Specifications Guide Global Rice Latest Update: February 2021
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Codex Standard for Rice
1 Codex Standard 198-1995 CODEX STANDARD FOR RICE CODEX STAN 198-1995 1. SCOPE This standard applies to husked rice, milled rice, and parboiled rice, all for direct human consumption; i.e., ready for its intended use as human food, presented in packaged form or sold loose from the package directly to the consumer. It does not apply to other products derived from rice or to glutinous rice. 2. DESCRIPTION 2.1 Definitions 2.1.1 Rice is whole and broken kernels obtained from the species Oryza sativa L. 2.1.1.1 Paddy rice is rice which has retained its husk after threshing. 2.1.1.2 Husked rice (brown rice or cargo rice) is paddy rice from which the husk only has been removed. The process of husking and handling may result in some loss of bran. 2.1.1.3 Milled rice (white rice) is husked rice from which all or part of the bran and germ have been removed by milling. 2.1.1.4 Parboiled rice may be husked or milled rice processed from paddy or husked rice that has been soaked in water and subjected to a heat treatment so that the starch is fully gelatinized, followed by a drying process. 2.1.1.5 Glutinous rice; waxy rice: Kernels of special varieties of rice which have a white and opaque appearance. The starch of glutinous rice consists almost entirely of amylopectin. It has a tendency to stick together after cooking. 3. ESSENTIAL COMPOSITION AND QUALITY FACTORS 3.1 Quality factors – general 3.1.1 Rice shall be safe and suitable for human consumption. -
Prodwrkshp 3.Qxd
California Rice Production Workshop, v15 Variety Selection and Management Introduction and History Since its beginning in 1912, California’s rice industry limited its produc - tion and marketing largely to a few short and medium grain japonica varieties, developed from stocks originating in Japan and China. These varieties produced good yields of quality rice in the dry, temperate cli - mate of the Sacramento and San Joaquin Valleys. For the grower, the choice of variety to plant was relatively simple because the few varieties available were similar in performance, yield potential and milling qual - ity when properly managed. Included were Colusa, Caloro and Calrose released in 1918, 1921 and 1948, respectively, and Earlirose, a productive, early maturing, proprietary variety, released in 1965 which soon became a popular variety for cold areas and/or late plantings. These were the major rice varieties grown in California until the early 1970’s. Then, the variety picture began to change significantly. A powerful impetus for this was the enactment of California Rice Research Marketing Order that established the California Rice Research Board in 1969. This grower initiative provided significant and regular funding to hasten development and release of new varieties. The medium grain variety CS-M3 was released in 1970 and the short grain variety CS-S4 in 1971, from rice hybridizations made in 1946 and 1957 at the Rice Experiment Station (RES) at Biggs, CA. CS-M3 gained wide acceptance and competed with the older Calrose for acreage. But, CS-S4, though an improvement over Caloro, was not widely grown because of its suscep - Publicly devel - tibility to low temperature induced sterility. -
Research Article Effect of Microwave Cooking on Quality of Riceberry Rice (Oryza Sativa L.)
Hindawi Journal of Food Quality Volume 2020, Article ID 4350274, 9 pages https://doi.org/10.1155/2020/4350274 Research Article Effect of Microwave Cooking on Quality of Riceberry Rice (Oryza sativa L.) Lyda Chin, Nantawan Therdthai , and Wannasawat Ratphitagsanti Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, #ailand Correspondence should be addressed to Nantawan erdthai; [email protected] Received 9 October 2019; Revised 8 August 2020; Accepted 13 August 2020; Published 28 August 2020 Academic Editor: Mar´ıa B. Pe´rez-Gago Copyright © 2020 Lyda Chin et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Microwaves have been applied for cooking, warming, and thawing food for many years. Microwave heating differs from conventional heating and may cause variation in the food quality. is study determined the quality of Riceberry rice (Oryza sativa L.) after microwave cooking using various rice-to-water ratios at three power levels (360, 600, and 900 W). e texture of all microwave-cooked samples was in the range 162.35 ± 5.86 to 180.11 ± 7.17 N and was comparable to the conventionally cooked rice (162.03 N). e total phenolic content (TPC) and the antioxidant activity of the microwave-cooked rice were higher than those of the conventional-cooked rice. Microwave cooking appeared to keep the TPC in the range 241.15–246.89 mg GAE/100 g db and the antioxidant activities based on DPPH and ABTS assays in the ranges 134.24–137.15 and 302.80–311.85 mg·TE/100 g db, respectively. -
Catlog 2020.Cdr
www.theimperialimpex.com With a reputation built on the dependable, high quality of our merchandise and an uncompromising attention to detail, we are Exports "service-first" organization. Basmati & Non - Basmati Rice 1121 Steam Basmati Rice 1121 Golden Sella Basmati Rice 1121 White Sella Basmati Rice 1509 White Sella Basmati Rice 1509 Golden Sella Basmati Rice 1509 Steam Sella Basmati Rice Sugandha White Sella Basmati Rice Sugandha Golden Sella Basmati Rice Sugandha Steam Sella Basmati Rice Sharbati White Sella Basmati Rice Sharbati Golden Sella Basmati Rice Sharbati Steam Sella Basmati Rice Pusa Steam Basmati Rice Pusa Golden Basmati Rice Pusa White Sella Basmati Rice IR 64- 5% Broken Parboiles Rice IR 64- 5% Broken Raw Rice Parmal Rice 11 Raw PR 11 Rice Parmal Parboiled or PR 11 Parboiled Sona Masuri Rice 100% Broken Rice 1 1121 Steam Basmati Rice 1121 Steam Basmati Rice is the variety of long grain rice having seamless quality and exclusive prices. Processed on steaming, the offered 1121 Steam Basmati Rice is long, clean and takes very less time to cook. In Steaming process, steam passes through paddy grains, then at the time of drying and removing of Paddy layers, the Rice grain inside remain white however its surface becomes harder. Our impeccable lot of 1121 Basmati Steam Rice does not break upon cooking under standard conditions. Specifications Length: 8.3 mm Moisture: 12% Max Broken: 1% Max Purity: 95% Min Crop: The Latest Damage/ discolored: Nil Sortex: 100% Sortex Clean Well Milled and Polished 2 1121 Golden Sella Basmati Rice 1121 Golden Sella is another fine rice, liked mostly by biryani lovers all across the globe. -
Effect of Preparation Method on Chemical Property of Different Thai Rice Variety
Journal of Food and Nutrition Research, 2019, Vol. 7, No. 3, 231-236 Available online at http://pubs.sciepub.com/jfnr/7/3/8 Published by Science and Education Publishing DOI:10.12691/jfnr-7-3-8 Effect of Preparation Method on Chemical Property of Different Thai Rice Variety Cahyuning Isnaini1, Pattavara Pathomrungsiyounggul2, Nattaya Konsue1,* 1Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand 2Faculty of Agro-Industry, Chiang Mai University, Muang, Chiang Mai 50100, Thailand *Corresponding author: [email protected] Received January 15, 2019; Revised February 20, 2019; Accepted March 19, 2019 Abstract Improving benefits and reducing risk of staple food consumption are of interest among researchers nowadays. Rice is the major staple foods consumed in Asia. It has been reported that rice consumption has a positive association with the risk of chronic diseases. The effects of rice variety and preparation process on chemical characteristics of rice were investigated in the current study. Three Thai rice varieties, Khao Dok Mali 105 (KDML 105), Sao Hai (SH) and Riceberry (RB), underwent parboiling or non-parboiling as well as polishing or non- polishing prior to chemical property analysis. It was found that parboiling process possessed greater content of mineral as indicated by ash content as well as fiber and total phenolic content (TPC) and 2,2-diphenyl-1- picrylhydrazyl (DPPH) radical scavenging activity when compared to non-parboiling treatments, whereas the reduction in amylose and TAC content, GI value and starch digestibility were observed in this sample. On the other hand, polishing process led to reduction in ash, amylose, fiber, TPC and TAC content and DPPH values. -
Authentic Indian Basmati & Non-Basmati Rice
Authentic Indian Basmati & Non-Basmati Rice N A H R I S I R C K E M E E I L R L H S S e company information Nature of Business : Manufacturer, Processor & Exporter l I Year of Establishment : 1998 Products : Basmati & Non Basmati Rice f Factory Address : Taraori - 132116, District - Karnal, Haryana (India) Production Line : 03 (Automatic) o Production Capacity : 5,000 Metric Tons Monthly r No. of Warehouse : 05 Warehouse Capacity : 25,000 Metric Tons p Annual Turnover : Rs. 125 Crore or US$ 15 million Approx. Export Percentage : 70-80% y : Europe, USA, Australia, Iraq, Saudi Arabia, Oman, Main Overseas Market Yemen, Jordan, Lebanon, Egypt, Bahrain, Syria, n Russia, UAE : a Nearest Port Mundra Port, Gujarat (India) Ownership Type : Partnership p PAN : ABPFS2316B DGFT / IE Code : 3310001156 m GST No. : 06ABPFS2316B1ZG REX No. : INREX3310001156DG033 o USFDA No. : 16865402970 c n prepared with the use o of healthy as well as i natural paddy, we bring t forth a quality range a of Basmati Rice such as 1121 Long Grain Basmati Rice, Long Basmati Rice and Non Basmati Rice. At m our advanced production units, these products are thoroughly processed using hygienic techniques r that ensure to their optimum quality in terms of I freshness, nutritional value and purity. Further, f our production experts incorporate sound quality control measures in the process of manufacturing n so as to come up with an impeccable range of rice. o c y t i l a u q e We are strengthened by a state of the art r infrastructural setup which covers a large area of space. -
Success Stories
Success Stories: Wheat: Unnat PBW343 has been developed by PAU, Ludhiana through marker assisted backcross breeding by pyramiding two leaf rust and two stripe rust resistance genes Lr76-Yr70/Lr37-Yr17. Lr37- Yr17 along with a linked stem rust resistance gene Sr38 have been introgressed from Aegilops ventricosa on wheat chromosome 2AL. Linked pair of genes Lr76-Yr70 were introgressed from Aegilops umbellulata on wheat chromosome 5DS in the wheat wide hybridization programme at Punjab Agricultural University, Ludhiana. Unnat PBW343 is also the first commercial product from PAU wide hybridization programme. This variety is an improved version of mega variety PBW343, has an average plant height of 100 cm. It is resistant to leaf rust and stripe rust. It matures in about 155 days and has an average grain yield of 23.2 quintals per acre. Rice:Development of Improved Basmati rice varieties with resistance to bacterial blight Indian Agricultural Research Institute (IARI) with the financial support from Department of Biotechnology (DBT), Ministry of Science & Technology, GOI, under the project “Development of biotic stress resistant rice through marker assisted breeding. Dr. A.K. Singh has recently developed two bacterial blight resistant Basmati rice varieties namely, Pusa Basmati 1728 and Pusa Basmati 1718, which have been release by the Central Variety Release committee after testing in All India Coordinated Research Project. Of these, Pusa Basmati 1728 is a replacement of Pusa Basmati 1401 and Pusa Basmati 1718 is replacement of Pusa Basmati 1121, which are together grown on almost 1.40 million ha. area currently. Since, both varieties have been recently released, the area under cultivation is likely to pick up in years to come. -
Rice: Bioactive Compounds and Their Health Benefits
The Pharma Innovation Journal 2021; 10(5): 845-853 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 Rice: Bioactive compounds and their health benefits TPI 2021; 10(5): 845-853 © 2021 TPI www.thepharmajournal.com Arsha RS, Prasad Rasane and Jyoti Singh Received: 22-03-2021 Accepted: 24-04-2021 Abstract Arsha RS Rice is the primary source of calories in many developing countries, and about 60% of the world's Department of Food Technology population consumes rice as a staple food. Rice has high nutritional value such as carbohydrate, fat, fibre, and Nutrition, School of protein, vitamins as well as food energy, minerals profile and fatty acids. The processing steps of rice is Agriculture, Lovely Professional cleaning, parboiling, drying, dehusking, partial milling, grading, packing and storage. The pigmented rice University, Phagwara, Punjab, varieties are available with reddish, purple or even blackish colour. Various extraction methods are used India for extraction bioactive compounds from rice including traditional methods (like Soxhlet extraction Prasad Rasane method and maceration method) to modern methods ( like accelerated solvent extraction method (ASE), Department of Food Technology solid-phase extraction (SPE), pressurized liquid extraction (PLE), pressurized fluid extraction (PFE), and Nutrition, School of subcritical water extraction (SWE), subcritical fluid extraction (SFE), microwave-assisted extraction Agriculture, Lovely Professional (MAE), vortex-assisted extraction (VAE), ultrasound-assisted extraction (UAE)) -
Internat Onal Journal of Agr Culture, Env Ronment and Food Sc Ences
Internatonal Journal of Agrculture, Envronment and Food Scences JAEFS e-ISSN : 2618-5946 DOI: 10.31015/jaefs.18016 www.jaefs.com Research Article Int J Agric Environ Food Sci 2(3):99-103 (2018) Physicochemical properties and morphological observations of selected local rice varieties in northern Afghanistan Zubair Noori1,2,* Mohammad Wasif Mujadidi2,3 Mohammad Wasif Amin4 1The College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan 2Kunduz Agriculture Department, Ministry of Agriculture, Irrigation, and Livestock of Afghanistan 3Faculty of Agriculture, Kandahar University (KU), Kandahar City, Afghanistan 4Tokyo University of Agriculture, Setagaya-ku, Tokyo, 156-8502, Japan *Corresponding Author: [email protected] Abstract In this study, milled rice (Oryza sativa L.) samples of local varieties (Sarda Barah, Garma Barah, Surkha Zurahti and Shah Lawangi) were procured from Kunduz province, Afghanistan and check varieties (Koshihikari and Super Basmati) from Japan. We conducted the research in the Laboratory of Crop Science of Ibaraki University, Japan during February in 2018, to clarify the physicochemical and morphological traits on different local rice varieties. The results demonstrated that local rice varieties (Sarda Barah, Garma Barah, Surkha Zurahti and Shah Lawangi) from Afghanistan including Super Basmati (Check) with long and slender grains, associated with significantly higher grain amylose and protein contents of 22.9 and 8.1%, respectively, which created in declined taste points. While, Koshihikari with short and medium grain types demonstrated the lowest grain amylose and protein contents of 17.7 and 5.5%, respectively, which amplified grain taste point. The micrographs observations revealed that there were no obvious alterations in the endosperm of translucent grains across varieties. -
Properties and Structures of Flours and Starches from Whole, Broken, and Yellowed Rice Kernels in a Model Study
Properties and Structures of Flours and Starches from Whole, Broken, and Yellowed Rice Kernels in a Model Study Ya-Jane Wang,1,2 Linfeng Wang,1 Donya Shephard,1 Fudong Wang,1 and James Patindol1 ABSTRACT Cereal Chem. 79(3):383–386 The objective of this study was to compare the structure and properties perature and enthalpy compared with flours from the whole or the broken of flours and starches from whole, broken, and yellowed rice kernels that rice kernels. However, all starches showed similar pasting, gelling, thermal were broken or discolored in the laboratory. Physicochemical properties properties, and X-ray diffraction patterns, and no structural differences including pasting, gelling, thermal properties, and X-ray diffraction patterns could be detected among different starches by HPSEC and HPAEC-PAD. were determined. Structure was elucidated using high-performance size- α-Amylase may be responsible for the decreased amylopectin fraction, exclusion chromatography (HPSEC) and high-performance anion-exchange decreased apparent amylose content, and increased amounts of low molecular chromatography with pulsed amperometric detection (HPAEC-PAD). The weight saccharides in the yellowed rice flour. The increased amount of yellowed rice kernels contained a slightly higher protein content and reducing sugars from starch hydrolysis promoted the interaction between produced a significantly lower starch yield than did the whole or broken starch and protein. The alkaline-soluble fraction during starch isolation is rice kernels. Flour from the yellowed rice kernels had a significantly presumed to contribute to the difference in pasting, gelling, and thermal higher pasting temperature, higher Brabender viscosities, increased damaged properties among whole, broken, and yellowed rice flours. -
Grain Quality of Australian Wild Rice (Compared to Domesticated Rice)
Grain quality of Australian wild rice (compared to domesticated rice) Tiparat Tikapunya MSc of Food Science and Technology A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2017 Queensland Alliance for Agriculture and Food Innovation Abstract Wild rice may be an important resource for rice food security. Studies of the grain quality of wild rices may facilitate their use in rice breeding. Australian wild rice populations have been shown to be genetically distinct from those found elsewhere indicating that they may be a potential source of valuable alleles for rice improvement. To date, two taxa belonging to the A genome clade have been described in Australia: wild rice taxa A (Oryza rufipogon like) and wild rice taxa B (Oryza meridionalis like). To explore the grain quality of these wild rices from their natural environment, a collection from eleven sites within 300 kms north of Cairns, Queensland, Australia at the beginning of the dry season in May 2014 and 2015 was evaluated. Analysis of the physical traits of three Australian wild rice taxa revealed that the wild A genome taxa were of a size that could be classified as extra-long paddy rice with grains that were long or medium while Oryza australiensis was categorized as a long paddy rice with short grain. Australian wild rice grains were coloured and varied from light red brown to dark brown while domesticated rice is brighter. Due to the difficulty of obtaining sufficient mature wild rice seeds as well as the colour of the wild rice, further analysis of grain quality was conducted on unpolished wild rice. -
A City-Retail Outlet Inventory of Processed Dairy and Grain Foods: Evidence from Mali
A city-retail outlet inventory of processed dairy and grain foods: Evidence from Mali Veronique Theriault, Amidou Assima, Ryan Vroegindewey, and Naman Keita AAEA, July 31, 2017 Motivation • Urban consumers are shifting away from traditional staples and moving toward processed rice and wheat-based products (Hollinger and Staatz 2015). • Income increases are associated with growth in foods with high- income elasticities of demand (Zhou and Staatz 2016). • Processed foods can play a central role in diet transformation (Tschirley et al. 2015) and retailing modernization (Reardon et al. 2015). Objectives • Examine the general trends in terms of diversity, availability, and prevalence of imports of processed grain and dairy products. Couscous Rice • Analyze key characteristics of processed grain and dairy products, including branding, packaging, labeling, primary ingredients, and pricing. Sterilized milk Sweetened condensed milk Processed food product • “a retail item derived from a covered commodity that has undergone specific processing resulting in a change in the character of the covered commodity, or that has been combined with at least one other covered commodity or other substantive food component” (USDA 2017; 7 CFR § 65.220). Methods • Cities • Bamako, Sikasso, Kayes, and Segou • Neighborhoods Using tablets for data collection • Low, medium, and high-income • Retail outlets Product information • Grocery stores, traditional shops, neighborhood markets, central markets, and supermarkets. Retail outlet General trends Processed dairy and grain products Diversity of products • 4,000 processed dairy and cereal food items observed in 100 retail outlets. • A total of 36 and 15 different processed cereal and dairy product types = high repetition of products across retail outlets. • Coexistence of modernity with tradition, but traditional products account for very few observations.