Ms4 Stormwater Permitting Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
General Permit for Storm Water Discharges Associated with Industrial Activity Table of Contents
NPDES GENERAL PERMIT FOR STORM WATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITY TABLE OF CONTENTS 1. Coverage under this Permit. 5 1.1 Eligibility. 5 1.1.1 Facilities Covered. 5 1.1.2 Allowable Stormwater Discharges. 5 1.1.3 Allowable Non-Stormwater Discharges . 6 1.1.4 Limitations on Coverage. 8 1.1.4.1 Discharges Mixed with Non-Stormwater. 8 1.1.4.2 Stormwater Discharges Associated with Construction Activity. 8 1.1.4.3 Discharges Currently or Previously Covered by Another Permit. 8 1.1.4.4 Stormwater Discharges Subject to Effluent Limitations Guidelines. 8 1.1.4.5 Consistency with Municipal Separate Storm Sewer Systems (MS4). 8 1.1.4.6 [Reserved] 9 1.1.4.7 New Discharges to Water Quality Impaired Waters. 9 1.1.4.8 New Discharges to Waters Designated as ONRW for Antidegradation Purposes. 9 1.2 Permit Compliance. 9 1.3 Authorization under this Permit. 9 1.3.1 How to Obtain Authorization. 10 1.3.2 Continuation of this Permit. 12 1.4 Terminating Coverage. 12 1.4.1 Submitting a Notice of Termination. 12 1.4.2 When to Submit a Notice of Termination. 12 1.5 Conditional Exclusion for No Exposure. 13 1.6 Alternative Permits. 13 1.6.1 Department Requiring Coverage under an Alternative Permit. 13 1.6.2 Permittee Requesting Coverage under an Alternative Permit. 14 1.7 Severability. 14 2. Control Measures and Effluent Limits. 14 2.1 Control Measures. 15 2.1.1 Control Measure Selection and Design Considerations 15 2.1.2 Non-Numeric Technology-Based Effluent Limits (BPT/BAT/BCT). -
Industrial Stormwater Best Management Practices Manual
Surface Water Management Industrial Stormwater Best Management Practices Manual By: Dennis Jurries, PE Krista Ratliff February 2013 Water Quality Division Surface Water Section 811 SW 6th Avenue Portland, OR 97204 Phone: (503) 229-5696 (800) 452-4011 Fax: (503) 229-6762 Contact: Erich Brandstetter www.oregon.gov/DEQ DEQ is a leader in restor- ing, maintaining and en- hancing the quality of Oregon’s air, land and water. Last Updated: 2/13/2013 This report prepared by: Oregon Department of Environmental Quality 811 SW 6th Avenue Portland, OR 97204 1-800-452-4011 www.oregon.gov/deq Contact: Dennis Jurries (503) 229-5937 Alternative formats (Braille, large type) of this document can be made available. Contact DEQ’s Office of Communications & Outreach, Portland, at (503) 229-5696, or toll-free in Oregon at 1-800-452-4011, ext. 5696. Oregon Department of Environmental Quality ii Industrial Stormwater Best Management Practices Table of Contents Executive Summary .........................................................................................................................1 Introduction ......................................................................................................................................2 Best Management Practices .............................................................................................................4 BMP 1 Coolant/Oil Recovery .....................................................................................................4 BMP 2 Weld Fume Control ........................................................................................................6 -
Class 14: Basic Hydrograph Analysis Class 14: Hydrograph Analysis
Engineering Hydrology Class 14: Basic Hydrograph Analysis Class 14: Hydrograph Analysis Learning Topics and Goals: Objectives 1. Explain how hydrographs relate to hyetographs Hydrograph 2. Create DRO (direct runoff) hydrographs by separating baseflow Description 3. Relate runoff volume to watershed area and create UH (next time) Unit Hydrographs Separating Baseflow DRO Hydrographs Ocean Class 14: Hydrograph Analysis Learning Gross rainfall = depression storage + Objectives evaporation + infiltration Hydrograph + surface runoff Description Unit Hydrographs Separating Baseflow Rainfall excess = (gross rainfall – abstractions) DRO = Direct Runoff = DRO Hydrographs = net rainfall with the primary abstraction being infiltration (i.e., assuming depression storage is small and evaporation can be neglected) Class 14: Hydrograph Hydrograph Defined Analysis Learning • a hydrograph is a plot of the Objectives variation of discharge with Hydrograph Description respect to time (it can also be Unit the variation of stage or other Hydrographs water property with respect to Separating time) Baseflow DRO • determining the amount of Hydrographs infiltration versus the amount of runoff is critical for hydrograph interpretation Class 14: Hydrograph Meteorological Factors Analysis Learning • Rainfall intensity and pattern Objectives • Areal distribution of rainfall Hydrograph • Size and duration of the storm event Description Unit Physiographic Factors Hydrographs Separating • Size and shape of the drainage area Baseflow • Slope of the land surface and channel -
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates. -
FLATTER Bay Horse; Foaled 1999 Bold Reasoning Seattle Slew
FLATTER Bay Horse; foaled 1999 Bold Reasoning Seattle Slew ................... My Charmer A.P. Indy ........................ Secretariat Weekend Surprise........... Lassie Dear FLATTER Raise a Native Mr. Prospector ................ Gold Digger Praise ............................ (1994) Northern Dancer Wild Applause ................ Glowing Tribute By A.P. INDY (1989). Horse of the year, classic winner of $2,979,815, Belmont S. [G1], etc. Leading sire twice, sire of 142 black-type winners, 11 champions, including Mineshaft [G1] ($2,283,402), Rags to Riches [G1] ($1,342,528), Bernardini [G1] ($3,060,480), and of Aptitude [G1] ($1,965,410), Stephen Got Even [G1] ($1,019,200), Pulpit [G1] ($728,200). 1st dam PRAISE, by Mr. Prospector. 2 wins at 3, $61,180. Dam of 6 foals, 4 winners-- CONGRATS (c. by A.P. Indy). 7 wins, 2 to 5, $818,960, in N.A./U.S., San Pasqual H. [G2] (SA, $90,000), Alysheba S. [L] (CD, $70,432), 2nd Santa Anita H. [G1] (SA, $200,000), Memorial Day H. [G3] (CRC, $20,000), Ack Ack H. [L] (HOL, $15,570), 3rd Hollywood Gold Cup H. [G1] (HOL, $90,000), Jim Dandy S. [G2] (SAR, $55,000), Washington Park H. [G2] (AP, $38,500), San Antonio H. [G2] (SA, $30,000). (Total: $998,960). Sire. Flatter (c. by A.P. Indy). Subject stallion. Fete (g. by Horse Chestnut (SAF)). 11 wins at 3 and 4, $310,208. Gigger (g. by Go for Gin). 4 wins, 2 to 6, $100,590. 2nd dam WILD APPLAUSE, by Northern Dancer. 5 wins in 10 starts at 2 and 3, $240,136, Diana H.-G2, Comely S.-G3, 2nd Test S.-G2, 3rd Mother Goose S.-G1. -
Real-Time Stream Flow Gages in Montana
REAL-TIME STREAM FLOW GAGES IN MONTANA Montana is home to over 264 real-time stream lows and improve water management practices. It gages located throughout the state. These gages can drive the understanding for other sciences and and their networks assist in delivering water data to helps inform citizens on how we can prepare for scientists and the public. While Montana’s demand changes in our water supply. It is imperative to for water continues to grow, water availability maintain as many gages as possible to preserve varies from year-to-year and can change these historical records for current and future dramatically in any given year. Managing supply and generations. demand challenges is an ongoing feature of life. REAL-TIME GAGES Accurate, near real-time, publicly accessible information on stream flows assists both day to day A real-time stream gage is used to report stream decision making and long-term planning, as well as flow (discharge) in cubic feet per second. These emergency planning and notification. This gages measure the stage (height) of the river in feet, information is generated in Montana by multiple and water temperature along with other networks of real-time stream gages operated by the environmental data. U.S. Geological Survey (USGS), the Department of Natural Resources and Conservation (DNRC), and some tribes. Within each network, the operation and maintenance of gages are financially supported by different sources including federal, state, tribal, local, and private funds. Some of the gages are funded by multiple agencies and organizations. The recorded data are essential to make informed water management decisions across the state. -
Chapter 5 Streamflow Data
Part 630 Hydrology National Engineering Handbook Chapter 5 Streamflow Data (210–VI–NEH, Amend. 76, November 2015) Chapter 5 Streamflow Data Part 630 National Engineering Handbook Issued November 2015 The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, em- ployees, and applicants for employment on the bases of race, color, national origin, age, disabil- ity, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual’s income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Pro- gram Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/com- plaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form. You may also write a letter containing all of the information requested in the form. Send your completed complaint form or letter to us by mail at U.S. Department of Agriculture, Director, Office of Adju- dication, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, by fax (202) 690-7442 or email at [email protected] Individuals who are deaf, hard of hearing or have speech disabilities and you wish to file either an EEO or program complaint please contact USDA through the Federal Relay Service at (800) 877- 8339 or (800) 845-6136 (in Spanish). -
Classifying Rivers - Three Stages of River Development
Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion. -
News Release ______
News Release _________________________________________________________________________________________________________ FOR IMMEDIATE RELEASE: Contact: Kevin Kerstein Publicity Manager Churchill Downs Racetrack (610) 420-6971 (mobile) (502) 635-4712 (office) [email protected] ‘WE’VE FOUND OUR WAY HOME’: HARDIN BROTHERS BRING PASSION OF HORSE RACING TO CHURCHILL DOWNS STABLE GATE LOUISVILLE, KY (Sunday, May 23, 2021) – Donnie and Ken Hardin are hard to miss when backside employees enter the Churchill Downs Stable Gate each morning. The brothers, who work on the security team, bring their passion of horse racing and the spirit of their father with them to each shift at Churchill Downs. “Churchill Downs stands for everything I love,” Ken simply stated. The Hardin’s faces light up every time a new horse racing star enters the stable gate or when they get the opportunity to tell a story about horses that strike up memories of their father. The Stable Gate office is filled with horse racing memorabilia and different photos where all of the employees, not just the Hardins, can share personal stories. One specific photo of Churchill Downs’ all-time leading jockey Pat Day brings back memories of the Hardins’ late father, Charles, every time they enter the office. “I was about 14-years-old when Pat Day won the (1992) Kentucky Derby (aboard Lil E Tee) but I remember it well,” Donnie said. “My dad was taken back by the legendary jockey’s humble demeanor after his big accomplishment. I learned a lot from that. “The next spring Churchill Downs had an autograph session featuring Pat Day. At the time, I collected sports trading cards, including jockey cards. -
ALL the PRETTY HORSES.Hwp
ALL THE PRETTY HORSES Cormac McCarthy Volume One The Border Trilogy Vintage International• Vintage Books A Division of Random House, Inc. • New York I THE CANDLEFLAME and the image of the candleflame caught in the pierglass twisted and righted when he entered the hall and again when he shut the door. He took off his hat and came slowly forward. The floorboards creaked under his boots. In his black suit he stood in the dark glass where the lilies leaned so palely from their waisted cutglass vase. Along the cold hallway behind him hung the portraits of forebears only dimly known to him all framed in glass and dimly lit above the narrow wainscotting. He looked down at the guttered candlestub. He pressed his thumbprint in the warm wax pooled on the oak veneer. Lastly he looked at the face so caved and drawn among the folds of funeral cloth, the yellowed moustache, the eyelids paper thin. That was not sleeping. That was not sleeping. It was dark outside and cold and no wind. In the distance a calf bawled. He stood with his hat in his hand. You never combed your hair that way in your life, he said. Inside the house there was no sound save the ticking of the mantel clock in the front room. He went out and shut the door. Dark and cold and no wind and a thin gray reef beginning along the eastern rim of the world. He walked out on the prairie and stood holding his hat like some supplicant to the darkness over them all and he stood there for a long time. -
Stormwater Phase II Rule: Illicit Discharge Detection And
United States Office of Water EPA 833-F-00-007 Environmental Protection (4203) January 2000 (revised December 2005) Agency Fact Sheet 2.5 Stormwater Phase II Final Rule Illicit Discharge Detection and Elimination Minimum Control Measure Stormwater Phase II his fact sheet profiles the Illicit Discharge Detection and Elimination minimum control Final Rule Tmeasure, one of six measures the operator of a Phase II regulated small municipal separate Fact Sheet Series storm sewer system (MS4) is required to include in its stormwater management program to meet the conditions of its National Pollutant Discharge Elimination System (NPDES) permit. This fact sheet outlines the Phase II Final Rule requirements and offers some general guidance Overview on how to satisfy them. It is important to keep in mind that the small MS4 operator has a great 1.0 – Stormwater Phase II Final deal of flexibility in choosing exactly how to satisfy the minimum control measure Rule: An Overview requirements. Small MS4 Program What Is An “Illicit Discharge”? 2.0 – Small MS4 Stormwater Program Overview ederal regulations define an illicit discharge Table 1 2.1 – Who’s Covered? Designation as “...any discharge to an MS4 that is not and Waivers of Regulated Small F MS4s composed entirely of stormwater...” with some Sources of exceptions. These exceptions include discharges Illicit Discharges 2.2 – Urbanized Areas: Definition and Description from NPDES-permitted industrial sources and discharges from fire-fighting activities. Illicit Sanitary wastewater discharges (see Table 1) are considered “illicit” Minimum Control Measures Effluent from septic tanks because MS4s are not designed to accept, process, 2.3 – Public Education and or discharge such non-stormwater wastes. -
Hydrological Measurements
Water Quality Monitoring - A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes Edited by Jamie Bartram and Richard Ballance Published on behalf of United Nations Environment Programme and the World Health Organization © 1996 UNEP/WHO ISBN 0 419 22320 7 (Hbk) 0 419 21730 4 (Pbk) Chapter 12 - HYDROLOGICAL MEASUREMENTS This chapter was prepared by E. Kuusisto. Hydrological measurements are essential for the interpretation of water quality data and for water resource management. Variations in hydrological conditions have important effects on water quality. In rivers, such factors as the discharge (volume of water passing through a cross-section of the river in a unit of time), the velocity of flow, turbulence and depth will influence water quality. For example, the water in a stream that is in flood and experiencing extreme turbulence is likely to be of poorer quality than when the stream is flowing under quiescent conditions. This is clearly illustrated by the example of the hysteresis effect in river suspended sediments during storm events (see Figure 13.2). Discharge estimates are also essential when calculating pollutant fluxes, such as where rivers cross international boundaries or enter the sea. In lakes, the residence time (see section 2.1.1), depth and stratification are the main factors influencing water quality. A deep lake with a long residence time and a stratified water column is more likely to have anoxic conditions at the bottom than will a small lake with a short residence time and an unstratified water column. It is important that personnel engaged in hydrological or water quality measurements are familiar, in general terms, with the principles and techniques employed by each other.