198 7MNRAS.226. .747J Mon. Not. R. Astr. Soc. (1987) 226
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
XMM–Newton Observations of NGC 3268 in the Antlia Galaxy Cluster: Characterization of a Hidden Group of Galaxies at Z ≈ 0.41
MNRAS 00, 1 (2018) doi:10.1093/mnras/sty1401 Advance Access publication 2018 May 28 XMM–Newton observations of NGC 3268 in the Antlia Galaxy Cluster: characterization of a hidden group of galaxies at z ≈ 0.41 I. D. Gargiulo,1,4‹ F. Garc´ıa,2,3,4,5 J. A. Combi,2,3,4 J. P. Caso1,2,4 and L. P. Bassino1,2,4 1Instituto de Astrof´ısica de La Plata (CCT La Plata, CONICET, UNLP), Paseo del Bosque s/n, B1900FWA La Plata, Argentina 2Facultad de Ciencias Astronomicas´ y Geof´ısicas, Universidad Nacional de La Plata, Paseo del Bosque, B1900FWA La Plata, Argentina 3Instituto Argentino de Radioastronom´ıa (CCT-La Plata, CONICET; CICPBA), C.C. No. 5, 1894 Villa Elisa, Argentina 4Consejo Nacional de Investigaciones Cient´ıficas y Tecnicas,´ Rivadavia 1917, Ciudad Autonoma´ de Buenos Aires, C1033AAJ Buenos Aires, Argentina 5Laboratoire AIM (UMR 7158 CEA/DRF-CNRS-Universite´ Paris Diderot), Irfu/Departament´ d’Astrophysique, Centre de Saclay, F-91191 Gif-sur-Yvette, France Accepted 2018 May 25. Received 2018 May 25; in original form 2016 December 1 ABSTRACT We report on a detailed X-ray study of the extended emission of the intracluster medium (ICM) around NGC 3268 in the Antlia Cluster of galaxies, together with a characterization of an extended source in the field, namely a background cluster of galaxies at z ≈ 0.41, which was previously accounted as an X-ray point source. The spectral properties of the extended emission of the gas present in Antlia were studied using data from the XMM–Newton satellite, complemented with optical images of Cerro Tololo Inter-American Observatory (CTIO) Blanco telescope, to attain for associations of the optical sources with the X-ray emission. -
Early-Type Galaxies in the Antlia Cluster: Catalogue and Isophotal Analysis
MNRAS 477, 1760–1771 (2018) doi:10.1093/mnras/sty611 Advance Access publication 2018 March 7 Early-type galaxies in the Antlia cluster: catalogue and isophotal analysis Juan P. Calderon,´ 1,2,3‹ Lilia P. Bassino,1,2,3 Sergio A. Cellone1,3,4 and Mat´ıas Gomez´ 5 1Consejo Nacional de Investigaciones Cient´ıficas y Tecnicas,´ Rivadavia 1917, Buenos Aires, Argentina 2Instituto de Astrof´ısica de La Plata (CCT La Plata - CONICET - UNLP), La Plata, Argentina 3Facultad de Ciencias Astronomicas´ y Geof´ısicas, Universidad Nacional de La Plata, Paseo del Bosque, B1900FWA La Plata, Argentina Downloaded from https://academic.oup.com/mnras/article-abstract/477/2/1760/4924514 by Universidad Andres Bello user on 28 May 2019 4Complejo Astronomico´ El Leoncito (CONICET - UNLP - UNC - UNSJ), San Juan, Argentina 5Departamento de Ciencias F´ısicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile Accepted 2018 February 26. Received 2018 February 26; in original form 2017 December 14 ABSTRACT We present a statistical isophotal analysis of 138 early-type galaxies in the Antlia cluster, located at a distance of ∼ 35 Mpc. The observational material consists of CCD images of four 36 × 36 arcmin2 fields obtained with the MOSAIC II camera at the Blanco 4-m telescope at Cerro Tololo Interamerican Observatory. Our present work supersedes previous Antlia studies in the sense that the covered area is four times larger, the limiting magnitude is MB ∼−9.6 mag, and the surface photometry parameters of each galaxy are derived from Sersic´ model fits extrapolated to infinity. In a companion previous study we focused on the scaling relations obtained by means of surface photometry, and now we present the data, on which the previous paper is based, the parameters of the isophotal fits as well as an isophotal analysis. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Cold Gas, Star Formation, and Substructure in the Nearby Antlia Cluster
University of Groningen KAT-7 science verification Hess, Kelley M.; Jarrett, T. H.; Carignan, Claude; Passmoor, Sean S.; Goedhart, Sharmila Published in: Monthly Notices of the Royal Astronomical Society DOI: 10.1093/mnras/stv1372 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2015 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hess, K. M., Jarrett, T. H., Carignan, C., Passmoor, S. S., & Goedhart, S. (2015). KAT-7 science verification: Cold gas, star formation, and substructure in the nearby Antlia Cluster. Monthly Notices of the Royal Astronomical Society, 452(2), 1617-1636. https://doi.org/10.1093/mnras/stv1372 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. -
Centaurus Kentaur
Lateinischer Name: Deutscher Name: Cen Centaurus Kentaur Atlas Karte (2000.0) Kulmination um Cambridge 17 Mitternacht: Star Atlas 20, 21, Sky Atlas Cen_chart.gif Cen_chart.gif 25 6. April Deklinationsbereich: -64° ... -30° Fläche am Himmel: 1060° 2 Benachbarte Sternbilder: Ant Car Cir Cru Hya Lib Lup Mus Vel Mythologie und Geschichte: Die Zentauren waren in der griechischen Mythologie meist wilde Mischwesen mit dem Oberkörper eines Menschen bis zur Hüfte, darunter dem Leib eines Pferdes. Der Zentaur Chiron aber war dagegen sehr weise und besonders in der Medizin, Musik und Botanik bewandert. Er war der Lehrer des Achill und des Asklepios. Chiron war auch der Beschützer vieler Helden und hat angeblich die Sternbilder "erfunden". Selbst an den Himmel versetzt wurde er, nachdem ihn Herkules aus Versehen mit einem vergifteten Pfeil getroffen hatte (diese Erklärung wird manchmal auch für Sagittarius überliefert, einen anderen "himmlischen" Zentauren). Am Himmel soll er den in einen Wolf verwandelten König Lykaon (Lupus ) in Schach halten. Das Sternbild war den Griechen bekannt, da es infolge der Präzession der Erdachse vor 2000-3000 Jahren vom Mittelmeerraum, Unterägypten und Vorderasien aus voll gesehen werden konnte. [bk7 ] Sternbild: Centaurus ist ein ausgedehntes Sternbild mit ungewöhnlich vielen hellen Sternen und einer Fläche von 1060 Quadratgrad, südlich von Hydra . Das Zentrum kulminiert jeweils etwa am 6. April um Mitternacht. Zwischen den Hufen des Zentauren befindet sich das Kreuz des Südens . [bk9 , bk15 ] Interessante Objekte: -
X-Ray Luminosities for a Magnitude-Limited Sample of Early-Type Galaxies from the ROSAT All-Sky Survey
Mon. Not. R. Astron. Soc. 302, 209±221 (1999) X-ray luminosities for a magnitude-limited sample of early-type galaxies from the ROSAT All-Sky Survey J. Beuing,1* S. DoÈbereiner,2 H. BoÈhringer2 and R. Bender1 1UniversitaÈts-Sternwarte MuÈnchen, Scheinerstrasse 1, D-81679 MuÈnchen, Germany 2Max-Planck-Institut fuÈr Extraterrestrische Physik, D-85740 Garching bei MuÈnchen, Germany Accepted 1998 August 3. Received 1998 June 1; in original form 1997 December 30 Downloaded from https://academic.oup.com/mnras/article/302/2/209/968033 by guest on 30 September 2021 ABSTRACT For a magnitude-limited optical sample (BT # 13:5 mag) of early-type galaxies, we have derived X-ray luminosities from the ROSATAll-Sky Survey. The results are 101 detections and 192 useful upper limits in the range from 1036 to 1044 erg s1. For most of the galaxies no X-ray data have been available until now. On the basis of this sample with its full sky coverage, we ®nd no galaxy with an unusually low ¯ux from discrete emitters. Below log LB < 9:2L( the X-ray emission is compatible with being entirely due to discrete sources. Above log LB < 11:2L( no galaxy with only discrete emission is found. We further con®rm earlier ®ndings that Lx is strongly correlated with LB. Over the entire data range the slope is found to be 2:23 60:12. We also ®nd a luminosity dependence of this correlation. Below 1 log Lx 40:5 erg s it is consistent with a slope of 1, as expected from discrete emission. -
7.5 X 11.5.Threelines.P65
Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93, -