RESEARCH ARTICLE Far-infrared suppresses skin photoaging in ultraviolet B-exposed fibroblasts and hairless mice Hui-Wen Chiu1,2, Cheng-Hsien Chen1,3,4, Yi-Jie Chen1, Yung-Ho Hsu1,4* 1 Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan, 2 Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, 3 Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, 4 Department of Internal Medicine, School of Medicine, College of a1111111111 Medicine, Taipei Medical University, Taipei, Taiwan a1111111111
[email protected] a1111111111 * a1111111111 a1111111111 Abstract Ultraviolet (UV) induces skin photoaging, which is characterized by thickening, wrinkling, pigmentation, and dryness. Collagen, which is one of the main building blocks of human OPEN ACCESS skin, is regulated by collagen synthesis and collagen breakdown. Autophagy was found to Citation: Chiu H-W, Chen C-H, Chen Y-J, Hsu Y-H block the epidermal hyperproliferative response to UVB and may play a crucial role in pre- (2017) Far-infrared suppresses skin photoaging in venting skin photoaging. In the present study, we investigated whether far-infrared (FIR) ultraviolet B-exposed fibroblasts and hairless mice. PLoS ONE 12(3): e0174042. https://doi.org/ therapy can inhibit skin photoaging via UVB irradiation in NIH 3T3 mouse embryonic fibro- 10.1371/journal.pone.0174042 blasts and SKH-1 hairless mice. We found that FIR treatment significantly increased procol- Editor: Ying-Jan Wang, National Cheng Kung lagen type I through the induction of the TGF-β/Smad axis. Furthermore, UVB significantly University, TAIWAN enhanced the expression of matrix metalloproteinase-1 (MMP-1) and MMP-9.