Geospatial Variation of an Invasive Forest Disease and the Effects on Treeline Dynamics in the Rocky Mountains

Total Page:16

File Type:pdf, Size:1020Kb

Geospatial Variation of an Invasive Forest Disease and the Effects on Treeline Dynamics in the Rocky Mountains Geospatial Variation of an Invasive Forest Disease and the Effects on Treeline Dynamics in the Rocky Mountains Emily Katherine Smith-McKenna Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Geospatial and Environmental Analysis Lynn M. Resler, Chair George P. Malanson Stephen P. Prisley Laurence W. Carstensen Jr. October 2, 2013 Blacksburg, Virginia Keywords: Treeline, Whitebark Pine, Pinus albicaulis, Blister Rust, Rocky Mountains, spatial pattern, GIS, GPS, DEM, Agent-Based Model Copyright 2013, Emily K. Smith-McKenna Geospatial Variation of an Invasive Forest Disease and the Effects on Treeline Dynamics in the Rocky Mountains Emily Katherine Smith-McKenna ABSTRACT Whitebark pine is an important keystone and foundation species in western North American mountain ranges, and facilitates tree island development in Rocky Mountain treelines. The manifestation of white pine blister rust in the cold and dry treelines of the Rockies, and the subsequent infection and mortality of whitebark pines raises questions as to how these extreme environments harbor the invasive disease, and what the consequences may be for treeline dynamics. This dissertation research comprises three studies that investigate abiotic factors influential for blister rust infection in treeline whitebark pines, how disease coupled with changing climate may affect whitebark pine treeline dynamics, and the connection between treeline spatial patterns and disease. The first study examined the spatial variation of blister rust infection in two whitebark pine treeline communities, and potential topographic correlates. Using geospatial and field approaches to generate high resolution terrain models of treeline landscapes, microtopography associated with solar radiation and moisture were found most influential to blister rust infection in treeline whitebark pines. Using field-based observations from sampled treeline communities, the second study developed an agent-based model to examine the effects of disease and climate on treeline pattern and process. Treeline dynamics were simulated under five hypothetical scenarios to assess changes in tree spatial patterns and populations. Blister rust-induced loss of whitebark pines resulted in a decline of facilitative processes, and an overall negative treeline response to disease—despite the beneficial effects of climate amelioration. The objective of the third study was to explore whether spatial patterns of tree proximity, size, and growth infer disease patterns. Comparing spatial patterns of tree characteristics between diseased and undiseased treeline communities, I found that trees growing near trees with larger stem diameters, and larger tree islands, tended to have more blister rust cankers, and displayed clustered spatial patterns. Undiseased treeline patterns revealed near neighbors smaller in stem diameter and tree island size, and were randomly dispersed. Blister rust diseased whitebark pines reveal spatial autocorrelation, despite the complex blister rust disease life cycle. Overall, findings from this dissertation reveal the implications of invasive disease on sensitive treeline ecotones dependent on a keystone species. Acknowledgements The journey toward the doctorate is a challenging endeavor. It is full of hurdles and setbacks, which are somehow compensated by the gratification of accomplishment to help make the push further. To the many people who provided mentorship and support to me through the process, and helped me make this push—thank you. My dissertation research was primarily supported by a National Science Foundation Geography and Spatial Sciences Program grant (808548) awarded to Dr. Lynn Resler, Dr. Diana Tomback, and Dr. George Malanson. I feel fortunate that I had the opportunity to work with these research experts in treeline ecosystems, in such beautiful and scenic mountain landscapes, and to have them as coauthors on papers—it has made me a better writer. I express much thanks to my committee members: to my advisor Lynn Resler, whose knowledge and experience guided my efforts throughout the PhD process; to George Malanson, his expertise in agent-based modeling and feedback processes provided an invaluable resource (“good stuff Maynard!”); and to Steve Prisley and Bill Carstensen, who helped me hash out ideas for the geospatial and statistical components of my research, and above all provided their support, encouragement, and trust in my accomplishments. Thank you. Sharing the trials and tribulations of being a graduate student with my fellow PhD graduate students, both in the VT Geography Department and outside, was an important outlet and they made the experience so much more fun. In particular, Candice Luebbering, Arvind Bhuta, Melanie Stine, Jess Walker, Baojuan Zheng, and Tammy Parece—I appreciate your friendship and support as we worked towards the PhD. And to Jim Campbell, even though our office was at the far end of the building and end of the hallway, you always stopped by to visit us in the GEA office—thanks for lending your insight over the years. A special thanks to my fellow band members, music fed my soul—long live the Septapüs! And to Sinking Creek Pottery, working clay into art kept me balanced. Most importantly, I am so thankful for the immeasurable support from my family and friends. I especially owe a heartfelt thanks to my husband John McKenna, who has patiently endured the ups and downs of my journey toward the doctorate—I love you. iii Attribution My coauthors for chapters 3 and 4 consist of my advisory committee, co-principal investigator for the supporting research grant, and colleague. A brief description of their contributions towards each chapter is outlined below. Chapter 3: Topographic Influences on the Distribution of White Pine Blister Rust in Pinus albicaulis Treeline Communities Emily K. Smith-McKenna, Lynn M. Resler, Diana F. Tomback, Huaiye Zhang, and George P. Malanson Chapter 4: Feedbacks, disease, and climate influences on whitebark pine treeline dynamics: An agent-based treeline model. Emily K. Smith-McKenna, George P. Malanson, Lynn M. Resler, Laurence W. Carstensen, Stephen P. Prisley, and Diana F. Tomback Dr. Lynn M. Resler, Ph.D., is an Associate Professor in the Department of Geography at Virginia Tech. Dr. Resler was a co-author on chapters 3 and 4, my advisor, principal investigator of the National Science Foundation grant that supported this research, and contributed intellectual and editorial comments. Dr. Diana F. Tomback, Ph.D., is a Professor in the Department of Integrative Biology at the University of Colorado Denver. Dr. Tomback was a co-author on chapters 3 and 4, co-principal investigator of the National Science Foundation grant that supported this research, and contributed intellectual and editorial comments. Dr. Huaiye Zhang, Ph.D., earned his doctorate at the Department of Statistics, Virginia Tech. Dr. Zhang was a co-author on chapter 3, and was a consultant at the Virginia Tech’s Laboratory for Interdisciplinary Statistical Analysis where he contributed his statistical expertise to the statistical model. Dr. George P. Malanson, Ph.D., is the Coleman-Miller Professor in the Department of Geographical and Sustainability Sciences at the University of Iowa. Dr. Malanson was a co- author on chapters 3 and 4, co-principal investigator of the National Science Foundation grant that supported this research, and contributed intellectual and editorial comments and his expertise to the agent-based model in Chapter 4. Dr. Laurence W. Carstensen, Ph.D., is Professor and Head of the Department of Geography at Virginia Tech. Dr. Carstensen was a co-author on chapter 4, and contributed intellectual and editorial comments. Dr. Stephen P. Prisley, Ph.D., is an Associate Professor in the Department of Forest Resources and Environmental Conservation at Virginia Tech. Dr. Prisley was a co-author on chapter 4, and contributed intellectual and editorial comments. iv Table of Contents List of Figures .............................................................................................................................. viii List of Tables ................................................................................................................................. xi Chapter 1: Introduction .................................................................................................................. 1 Significance ................................................................................................................................. 3 Objectives .................................................................................................................................... 5 References ................................................................................................................................... 7 Chapter 2: Literature Review ....................................................................................................... 12 The Alpine Treeline Ecotone And The Role Of Whitebark Pine In Treeline Formation ......... 12 Treeline Whitebark Pine and Blister Rust ................................................................................. 14 Treeline Processes In Whitebark Pine Ecosystems ................................................................... 16 Indirect/Direct Effects ..........................................................................................................
Recommended publications
  • PCBR 1956.Pdf (858.1Kb)
    UNITED STATES DEPARTMENT OF AGRICULTURE Forest Service Region One BR REPORTS Annual - 1956 WHITE PINE BLISTER RUST CONTROL Calendar Year 1956 INF. IV. National Park Program I. Highlights of the 1956 Season The 1956 objectives of the National Park Service Region II white pine blister rust control program were accomplished. The program was planned and conducted as in previous years according to the cooperative arrangements between the Na- tional Park Service and the U. S. Forest Service. National Park Service personnel participating: Glacier Elmer Fladniark, chief ranger *A. D. Cannavina, s~pervisory park ranger Paul Webb, district ranger Yellowstone Otto Brown, chief ranger •~H. o. Edwards, assistant chief ranger Rocky Mountain: Harry During, chief ranger ->~Merle Stitt, staff ranger Grand Teton '-'"Ernest K. Field, chief r~ger Maynard Barrows, National Park Service consulting forester U. s .. forest Service· representatives: ~John C. Gynn, forester C. M. Chapman, forester The Na tionai Park Service Director approves new areas for -control. In January 1956, John c. Gynn met with National Park Service Region II Director Howard w. Baker, Regional Forester Frank ff. Childs, Fore:ster Maynard Barrows, and other members of their .s-taff at Omaha, "Nebraska, to review the results of the 1955 white pine and ribes survey on l7,270 acres of National Park lands. The group deter- mined ·the following areas should be incl\Jded in the pro;gram and the areas were later approved by the Director of the National Park Service. ~15- Glacier - expanded protection zones to present control areas only. Unit Acres Park Headquarters 300 East Glacier (Rising Sun Campground) 370 Twd Medicine 200 Total 870 Yellowstone New Unit Antelope Creek 1,390 Canyon 11,470 Fishing Bridge 2,090 Craig Pass (extension) 5,240 Total 20,190 Grand Teton New Unit Snake River (De adman 's Bar) 1,010 Grand Total 22,070 New areas surveyed at Roc~Mounta~~· At the request of Superintendent James V.
    [Show full text]
  • Sex Pheromone of Conophthorus Ponderosae (Coleoptera: Scolytidae) in a Coastal Stand of Western White Pine (Pinaceae)
    SEX PHEROMONE OF CONOPHTHORUS PONDEROSAE (COLEOPTERA: SCOLYTIDAE) IN A COASTAL STAND OF WESTERN WHITE PINE (PINACEAE) \ ._ DANIEL R MILLER’ j I,’ . D.R. Miller Consulting Services, 1201-13353 108th Avenue, Surrey, British Columbia, ’ Canada V3T ST5 HAROLD D PIERCE JR Department of Chemistry. Simon Fraser University. Burnaby. British Columbia. Canada V5A IS.6 PETER DE GROOT Great Lakes Forestry Centre, Natural Resources Canada, P.O. Box 490. Sault Ste. Marie, Ontario, Canada P6A 5M7 NICOLE JEANS-WILLIAMS Centre for Environmental Biology, Department of Biological Sciences, Simon Fraser University, Burnaby. British Columbia. Canada V5A IS6 ROBB BENNEI-~ Tree Improvement Branch. British Columbia Ministry of Forests. 7380 Puckle Road. Saanichton, British Columbia. Canada V8M 1 W4 and JOHN H BORDEN Centre for Environmental Biology, Department of Biological Sciences. Simon Fraser University. Burnaby, British Columbia. Canada V5A IS6 The Canadian Entomologist 132: 243 - 245 (2000) An isolated stand of western white pine, Pinus monticola Dougl. ex D. Don, on Texada Island (49”4O’N, 124”1O’W), British Columbia, is extremely valuable as a seed-production area for progeny resistant to white pine blister rust, Cronartium ribicola J.C. Fisch. (Cronartiaceae). During the past 5 years, cone beetles, Conophthorus ponderosae Hopkins (= C. monticolae), have severely limited crops of western white pine seed from the stand. Standard management options for cone beetles in seed orchards are not possible on Texada Island. A control program in wild stands such as the one on Texada Island requires alternate tactics such as a semiochemical-based trapping program. Females of the related species, Conophthorus coniperda (Schwarz) and Conophthorus resinosae Hopkins, produce (+)-pityol, (2R,5S)-2-( 1 -hydroxyl- 1 -methylethyl)-5-methyl-tetrahydrofuran, a sex pheromone that attracts males of both species (Birgersson et al.
    [Show full text]
  • ISB: Atlas of Florida Vascular Plants
    Longleaf Pine Preserve Plant List Acanthaceae Asteraceae Wild Petunia Ruellia caroliniensis White Aster Aster sp. Saltbush Baccharis halimifolia Adoxaceae Begger-ticks Bidens mitis Walter's Viburnum Viburnum obovatum Deer Tongue Carphephorus paniculatus Pineland Daisy Chaptalia tomentosa Alismataceae Goldenaster Chrysopsis gossypina Duck Potato Sagittaria latifolia Cow Thistle Cirsium horridulum Tickseed Coreopsis leavenworthii Altingiaceae Elephant's foot Elephantopus elatus Sweetgum Liquidambar styraciflua Oakleaf Fleabane Erigeron foliosus var. foliosus Fleabane Erigeron sp. Amaryllidaceae Prairie Fleabane Erigeron strigosus Simpson's rain lily Zephyranthes simpsonii Fleabane Erigeron vernus Dog Fennel Eupatorium capillifolium Anacardiaceae Dog Fennel Eupatorium compositifolium Winged Sumac Rhus copallinum Dog Fennel Eupatorium spp. Poison Ivy Toxicodendron radicans Slender Flattop Goldenrod Euthamia caroliniana Flat-topped goldenrod Euthamia minor Annonaceae Cudweed Gamochaeta antillana Flag Pawpaw Asimina obovata Sneezeweed Helenium pinnatifidum Dwarf Pawpaw Asimina pygmea Blazing Star Liatris sp. Pawpaw Asimina reticulata Roserush Lygodesmia aphylla Rugel's pawpaw Deeringothamnus rugelii Hempweed Mikania cordifolia White Topped Aster Oclemena reticulata Apiaceae Goldenaster Pityopsis graminifolia Button Rattlesnake Master Eryngium yuccifolium Rosy Camphorweed Pluchea rosea Dollarweed Hydrocotyle sp. Pluchea Pluchea spp. Mock Bishopweed Ptilimnium capillaceum Rabbit Tobacco Pseudognaphalium obtusifolium Blackroot Pterocaulon virgatum
    [Show full text]
  • Whitebark Pine Status and the Potential Role of Biotechnology in Restoration Diana F
    Whitebark Pine Status and the Potential Role of Biotechnology in Restoration Diana F. Tomback Dept. Integrative Biology University of Colorado Denver Webinar, Committee on Forest Health and Biotechnology, NASEM, April 2, 2018. Outline of presentation • Distribution • Four case histories illustrating the threat posed by • ESA status review Cronartium ribicola • Ecology • Restoration approaches • Foundation and • How biotechnology can expedite restoration efforts keystone roles • The National Whitebark Pine Restoration Plan • Threats and trends. Willmore Wilderness Park, Alberta, Canada Taxonomy: Pinus albicaulis Engelm., whitebark pine Family Pinaceae, Genus Pinus, Subgenus Strobus, Section Quinquefoliae.* • Subsect. Strobus -“five-needle pines” (revised)*. • Most recent phylogenies for subgenus Strobus constructed from nuclear, mitochondrial, and chloroplast gene sequences show diverse affinities between P. albicaulis and species native to North America, Asia, or Europe (Hao et al. 2015). • Hao et al. (2015)—“…ancient and relatively recent introgressive hybridization events…particularly in northeastern Asia and northwestern North America.” Genome of whitebark pine characterized as extremely large and highly repetitive. *New Subsect. Strobus from combined subsects. Strobus and Cembrae, Gernandt et al. 2005; Syring et al. 2007. Whitebark pine range • Upper subalpine and treeline forest zones. • Western U.S. and Canada. • 96% of the U.S. distribution is on federally owned/managed lands. • 37o to 55o N lat. • 107o to 128o W long. • Elevation:
    [Show full text]
  • Population Biology of Switchgrass Rust
    POPULATION BIOLOGY OF SWITCHGRASS RUST (Puccinia emaculata Schw.) By GABRIELA KARINA ORQUERA DELGADO Bachelor of Science in Biotechnology Escuela Politécnica del Ejército (ESPE) Quito, Ecuador 2011 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2014 POPULATION BIOLOGY OF SWITCHGRASS RUST (Puccinia emaculata Schw.) Thesis Approved: Dr. Stephen Marek Thesis Adviser Dr. Carla Garzon Dr. Robert M. Hunger ii ACKNOWLEDGEMENTS For their guidance and support, I express sincere gratitude to my supervisor, Dr. Marek, who has supported thought my thesis with his patience and knowledge whilst allowing me the room to work in my own way. One simply could not wish for a better or friendlier supervisor. I give special thanks to M.S. Maxwell Gilley (Mississippi State University), Dr. Bing Yang (Iowa State University), Arvid Boe (South Dakota State University) and Dr. Bingyu Zhao (Virginia State), for providing switchgrass rust samples used in this study and M.S. Andrea Payne, for her assistance during my writing process. I would like to recognize Patricia Garrido and Francisco Flores for their guidance, assistance, and friendship. To my family and friends for being always the support and energy I needed to follow my dreams. iii Acknowledgements reflect the views of the author and are not endorsed by committee members or Oklahoma State University. Name: GABRIELA KARINA ORQUERA DELGADO Date of Degree: JULY, 2014 Title of Study: POPULATION BIOLOGY OF SWITCHGRASS RUST (Puccinia emaculata Schw.) Major Field: ENTOMOLOGY AND PLANT PATHOLOGY Abstract: Switchgrass (Panicum virgatum L.) is a perennial warm season grass native to a large portion of North America.
    [Show full text]
  • First Report of the White Pine Blister Rust Fungus, Cronartium Ribicola, On
    Alternaria was isolated from the lesions. The pathogen was isolated on potato dextrose agar (PDA) media. On PDA. the fungus grew slowly with colonies reaching approximately 35 to 40 mm in diameter in 7 days when incubated at 30°C. Conidiophores arose singly or in groups, straight or First Report of the White Pine Blister Rust Fungus, Cronartium flexous. cylindrical, septate, pale to olivaceous brown, as much as 155 pm ribicola, on Pedicularis bracteosa. P. J. Zambino, B. A. Richardson, and long, 4 to 5.5 pm thick; conidia were straight, obclavate, pale olivaceous G. I. McDonald. USDA Forest Service, Rocky Mountain Research Station, brown, smooth, with up to 15 transverse and rarely 1 or 2 longitudinal or Moscow. ID 83843. Plant Dis. 91:467, 2007; published online as oblique septa and measured 50 to 115 x 5 to 10 pm. Pathogenicity tests doi:10.1094/PDIS-91-4-0467A.Accepted for publication 26 December were carried out three times on 6-month-old plants (n = 10). Plants were 2006. sprayed with a conidial suspension of lo5 conidialml; control plants were sprayed with sterilized water. Plants were covered with polyethylene bags Until recently, Cronarrium ribicola J.C. Fisch. was thought to utilize for 10 days. Disease symptoms appeared after 12 i- 1 day after inoculation. only Ribes spp. (Grossulariaceae) as telial hosts in North America. During Symptoms on the leaves were similar to those of a naturally occurring 2004, Pedicularis racemosa Dougl. ex Benth. and Casrilleja miniata diseased plant. The fungal pathogen was consistently reisolated from Dougl. (Orobanchaceae) were proven as natural telial hosts at a subalpine inoculated plants.
    [Show full text]
  • White Pine Blister Rust in the Interior Mountain West
    White Pine Blister Rust in the Interior Mountain West Kelly Burns1, Jim Blodgett, Dave Conklin, Brian Geils, Jim Hoffman, Marcus Jackson, William Jacobi, Holly Kearns and Anna Schoettle Introduction and Rocky Mountain Regions (Colorado, Wyoming, White pine blister rust is an exotic, invasive disease South Dakota, and Nebraska), and the eastern of white, stone, and foxtail pines (also referred to as portion of the Northern Region (central Montana white pines or five-needle pines) in the genus Pinus and North Dakota) (see Fig. 2). The infection front and subgenus Strobus (Price and others 1998). lies within this region and a large portion of its Cronartium ribicola, the fungus that causes WPBR, susceptible white pine population has not been requires an alternate host - currants and gooseberries challenged by the disease. This publication provides in the genus Ribes and species of Pedicularis and some background on the high elevation hosts and Castilleja (McDonald and others 2006, Zambino and others 2007) - to complete its life cycle. White pine synthesizes current information onthe distribution blister rust was discovered in western North and impacts of white pine blister rust in these more America in 1921. It is thought that the disease was recently infested areas. A summary of current and accidentally introduced on infected eastern white ongoing efforts for managing the disease is also pine (Pinus strobus) nursery stock shipped to provided. Vancouver, BC from Europe in the early 1900s but the specific details are unclear. Since then, the disease has spread throughout the distributions of most western white pines. Although all of the North American white pine species are susceptible to white pine blister rust (Bingham 1972, Hoff and others 1980), it was once thought that the remote, dry habitats occupied by the noncommercial, high elevation white pines would not support rust establishment.
    [Show full text]
  • Master Thesis
    Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Forest Mycology and Plant Pathology Uppsala 2011 Taxonomic and phylogenetic study of rust fungi forming aecia on Berberis spp. in Sweden Iuliia Kyiashchenko Master‟ thesis, 30 hec Ecology Master‟s programme SLU, Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Forest Mycology and Plant Pathology Iuliia Kyiashchenko Taxonomic and phylogenetic study of rust fungi forming aecia on Berberis spp. in Sweden Uppsala 2011 Supervisors: Prof. Jonathan Yuen, Dept. of Forest Mycology and Plant Pathology Anna Berlin, Dept. of Forest Mycology and Plant Pathology Examiner: Anders Dahlberg, Dept. of Forest Mycology and Plant Pathology Credits: 30 hp Level: E Subject: Biology Course title: Independent project in Biology Course code: EX0565 Online publication: http://stud.epsilon.slu.se Key words: rust fungi, aecia, aeciospores, morphology, barberry, DNA sequence analysis, phylogenetic analysis Front-page picture: Barberry bush infected by Puccinia spp., outside Trosa, Sweden. Photo: Anna Berlin 2 3 Content 1 Introduction…………………………………………………………………………. 6 1.1 Life cycle…………………………………………………………………………….. 7 1.2 Hyphae and haustoria………………………………………………………………... 9 1.3 Rust taxonomy……………………………………………………………………….. 10 1.3.1 Formae specialis………………………………………………………………. 10 1.4 Economic importance………………………………………………………………... 10 2 Materials and methods……………………………………………………………... 13 2.1 Rust and barberry
    [Show full text]
  • White Pine Blister Rust Epidemiology in Widely Dispersed Populations of Five-Needle Pines in the Intermountain West Region of the United States
    WHITE PINE BLISTER RUST EPIDEMIOLOGY IN WIDELY DISPERSED POPULATIONS OF FIVE-NEEDLE PINES IN THE INTERMOUNTAIN WEST REGION OF THE UNITED STATES James T. Hoffman1 and Jonathan P. Smith2 ABSTRACT: In 1990 white pine blister rust (Cronartium ribicola) was found on Pinus strobiformis in southern New Mexico, more than 900 km from known rust populations. One hypothesis for the long- distance spread was natural migration of the disease via widely dispersed populations of five-needle pine trees found in the Intermountain West. Surveys conducted in the 1960’s suggested that predominantly arid conditions, and lack of close geographic continuity between potential host stands, would limit further disease spread though the region. We initiated surveys in 1995 to determine current white pine blister rust epidemic characteristics (disease incidence, intensity, and mortality). Analyses of data of over 5,400 trees in 127survey plot-transects indicate white pine blister rust incidence and intensity have increased since survey estimates in 1967. Mortality rates caused by blister rust disease are very low in the Intermountain West compared to other infected areas in the country. Since the earlier surveys southward expansion of the disease remains stationary, however, infected stands were found for the first time in western Nevada. Absence of white pine blister rust in Utah and most of Nevada suggests no connectivity of the disease from long-known infection sites in Idaho and Montana to the New Mexico infection sites. Keywords: Cronartium ribicola, Pinus, white pines, white pine blister rust, Rocky Mountain forests. INTRODUCTION In 1990, white pine blister rust (Cronartium ribicola) was found infecting southwestern white pine (Pinus strobiformis) in southern New Mexico (Hawksworth 1990).
    [Show full text]
  • Saprophytic Growth of the Alder Rust Fungus Melampsoridium Hiratsukanum on Artificial Media
    fungal biology 119 (2015) 568e579 journal homepage: www.elsevier.com/locate/funbio Saprophytic growth of the alder rust fungus Melampsoridium hiratsukanum on artificial media Salvatore MORICCA*, Beatrice GINETTI DISPAA, Dipartimento di Scienze delle Produzioni Agroalimentari e dell’Ambiente, Universita di Firenze, Piazzale delle Cascine 28, I 50144 Firenze, Italy article info abstract Article history: The first axenic culture of a free living saprophytic stage of the exotic rust fungus Melamp- Received 7 August 2014 soridium hiratsukanum is reported. Colonies were obtained from one-celled, dikaryotic ure- Received in revised form diniospores on eight nutrient media out of twelve. Modified Harvey and Grasham (HG) and 12 February 2015 Schenk and Hildebrandt (HS) media HG1 and SH1 and their bovine serum albumin (BSA)- Accepted 3 March 2015 enriched derivatives gave abundant mycelial growth, but modified Murashige and Skoog Available online 14 March 2015 (MS) QMS media and their BSA-enriched modifications performed poorly, colony growth Corresponding Editor: being low on QMS-1 and QMS1þBSA, and nil on QMS-5 and QMS-6, with or without BSA. Paul Birch Colonies initially grew poorly when subcultured for one month in purity, but much better after re-transfer to fresh media later: presumably because only the most exploitative geno- Keywords: types survived, best able to cope with an uncongenial medium. Stabilised cultures sur- Exotic rust vived, and remained vegetative, but only few reproductive colonies produced spore-like Invasive species bodies. Though the agarised medium remains an inhospitable environment for this biotro- In vitro growth phic parasite, it is shown that non-living media can nevertheless sustain the growth and Sporulation sporulation of this fungus outside its natural hosts and habitat.
    [Show full text]
  • Notes, Outline and Divergence Times of Basidiomycota
    Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.
    [Show full text]
  • Twig, Branch, and Stem Diseases of Pine John R
    University of Kentucky UKnowledge Agriculture and Natural Resources Publications Cooperative Extension Service 6-1996 Twig, Branch, and Stem Diseases of Pine John R. Hartman University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/anr_reports Part of the Agriculture Commons, Biology Commons, Ecology and Evolutionary Biology Commons, Environmental Sciences Commons, and the Plant Pathology Commons Repository Citation Hartman, John R., "Twig, Branch, and Stem Diseases of Pine" (1996). Agriculture and Natural Resources Publications. 79. https://uknowledge.uky.edu/anr_reports/79 This Report is brought to you for free and open access by the Cooperative Extension Service at UKnowledge. It has been accepted for inclusion in Agriculture and Natural Resources Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. PPA-16 C O O P E R A T I V E E X T E N S I O N S E R V I C E U N I V E R S I T Y O F K E N T U C K Y • C O L L E G E O F A G R I C U L T U R E Twig, Branch, and Stem Diseases of Pine by John R. Hartman into older tissue, additional needles are killed. The fungus Tip Blight produces small, black fruiting bodies (pycnidia) at the base of Tip blight, caused by the fungus Sphaeropsis sapinea infected needles just under the needle sheath (Figure 2).
    [Show full text]