2045 Innosoft Obsoletes: 1521, 1522, 1590 N
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lesson 1 Key-Terms Meanings: Internet Connectivity Principles
Lesson 1 Key-Terms Meanings: Internet Connectivity Principles Chapter-4 L01: "Internet of Things " , Raj Kamal, 2017 1 Publs.: McGraw-Hill Education Header Words • Header words are placed as per the actions required at succeeding stages during communication from Application layer • Each header word at a layer consists of one or more header fields • The header fields specify the actions as per the protocol used Chapter-4 L01: "Internet of Things " , Raj Kamal, 2017 2 Publs.: McGraw-Hill Education Header fields • Fields specify a set of parameters encoded in a header • Parameters and their encoding as per the protocol used at that layer • For example, fourth word header field for 32-bit Source IP address in network layer using IP Chapter-4 L01: "Internet of Things " , Raj Kamal, 2017 3 Publs.: McGraw-Hill Education Protocol Header Field Example • Header field means bits in a header word placed at appropriate bit place, for example, place between bit 0 and bit 31 when a word has 32-bits. • First word fields b31-b16 for IP packet length in bytes, b15-b4 Service type and precedence and b3-b0 for IP version • Chapter-4 L01: "Internet of Things " , Raj Kamal, 2017 4 Publs.: McGraw-Hill Education IP Header • Header fields consist of parameters and their encodings which are as per the IP protocol • An internet layer protocol at a source or destination in TCP/IP suite of protocols Chapter-4 L01: "Internet of Things " , Raj Kamal, 2017 5 Publs.: McGraw-Hill Education TCP Header • Header fields consist of parameters and their encoding which are as -
Usenet News HOWTO
Usenet News HOWTO Shuvam Misra (usenet at starcomsoftware dot com) Revision History Revision 2.1 2002−08−20 Revised by: sm New sections on Security and Software History, lots of other small additions and cleanup Revision 2.0 2002−07−30 Revised by: sm Rewritten by new authors at Starcom Software Revision 1.4 1995−11−29 Revised by: vs Original document; authored by Vince Skahan. Usenet News HOWTO Table of Contents 1. What is the Usenet?........................................................................................................................................1 1.1. Discussion groups.............................................................................................................................1 1.2. How it works, loosely speaking........................................................................................................1 1.3. About sizes, volumes, and so on.......................................................................................................2 2. Principles of Operation...................................................................................................................................4 2.1. Newsgroups and articles...................................................................................................................4 2.2. Of readers and servers.......................................................................................................................6 2.3. Newsfeeds.........................................................................................................................................6 -
Cisco Unified Border Element H.323-To-SIP Internetworking Configuration Guide, Cisco IOS Release 12.4T Iii
Cisco Unified Border Element H.323-to- SIP Internetworking Configuration Guide, Cisco IOS Release 12.4T Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. -
Structure of IEEE 802.11 Packets at Various Physical Layers
Appendix A: Structure of IEEE 802.11 Packets at Various Physical Layers This appendix gives a detailed description of the structure of packets in IEEE 802.11 for the different physical layers. 1. Packet Format of Frequency Hopping Spread-spectrum Physical Layer (FHSS PHY) The packet is made up of the following elements (Figure A.1): 1.1 Preamble It depends on the physical layer and includes: – Synch: a sequence of 80 bits alterning 0 and 1, used by the physical circuits to select the correct antenna (if more than one are in use), and correct offsets of frequency and synchronization. – SFD: start frame delimiter consists of a pattern of 16 bits: 0000 1100 1011 1101, used to define the beginning of the frame. 1.2 Physical Layer Convergence Protocol Header The Physical Layer Convergence Protocol (PLCP) header is always transmitted at 1 Mbps and carries some logical information used by the physical layer to decode the frame: – Length of word of PLCP PDU (PLW): representing the number of bytes in the packet, useful to the physical layer to detect correctly the end of the packet. – Flag of signalization PLCP (PSF): indicating the supported rate going from 1 to 4.5 Mbps with steps of 0.5 Mbps. Even though the standard gives the combinations of bits for PSF (see Table A.1) to support eight different rates, only the modulations for 1 and 2 Mbps have been defined. – Control error field (HEC): CRC field for error detection of 16 bits (or 32 bits). The polynomial generator used is G(x)=x16 + x12 + x5 +1. -
Wireless Real-Time IP Services Enabled by Header Compression
Wireless Real-time IP Services Enabled by Header Compression Krister Svanbrof, Hans Hannu f, Lars-Erik Jonsson f, Mikael Degermarkf f Ericsson Research f Dept. of CS & EE Ericsson Erisoft AB Lulei University of Technology Box 920, SE-971 28 Lulei, Sweden SE-971 87 Lulei, Sweden Abstract - The world of telecommunications is currently A major problem with voice over IP over wireless is the going through a shift of paradigm from circuit switched, large headers of the protocols used when sending speech connection oriented information transfer towards packet data over the Internet. An IPv4 packet with speech data switched, connection-less transfer. For application will have an IP header, a UDP header, and an RTP header independence and to decrease costs for transport and making a total of 20+8+12=40 octets. With IPv6, the IP switching it is attractive to go IP all the way over the air header is 40 octets for a total of 60 octets. The size of the ' interface to the end user equipment, i.e., to not terminate speech data depends on the codec, it can be 15-30 octets. the IP protocols before the air interface. A major reason to These numbers present a major reason for terminating the avoid using voice over IP over the air interface has, up to IP protocols before the air interface: the IP/UDP/RTP now, been the relatively large overhead imposed by the headers require a higher bit rate and would cause IP/UDP/RTP headers of voice packets. This paper presents inefficient use of the expensive radio spectrum. -
How the Internet Works: Headers and Data; Packets and Routing 1
Howthe Internet Works: Headers and Data; Packets and Routing 1. Transmitting Information through the Ages Howcan you get information from one place to another? How, for example, can you get an image from one place to another? Two hundred years ago, you would have todraw, paint, or print the image on paper or canvas, then carry, on foot, horseback, boat, or wagon, this analog version of view. One hundred years later,technology had advanced. By the early part of the 20th century,fax machines existed. With fax, you could drawthe image and send it overwires. What newscientific developments made that change possible? Here are a fewmilestones: YEAR WHATWHO WHERE 1800 Invents electric battery Allesandro Volta Italy 1820 Discovers electric current creates magnetism Hans O/rsted Denmark 1837 Invents electric telegraph Samuel Morse USA Before the battery,electricity was available from lightning and by shuffling across rugs on dry days, but that static electricity could not provide a steady,evenflow.Volta’sbattery made it possible to create a steady electrical current. Twenty years later,O/rsted discovered that a steady current of electricity produced a magnetic effect. Later,Morse connected a battery,aswitch, and a coil so that closing the switch at one end of the wire would create magnetism that would attract a piece of metal at the other end of the wire. By closing the switch for short and long durations, he was able to transmit bits a long distance. This system, the electric telegraph, made long-distance, all-weather,pri- vate communication possible. This technology led to the Internet. -
Using Netpresenz
NetPresenz 4.1 from netpresenz.com NB: Please click the "I Paid" checkbox in NetPresenz Setup - FTP Setup dialog. Contents What NetPresenz Does Features Using NetPresenz Setup FTP Setup WWW and Gopher Setup FTP Setup Details Scripting NetPresenz Setup Using NetPresenz Referring to your Server Using NetPresenz from a Un*x FTP Client Remote Volume Mounting Miscellaneous FTP Commands WWW Server Side Includes CGIs Java Missing files Gopher Security Considerations Avoid the Wrath of your Network Admin Limitations Remote Site Access Restrictions Acknowledgements How It Works What NetPresenz Does NetPresenz is a Macintosh implementation of the WWW, Gopher and FTP server protocols. It should be compatible with most FTP clients, and all WWW and Gopher clients. Basically it allows your Mac to act as an FTP server so you (and others) can access your files from anywhere around the world. Obviously there are some serious security considerations you should look into before using this software (see the Security Considerations section). NetPresenz requires System 7, MacTCP 1.1, and File Sharing enabled. It honours the Users & Groups privileges and passwords, and supports multiple logins, anonymous FTP (user name “anonymous” or “ftp”), as well as MacBinary and BinHex transfers, and the “MACB” FTP command. You can run NetPresenz as a foreground application (displaying the log), or as a background only application (use NetPresenz Setup to toggle between the two). Features Support WWW, Gopher and FTP connections. Full CGI support. Multiple simultaneous users. Honours System 7 Users & Groups (in fact depends on them!). Server Side Includes (SSI), counters and include files, file modification date and so forth. -
TSD Header and Footer Formal-T
Remote Public Access Connectivity Information September 2011 Technology Services Division TABLE OF CONTENTS 1. Overview of Connectivity Options 3 Option #1 – SSL-Enabled TN3270 Option #2 – Business-to-Business Virtual Private Network (VPN) 2. SSL-Enabled TN3270 Specifications 5 3. Business-to-Business Virtual Private Network (VPN) Specifications 6 4. Glossary of Acronyms & Definitions 10 Remote Public Access Connectivity Information September 2011 Page 2 1. Overview of Connectivity Options The North Carolina Administrative Office of the Courts (AOC) has two options for the public to access the enterprise server. This document provides an overview of these options. Also, estimated costs have been provided where it is realistic to do so. Actual costs may vary. OPTION #1 – SSL-Enabled TN3270 This option is designed to provide a connection for individual workstations using an SSL- enabled TN3270 client over the Internet. It is a standards-based solution that utilizes various protocols for authentication and encryption. This option may be the most affordable choice for small businesses and individuals. Basic Customer Requirements: • An Internet connection • SSL-enabled TN3270 client software installed on each workstation requiring access NOTE: Many vendors sell SSL-enabled TN3270 client software. The approximate cost is $50 to $300 per workstation. The cost depends on which vendor you select and how many licenses you need. To find a vendor, you can google “TN3270 Emulation Software.” Many vendors also offer free 30-day trials. OPTION #2 – Business-to-Business Virtual Private Network (VPN) This option is designed for business-to-business (or site-to-site) VPN connections and is not intended to provide connections for individual workstations. -
AIS Data Profile 30 December 2016
AIS Data Profile 30 December 2016 STIX Tab STIX Sub-Tab IN/OUT Examples Field Guidance Type Text Type STIX Core STIX Type BOTH [Company Name]:[Column A]- @id This is a required field - NCCIC will replace on xs:QName Schema restricted text [Company Unique ID] dissemination with NCCIC values. (partial) BOTH 1.1.1 @version This is a required field - DHS will not accepted stix:STIXPackageVersionEnum Vocabulary defined text anything other than 1.1.1 If anything other than the accepted value is submitted the field will be removed during the sanitization process. BOTH 2002-05-30T09:00:00 @timestamp This is a required field - Schema restricted text - xs:dateTime Schema restricted text This field should be date and time only. BOTH NA STIX_Header This is a required Container Object. stix:STIXHeaderType Container BOTH NA Indicators Container Object stix:IndicatorsType Container BOTH NA TTPs Container Object stix:TTPsType Container BOTH NA Courses_of_Action Container Object stix:CoursesOfActionType Container BOTH NA Exploit_Targets Container Object stix_common:ExploitTargetsType Container STIX Header Type BOTH Provides an unstructured, text Title Review Field - On automated dissemination this xs:string Free form text title field will be replaced by an auto-generated Title. The submitted contents will be reviewed/modified/sanitized and disseminated via human manual process. Future capabilities may eliminate the human review process. BOTH See Vocab Tab Package_Intent This is a required field - Reference the Vocab stixCommon:ControlledVocabularyStringType Vocabulary defined text Tab - stixVocabs:PackageIntentEnum-1.0 stixVocabs:PackageIntentEnum-1.0 If anything other than the accepted value is submitted the field will be removed during the sanitization process. -
SMS Service Reference
IceWarp Unified Communications SMS Service Reference Version 10.4 Printed on 16 April, 2012 Contents SMS Service 1 About .............................................................................................................................................................................. 3 Why Do I Need SMS Service? ............................................................................................................................. 3 What Hardware Will I Need? ............................................................................................................................. 3 Why Would I Want More Than One SMS Gateway? .......................................................................................... 4 GSM Service ................................................................................................................................................................... 5 Tested and Supported Products ........................................................................................................................ 5 HTTP Gateway ................................................................................................................................................................ 6 Tested Products ................................................................................................................................................. 6 Reference ...................................................................................................................................................................... -
Cal Anderson, OTARMA IT Risk Control Specialist
2019 CYBER PRESENTATION Cal Anderson, OTARMA IT Risk Control Specialist Cal Anderson Bio • 20 plus years of industry experience in Information Systems, Cyber Security & Risk Management • Specialize in performing Cyber Security, SOX IT, enterprise IT audits and enterprise IT risk assessments of Fortune 500, mid‐range and small scale IT environments. • Specialize in Data Governance, Data validation and flowcharting business processes from beginning to end. • Certified: CISA, CRISC, CWM, CSQL • Certified Notary Public for the state of Ohio Goal • Provide overview of IT Risk Control Specialist function • Provide overview of the IT Risk assessment process • Provide overview of IT Risk Control Specialist function conducting training and providing IT information to the OTARMA member bases. • Provide comprehensive Cyber Security educational content for managing cyber threats. 1 IT RISK CONTROL SPECIALIST FUNCTION High‐Level Tasks perform by the IT Risk Control Specialists: • Conduct IT Risk Assessment o Identification/PII Risks o Analyze risks and how it will affect the member • Risk Evaluation o Costs o Legal Requirements o Environmental Factors o Members handling of risks • Provide recommendations to address IT issues and deficiencies. • Consult with members to answer their questions and to educate/promote awareness. • Conduct IT training IT Risk Assessment Process Members Base Management o Visit Scheduling o Visit Confirmation Onsite IT Risk Assessment o Assessment o Activities Member Base Management Visit Scheduling o Call or email member -
Module 6 Internet Layer Meghanathan Dr
Module 6 Internet Layer Meghanathan Dr. Natarajan Meghanathan Associate ProfessorCopyrights of Computer Science Jackson StateAll University, Jackson, MS 39232 E-mail: [email protected] Module Topics • 6.1 IP Header • 6.2 IP Datagram Fragmentation • 6.3 IP Datagram Forwarding • 6.4 IP Auxiliary Protocols and Meghanathan Technologies Copyrights – ARP, DHCP, ICMP, VPN, NA(P)T All • 6.5 IPv6 Natarajan Meghanathan Copyrights All Natarajan 6.1 IP Header Meghanathan Copyrights All Natarajan IP Header Format (v4) © 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. IP Header Format • VERS – Each datagram begins with a 4-bit protocol version number • H.LEN – 4-bit header length field specifies the number of 32-bit quantities in the header. The header size should be a multiple of 32. • The minimum integer value for the IP header length is 5 as the top 5 32-bit rows of the IP header are mandatory for inclusion. Hence, the minimum size of the IP header is 5 * 32-bits = 5 * 4 bytes = 20 bytes. • The maximum integer value for the IP header length (with 4 bits for the field) would be 15, necessitating the Options field to be at most 10 32- bit rows. The maximum size of theMeghanathan IP header is 15 * 32-bits = 15 * 4 bytes = 60 bytes. Copyrights • SERVICE TYPE – used to specify whether the sender prefers the datagram to be sentAll over a path that has minimum delay or maximum throughput, etc. A routerNatarajan that has multiple paths to the destination, can apply these service type preferences to select the most suitable path.