [Ba] Greenland
    [ba] Validity date from [BA] COUNTRY [ba] Greenland 26/08/2013 00081 [BA] SECTION [ba] Date of publication 13/08/2013 [ba] List in force [ba] Approval [ba] Name [ba] City [ba] Regions [ba] Activities [ba] Remark [ba] Date of request number 153 Qaqqatisiaq (Royal Greenland Seagfood A/S) Nuuk Vestgronland [ba] FV 219 Markus (Qajaq Trawl A/S) Nuuk Vestgronland [ba] FV 390 Polar Princess (Polar Seafood Greenland A/S) Qeqertarsuaq Vestgronland [ba] FV 401 Polar Qaasiut (Polar Seafood Greenland A/S) Nuuk Vestgronland [ba] FV 425 Sisimiut (Royal Greenland Seafood A/S) Nuuk Vestgronland [ba] FV 4406 Nataarnaq (Ice Trawl A/S) Nuuk Vestgronland [ba] FV 4432 Qeqertaq Fish ApS Ilulissat Vestgronland [ba] PP 4469 Akamalik (Royal Greenland Seafood A/S) Nuuk Vestgronland [ba] FV 4502 Regina C (Niisa Trawl ApS) Nuuk Vestgronland [ba] FV 4574 Uummannaq Seafood A/S Uummannaq Vestgronland [ba] PP 4615 Polar Raajat A/S Nuuk Vestgronland [ba] CS 4659 Greenland Properties A/S Maniitsoq Vestgronland [ba] PP 4660 Arctic Green Food A/S Aasiaat Vestgronland [ba] PP 4681 Sisimiut Fish ApS Sisimiut Vestgronland [ba] PP 4691 Ice Fjord Fish ApS Nuuk Vestgronland [ba] PP 1 / 5 [ba] List in force [ba] Approval [ba] Name [ba] City [ba] Regions [ba] Activities [ba] Remark [ba] Date of request number 4766 Upernavik Seafood A/S Upernavik Vestgronland [ba] PP 4768 Royal Greenland Seafood A/S Qeqertarsuaq Vestgronland [ba] PP 4804 ONC-Polar A/S Alluitsup Paa Vestgronland [ba] PP 481 Upernavik Seafood A/S Upernavik Vestgronland [ba] PP 4844 Polar Nanoq (Sigguk A/S) Nuuk Vestgronland
    [Show full text]
  • Faroe Islands and Greenland 2008
    N O R D I C M E D I A T R E N D S 10 Media and Communication Statistics Faroe Islands and Greenland 2008 Compiled by Ragnar Karlsson NORDICOM UNIVERSITY OF GOTHENBURG 2008 NORDICOM’s activities are based on broad and extensive network of contacts and collaboration with members of the research community, media companies, politicians, regulators, teachers, librarians, and so forth, around the world. The activities at Nordicom are characterized by three main working areas. Media and Communication Research Findings in the Nordic Countries Nordicom publishes a Nordic journal, Nordicom Information, and an English language journal, Nordicom Review (refereed), as well as anthologies and other reports in both Nordic and English langu- ages. Different research databases concerning, among other things, scientific literature and ongoing research are updated continuously and are available on the Internet. Nordicom has the character of a hub of Nordic cooperation in media research. Making Nordic research in the field of mass communication and media studies known to colleagues and others outside the region, and weaving and supporting networks of collaboration between the Nordic research communities and colleagues abroad are two prime facets of the Nordicom work. The documentation services are based on work performed in national documentation centres at- tached to the universities in Aarhus, Denmark; Tampere, Finland; Reykjavik, Iceland; Bergen, Norway; and Göteborg, Sweden. Trends and Developments in the Media Sectors in the Nordic Countries Nordicom compiles and collates media statistics for the whole of the Nordic region. The statistics, to- gether with qualified analyses, are published in the series, Nordic Media Trends, and on the homepage.
    [Show full text]
  • The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points
    The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points Critical Role of Short-lived Super Climate Pollutants in the Climate Emergency Background Note DRAFT: 27 September 2021 Institute for Governance Center for Human Rights and & Sustainable Development (IGSD) Environment (CHRE/CEDHA) Lead authors Durwood Zaelke, Romina Picolotti, Kristin Campbell, & Gabrielle Dreyfus Contributing authors Trina Thorbjornsen, Laura Bloomer, Blake Hite, Kiran Ghosh, & Daniel Taillant Acknowledgements We thank readers for comments that have allowed us to continue to update and improve this note. About the Institute for Governance & About the Center for Human Rights and Sustainable Development (IGSD) Environment (CHRE/CEDHA) IGSD’s mission is to promote just and Originally founded in 1999 in Argentina, the sustainable societies and to protect the Center for Human Rights and Environment environment by advancing the understanding, (CHRE or CEDHA by its Spanish acronym) development, and implementation of effective aims to build a more harmonious relationship and accountable systems of governance for between the environment and people. Its work sustainable development. centers on promoting greater access to justice and to guarantee human rights for victims of As part of its work, IGSD is pursuing “fast- environmental degradation, or due to the non- action” climate mitigation strategies that will sustainable management of natural resources, result in significant reductions of climate and to prevent future violations. To this end, emissions to limit temperature increase and other CHRE fosters the creation of public policy that climate impacts in the near-term. The focus is on promotes inclusive socially and environmentally strategies to reduce non-CO2 climate pollutants, sustainable development, through community protect sinks, and enhance urban albedo with participation, public interest litigation, smart surfaces, as a complement to cuts in CO2.
    [Show full text]
  • The Generation of Mega Glacial Meltwater Floods and Their Geologic
    urren : C t R gy e o s l e o r a r LaViolette, Hydrol Current Res 2017, 8:1 d c y h H Hydrology DOI: 10.4172/2157-7587.1000269 Current Research ISSN: 2157-7587 Research Article Open Access The Generation of Mega Glacial Meltwater Floods and Their Geologic Impact Paul A LaViolette* The Starburst Foundation, 1176 Hedgewood Lane, Niskayuna, New York 12309, United States Abstract A mechanism is presented explaining how mega meltwater avalanches could be generated on the surface of a continental ice sheet. It is shown that during periods of excessive climatic warmth when the continental ice sheet surface was melting at an accelerated rate, self-amplifying, translating waves of glacial meltwater emerge as a distinct mechanism of meltwater transport. It is shown that such glacier waves would have been capable of attaining kinetic energies per kilometer of wave front equivalent to 12 million tons of TNT, to have achieved heights of 100 to 300 meters, and forward velocities as great as 900 km/hr. Glacier waves would not have been restricted to a particular locale, but could have been produced wherever continental ice sheets were present. Catastrophic floods produced by waves of such size and kinetic energy would be able to account for the character of the permafrost deposits found in Alaska and Siberia, flood features and numerous drumlin field formations seen in North America, and many of the lignite deposits found in Europe, Siberia, and North America. They also could account for how continental debris was transported thousands of kilometers into the mid North Atlantic to form Heinrich layers.
    [Show full text]
  • Freshwater Resources
    3 Freshwater Resources Coordinating Lead Authors: Blanca E. Jiménez Cisneros (Mexico), Taikan Oki (Japan) Lead Authors: Nigel W. Arnell (UK), Gerardo Benito (Spain), J. Graham Cogley (Canada), Petra Döll (Germany), Tong Jiang (China), Shadrack S. Mwakalila (Tanzania) Contributing Authors: Thomas Fischer (Germany), Dieter Gerten (Germany), Regine Hock (Canada), Shinjiro Kanae (Japan), Xixi Lu (Singapore), Luis José Mata (Venezuela), Claudia Pahl-Wostl (Germany), Kenneth M. Strzepek (USA), Buda Su (China), B. van den Hurk (Netherlands) Review Editor: Zbigniew Kundzewicz (Poland) Volunteer Chapter Scientist: Asako Nishijima (Japan) This chapter should be cited as: Jiménez Cisneros , B.E., T. Oki, N.W. Arnell, G. Benito, J.G. Cogley, P. Döll, T. Jiang, and S.S. Mwakalila, 2014: Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 229-269. 229 Table of Contents Executive Summary ............................................................................................................................................................ 232 3.1. Introduction ...........................................................................................................................................................
    [Show full text]
  • Himalayan Glaciers
    Himalayan Glaciers Climate Change, Water Resources, and Water Security Scientific evidence shows that most glaciers in South Asia’s Hindu Kush Himalayan region are retreating, but the consequences for the region’s water supply are unclear, this report finds. The Hindu Kush Himalayan region is the location of several of Asia’s great river systems, which provide water for drinking, irrigation, and other uses for about 1.5 billion people. Recent studies show that at lower elevations, glacial retreat is unlikely to cause significant changes in water availability over the next several decades, but other factors, including groundwater depletion and increasing human water use, could have a greater impact. Higher elevation areas could experience altered water flow in some river basins if current rates of glacial retreat continue, but shifts in the location, intensity, and variability of rain and snow due to climate change will likely have a greater impact on regional water supplies. he Himalayan region, which Tcovers eight countries across Asia, is home to some of the world’s largest and most spectacular glaciers. The melt- water generated from these glaciers each summer supplements the rivers and streams of the region, including several of Asia’s great river systems such as the Indus, Ganges, and Brahmaputra. Rising tempera- tures due to climate change are causing glaciers worldwide to Figure 1. Extending over 2000 kilometers across the Asian continent and including all shrink in volume and or part of Afghanistan, Bangladesh, Bhutan, China, India, Nepal, and Pakistan, the mass, a phenomenon Hindu Kush Himalayan region is the source for many of Asia’s major river systems, known as glacial including the Indus, Ganges, and Brahmaputra.
    [Show full text]
  • The Potential of Hudson Valley Glacial Floods to Drive Abrupt Climate Change
    ARTICLE https://doi.org/10.1038/s43247-021-00228-1 OPEN The potential of Hudson Valley glacial floods to drive abrupt climate change ✉ Simon Pendleton 1 , Alan Condron 1 & Jeffrey Donnelly1 The periodic input of meltwater into the ocean from a retreating Laurentide Ice Sheet is often hypothesized to have weakened the Atlantic meridional overturning circulation (AMOC) and triggered several cold periods during the last deglaciation (21,000 to 8,000 years before present). Here, we use a numerical model to investigate whether the Intra-Allerød Cold Period was triggered by the drainage of Glacial Lake Iroquois, ~13,300 years ago. Performing a large suite of experiments with various combinations of single and successive, short fl fi fi 1234567890():,; (1 month) and long (1 year) duration ood events, we were unable to nd any signi cant weakening of the AMOC. This result suggests that although the Hudson Valley floods occurred close to the beginning of the Intra-Allerød Cold Period, they were unlikely the sole cause. Our results have implications for re-evaluating the relationship of meltwater flood events (past and future) to periods of climatic cooling, particularly with regards to flood input location, volume, frequency, and duration. ✉ 1 Woods Hole Oceanographic Institution, Woods Hole, MA, USA. email: [email protected] COMMUNICATIONS EARTH & ENVIRONMENT | (2021) 2:152 | https://doi.org/10.1038/s43247-021-00228-1 | www.nature.com/commsenv 1 ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-021-00228-1 n the late 1980s periodic meltwater inputs from a retreating supports a second larger flood (~2500 km3) then drained the ILaurentide Ice Sheet (LIS) were hypothesized to have hindered successor to Lake Iroquois, Lake Frontenac, along with the glacial North Atlantic deep water (NADW) formation, leading to a lake in the Champlain Valley (Lake Fort Ann) down the Hudson weakened Atlantic meridional overturning circulation (AMOC), River9–12 (Fig.
    [Show full text]
  • Nunarsuarmisut Pitsaassusilimmi Pisunneq
    Suluk Suluk #01 — 2020 — # 01 Suliffeqarfiu- TIGORIANNGUARUK | TAG SULUK MED HJEM | YOUR PERSONAL COPY tinnut sinaakkutit pitsaanerpaat De bedste rammer for din virksomhed Suliffeqarfimmik pilersitsilerpit, imaluunniit inerisaaninni siunnersugassaavit? Inuussutis- sarsiortunik siunnersortigut suliffeqarfiutilin- nut – suliffeqarfiutitaarniartunullu – siunner­ suinissaminnut piareersimajuaannarput. Nunani avannarlerni misilittakkagut atorlugit illoqarfigisanni inuussutissarsiortutut suliffeqar­ fiutippit patajaattuunissaa ineriartortinnissaalu isumassussavarput. Skal du stifte ny virksomhed, eller har du brug for rådgivning i forbindelse med din virksomheds Nunarsuarmisut vækststrategi? Vores erhvervsrådgivere er altid klar til at give råd og vejledning til dig, som er virksomhedsejer. pitsaassusilimmi Vi trækker på vores nordatlantiske erfaring til at styrke det lokale erhvervsliv og giver din virksom- Air Greenland inflight magazine 2020 pisunneq hed den opmærksomhed, den fortjener. www.banknordik.gl/erhverv Hiking i verdensklasse 8-15 World Class hiking Annonce_Flymagasin-SULUK_GL_210x280.indd 1 06.11.2019 14.14 JORDIN TOOTOO HOCKEY PLAYER, AUTHOR AND ACTIVIST RANKIN INLET, CANADA 62.8090° N, 92.0896° W GreenlandGreenland RUBIESRUBIES Greenland Ruby and Tahiti pearl bracelet with 18k rose gold polar bear charm. DKK 12,500,- Ruby ringRuby in halo18k ringrose goldset with set with 1.39 1.75 ct. ct. GreenlandicGreenlandic Ruby Ruby and and 0.25 0.24 ct. ct. brilliant-cut brilliant-cut diamondsdiamonds DKK DKK 19.500,- 21,500,- DISCOVER
    [Show full text]