An Alternative Role of Fof1-ATP Synthase in Escherichia Coli
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Review of the Biochemistry, Metabolism and Clinical Benefits of Thiamin(E) and Its Derivatives
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Advance Access Publication 1 February 2006 eCAM 2006;3(1)49–59provided by PubMed Central doi:10.1093/ecam/nek009 Review A Review of the Biochemistry, Metabolism and Clinical Benefits of Thiamin(e) and Its Derivatives Derrick Lonsdale Preventive Medicine Group, Derrick Lonsdale, 24700 Center Ridge Road, Westlake, OH 44145, USA Thiamin(e), also known as vitamin B1, is now known to play a fundamental role in energy metabolism. Its discovery followed from the original early research on the ‘anti-beriberi factor’ found in rice polish- ings. After its synthesis in 1936, it led to many years of research to find its action in treating beriberi, a lethal scourge known for thousands of years, particularly in cultures dependent on rice as a staple. This paper refers to the previously described symptomatology of beriberi, emphasizing that it differs from that in pure, experimentally induced thiamine deficiency in human subjects. Emphasis is placed on some of the more unusual manifestations of thiamine deficiency and its potential role in modern nutri- tion. Its biochemistry and pathophysiology are discussed and some of the less common conditions asso- ciated with thiamine deficiency are reviewed. An understanding of the role of thiamine in modern nutrition is crucial in the rapidly advancing knowledge applicable to Complementary Alternative Medi- cine. References are given that provide insight into the use of this vitamin in clinical conditions that are not usually associated with nutritional deficiency. The role of allithiamine and its synthetic derivatives is discussed. -
Na+/K+-Atpase) and Its Isoforms Kaur R1,2, Sodhi M2, Sharma VL1, Sharma A2, Mann S2 and Mukesh M 2
TRJ VOL. 2 ISSUE 2 MAR-APR 2016 ISSN: 2454-7301 (PRINT) | ISSN: 2454-4930 (ONLINE) A Review: Sodium-Potassium Adenosine Triphosphatase (Na+/K+-ATPase) and its Isoforms Kaur R1,2, Sodhi M2, Sharma VL1, Sharma A2, Mann S2 and Mukesh M 2. 1Department of Zoology, Panjab University, Chandigarh 2National Bureau of Animal Genetic Resources, Karnal *Email: [email protected] these enzymes use the hydrolysis of ATP to drive the transport Abstract - Na+/K+-ATPase, found in all mammalian cell of cations against an electrochemical potential. membranes, is necessary for proper cellular function since it The characteristic feature of P type ATPase is the helps to preserve the ionic gradients across the cell membrane formation of the phosphorylated intermediate state during the and thus the membrane potential and osmotic equilibrium of reaction cycle [5]. Hence this features differentiates it from the cell. The sodium-potassium ATPase (Na+/K+-ATPase) is other types of ATPases i.e. F-ATPases (present in an important ion transporter which pumps sodium out of cells mitochondria, chloroplasts and bacterial plasma membranes) in exchange for potassium, thereby generating large gradients and V-ATPases (present in eukaryotic vacuoles). The presence of these ions across the plasma membrane. The isoforms α (αl, of conserved sequence motifs in the cytoplasmic domains α2, α3 and α4) and β (β1, β2 and β3) combine to form a defines the primary structure of P-type ATPases. Nucleotide- number of Na+/K+-ATPase isozymes. So in present study binding (N), phosphorylation (P) and an actuator (A) domain paper information regarding molecular regulation of the are the three domains present in the cytoplasmic domain [6]. -
1/05661 1 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date _ . ... - 12 May 2011 (12.05.2011) W 2 11/05661 1 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/00 (2006.0 1) C12Q 1/48 (2006.0 1) kind of national protection available): AE, AG, AL, AM, C12Q 1/42 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) Number: International Application DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 10/054171 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 26 October 2010 (26.10.2010) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/255,068 26 October 2009 (26.10.2009) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicant (for all designated States except US): ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, MYREXIS, INC. -
Takahiro NISHIMUNEI * and Ryoji HAYASHI2,** Summary Thiamin
J. Nutr. Sci. Vitaminol., 33, 113-127, 1987 Hydrolysis and Synthesis of Thiamin Triphosphate in Bacteria Takahiro NISHIMUNEI* and Ryoji HAYASHI2,** Osaka Prefectural Institute of Public Health, Nakamichi, Higashinari-ku, Osaka 537, Japan (Received September 25, 1986) Summary Thiamin triphosphate (ThTP) in early stationary phase cells of Escherichia coli grown in nutrient broth with 0.1% yeast extract was fo und to constitute approximately 5-7% of cellular thiamin diphosphate (ThDP) or around 5nmol/g cell. Nearly the same level of. ThTP was obtained in a Bacillus strain. When E. coli was loaded with an excess of ThTP or ThDP, cellular ThTP was found to be controlled in the course of the long term to maintain its ratio to the amount of cellular ThDP. The ThTP vs. ThDP ratio in E. coli cells after short-term ThDP uptake was fo und to be a function of the cellular growth phase. The ratio in early exponential phase E. coli cells was found to be approximately 4% and it became lower (less than 3%) when cell growth proceeded to the late exponential stage. Two phosphatases specific for ThTP (ThTPase) among thiamin phosphates were detected in E. coli. One required Mgt2+and was fo und mainly in the soluble fraction, while the other was Mgt+ independent and originated from the membrane. The two ThTPases were similar to their rat tissue counterparts. Key Words thiamin triphosphate, thiamin triphosphatase, thiamin di phosphate kinase, thiamin pyrophosphate, thiamin, E. coli Recently, data on thiamin triphosphate (ThTP) in the tissues of higher organisms as determined by high performance liquid chromatography (HPLC) have been accumulating (1, 2). -
Fhit Proteins Can Also Recognize Substrates Other Than Dinucleoside Polyphosphates
FEBS Letters 582 (2008) 3152–3158 Fhit proteins can also recognize substrates other than dinucleoside polyphosphates Andrzej Guranowskia,*, Anna M. Wojdyłaa, Małgorzata Pietrowska-Borekb, Paweł Bieganowskic, Elena N. Khursd, Matthew J. Cliffe, G. Michael Blackburnf, Damian Błaziakg, Wojciech J. Stecg a Department of Biochemistry and Biotechnology, The University of Life Sciences, 35 Wołyn´ska Street, 60-637 Poznan´, Poland b Department of Plant Physiology, The University of Life Sciences, 60-637 Poznan´, Poland c International Institute of Molecular and Cell Biology, Warsaw, Poland d Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia e Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield, UK f Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield, UK g Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Ło´dz´, Poland Received 1 July 2008; revised 17 July 2008; accepted 31 July 2008 Available online 9 August 2008 Edited by Hans Eklund This work is dedicated to Professor Antonio Sillero on the occasion of his 70th birthday and to Professor Maria Antonia Gu¨nther Sillero. 1. Introduction Abstract We show here that Fhit proteins, in addition to their function as dinucleoside triphosphate hydrolases, act similarly to adenylylsulfatases and nucleoside phosphoramidases, liberat- Cells contain various minor nucleotides. Among these are 0 000 1 n 0 ing nucleoside 50-monophosphates from such natural metabolites the dinucleoside 5 ,5 -P ,P -polyphosphates (NpnN s, where as adenosine 50-phosphosulfate and adenosine 50-phosphorami- N and N0 are 50-O-nucleosides and n represents the number date. Moreover, Fhits recognize synthetic nucleotides, such as of phosphate residues in the polyphosphate chain that esterifies 0 0 0 0 0 adenosine 5 -O-phosphorofluoridate and adenosine 5 -O-(c-flu- N and N at their 5 position) [1].NpnN s accumulate as a re- orotriphosphate), and release AMP from them. -
The Metabolic Building Blocks of a Minimal Cell Supplementary
The metabolic building blocks of a minimal cell Mariana Reyes-Prieto, Rosario Gil, Mercè Llabrés, Pere Palmer and Andrés Moya Supplementary material. Table S1. List of enzymes and reactions modified from Gabaldon et. al. (2007). n.i.: non identified. E.C. Name Reaction Gil et. al. 2004 Glass et. al. 2006 number 2.7.1.69 phosphotransferase system glc + pep → g6p + pyr PTS MG041, 069, 429 5.3.1.9 glucose-6-phosphate isomerase g6p ↔ f6p PGI MG111 2.7.1.11 6-phosphofructokinase f6p + atp → fbp + adp PFK MG215 4.1.2.13 fructose-1,6-bisphosphate aldolase fbp ↔ gdp + dhp FBA MG023 5.3.1.1 triose-phosphate isomerase gdp ↔ dhp TPI MG431 glyceraldehyde-3-phosphate gdp + nad + p ↔ bpg + 1.2.1.12 GAP MG301 dehydrogenase nadh 2.7.2.3 phosphoglycerate kinase bpg + adp ↔ 3pg + atp PGK MG300 5.4.2.1 phosphoglycerate mutase 3pg ↔ 2pg GPM MG430 4.2.1.11 enolase 2pg ↔ pep ENO MG407 2.7.1.40 pyruvate kinase pep + adp → pyr + atp PYK MG216 1.1.1.27 lactate dehydrogenase pyr + nadh ↔ lac + nad LDH MG460 1.1.1.94 sn-glycerol-3-phosphate dehydrogenase dhp + nadh → g3p + nad GPS n.i. 2.3.1.15 sn-glycerol-3-phosphate acyltransferase g3p + pal → mag PLSb n.i. 2.3.1.51 1-acyl-sn-glycerol-3-phosphate mag + pal → dag PLSc MG212 acyltransferase 2.7.7.41 phosphatidate cytidyltransferase dag + ctp → cdp-dag + pp CDS MG437 cdp-dag + ser → pser + 2.7.8.8 phosphatidylserine synthase PSS n.i. cmp 4.1.1.65 phosphatidylserine decarboxylase pser → peta PSD n.i. -
Leigh's Disease: Significance of the Biochemical Changes in Brain'
Journal ofNeurology, Neurosurgery, and Psychiatry, 1975, 38, 1100-1103 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.38.11.1100 on 1 November 1975. Downloaded from Leigh's disease: significance of the biochemical changes in brain' JEROME V. MURPHY2 AND LINDA CRAIG From the Departments ofPediatrics and Neurology of the University ofPittsburgh School of Medicine and the Children's Hospital ofPittsburgh, Pittsburgh, Pennsylvania 15213, U.S.A. SYNOPSIS Analysis of five brains from patients with Leigh's disease demonstrates an accumulation of thiamine pyrophosphate and a deficiency of thiamine triphosphate. The enzyme which converts thiamine pyrophosphate to thiamine triphosphate was normally active in two of these brains, suggesting that the inhibitor found in Leigh's disease is probably producing the observed neuro- chemical changes. Reasons for the histological similarity between Leigh's and Wernicke's diseases are suggested. Leigh's disease, subacute necrotizing encephalo- detected in body fluids of untreated patients with guest. Protected by copyright. myelopathy, is a recessively inherited disorder Leigh's disease as well as in the urine of obligate afflicting children of all ages (Pincus, 1972). The carriers of the Leigh's disease gene (Murphy clinical findings are nonspecific and the diagnosis et al., 1974). Thiamine appears to inactivate the is made byfindingthe typical pathological changes inhibitor, as treatment of either patients or in the brain of the patient or the brain of a carriers with large amounts of thiamine effec- similarly afflicted sibling (Montpetit et al., 1971). tively reduces the activity of inhibitor in urine Two patients with Leigh's disease have had a (Murphy, 1973; Murphy et al., 1974). -
Ca2+-Atpase Molecules As a Calcium-Sensitive Membrane-Endoskeleton of Sarcoplasmic Reticulum
International Journal of Molecular Sciences Article Ca2+-ATPase Molecules as a Calcium-Sensitive Membrane-Endoskeleton of Sarcoplasmic Reticulum Jun Nakamura 1,*, Yuusuke Maruyama 1, Genichi Tajima 2, Yuto Komeiji 1, Makiko Suwa 3 and Chikara Sato 1,* 1 Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; [email protected] (Y.M.); [email protected] (Y.K.) 2 Institute for Excellence in Higher Education, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai, Miyagi 980-8576, Japan; [email protected] 3 Biological Science Course, Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5258, Japan; [email protected] * Correspondence: [email protected] (J.N.); [email protected] (C.S.) Abstract: The Ca2+-transport ATPase of sarcoplasmic reticulum (SR) is an integral, transmembrane protein. It sequesters cytoplasmic calcium ions released from SR during muscle contraction, and causes muscle relaxation. Based on negative staining and transmission electron microscopy of SR vesicles isolated from rabbit skeletal muscle, we propose that the ATPase molecules might also be a calcium-sensitive membrane-endoskeleton. Under conditions when the ATPase molecules scarcely transport Ca2+, i.e., in the presence of ATP and ≤ 0.9 nM Ca2+, some of the ATPase particles on the SR vesicle surface gathered to form tetramers. The tetramers crystallized into a cylindrical helical array in some vesicles and probably resulted in the elongated protrusion that extended from some round SRs. -
Small Gtpases of the Ras and Rho Families Switch On/Off Signaling
International Journal of Molecular Sciences Review Small GTPases of the Ras and Rho Families Switch on/off Signaling Pathways in Neurodegenerative Diseases Alazne Arrazola Sastre 1,2, Miriam Luque Montoro 1, Patricia Gálvez-Martín 3,4 , Hadriano M Lacerda 5, Alejandro Lucia 6,7, Francisco Llavero 1,6,* and José Luis Zugaza 1,2,8,* 1 Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; [email protected] (A.A.S.); [email protected] (M.L.M.) 2 Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain 3 Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 180041 Granada, Spain; [email protected] 4 R&D Human Health, Bioibérica S.A.U., 08950 Barcelona, Spain 5 Three R Labs, Science Park of the UPV/EHU, 48940 Leioa, Spain; [email protected] 6 Faculty of Sport Science, European University of Madrid, 28670 Madrid, Spain; [email protected] 7 Research Institute of the Hospital 12 de Octubre (i+12), 28041 Madrid, Spain 8 IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain * Correspondence: [email protected] (F.L.); [email protected] (J.L.Z.) Received: 25 July 2020; Accepted: 29 August 2020; Published: 31 August 2020 Abstract: Small guanosine triphosphatases (GTPases) of the Ras superfamily are key regulators of many key cellular events such as proliferation, differentiation, cell cycle regulation, migration, or apoptosis. To control these biological responses, GTPases activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in some small GTPases also guanine nucleotide dissociation inhibitors (GDIs). -
G Protein Coupled Receptor Signaling Through the Src and Stat3 Pathway: Role in Proliferation and Transformation
Oncogene (2001) 20, 1601 ± 1606 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc G protein coupled receptor signaling through the Src and Stat3 pathway: role in proliferation and transformation Prahlad T Ram*,1 and Ravi Iyengar1 1Department of Pharmacology, Mount Sinai School of Medicine, New York, NY 10029, USA Extracellular signals when routed through signaling transducin; the Gai family which includes Gai, Gao pathways that use heterotrimeric G proteins can and Gaz; the Gaq/Ga11 family; and the Ga12/13 engage multiple signaling pathways leading to diverse family. As these new Ga subunits were identi®ed the biological consequences. One locus at which signal eectors pathways for these subunits were sought out, sorting occurs is at the level of G proteins. G protein and over the years a number of eector pathways such a-subunits appear to be capable of interacting with as the PLC, Rho/Cdc42 pathways, and the Ca2+ dierent eectors leading to engagement of distinct channels have been identi®ed (Buhl et al., 1995; signaling pathways. Regulation of dierent pathways Diverse-Pierluissi, 1995; rench-Mullen et al., 1994; in turn leads to dierent biological outcomes. The Taylor et al., 1990). In addition to activation of process of neoplastic transformation is controlled to a second messenger molecules, Ga subunits can also large extent through the activation and inhibition of modulate the activity of transcription factors, thereby signaling pathways. Signaling pathways such as the regulating gene expression (Corre et al., 1999; Fan et Ras-MAPK, v-Src-Stat3 pathways are activated in the al., 2000; Montminy, 1997; Ram et al., 2000). -
12) United States Patent (10
US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S. -
Adenosine Thiamine Triphosphate Accumulates In
Gigliobianco et al. BMC Microbiology 2010, 10:148 http://www.biomedcentral.com/1471-2180/10/148 RESEARCH ARTICLE Open Access AdenosineResearch article thiamine triphosphate accumulates in Escherichia coli cells in response to specific conditions of metabolic stress Tiziana Gigliobianco1, Bernard Lakaye1, Pierre Wins1, Benaïssa El Moualij2, Willy Zorzi2 and Lucien Bettendorff*1 Abstract Background: E. coli cells are rich in thiamine, most of it in the form of the cofactor thiamine diphosphate (ThDP). Free ThDP is the precursor for two triphosphorylated derivatives, thiamine triphosphate (ThTP) and the newly discovered adenosine thiamine triphosphate (AThTP). While, ThTP accumulation requires oxidation of a carbon source, AThTP slowly accumulates in response to carbon starvation, reaching ~15% of total thiamine. Here, we address the question whether AThTP accumulation in E. coli is triggered by the absence of a carbon source in the medium, the resulting drop in energy charge or other forms of metabolic stress. Results: In minimal M9 medium, E. coli cells produce AThTP not only when energy substrates are lacking but also when their metabolization is inhibited. Thus AThTP accumulates in the presence of glucose, when glycolysis is blocked by iodoacetate, or in the presence lactate, when respiration is blocked by cyanide or anoxia. In both cases, ATP synthesis is impaired, but AThTP accumulation does not appear to be a direct consequence of reduced ATP levels. Indeed, in the CV2 E. coli strain (containing a thermolabile adenylate kinase), the ATP content is very low at 37°C, even in the presence of metabolizable substrates (glucose or lactate) and under these conditions, the cells produce ThTP but not AThTP.