Market Access of Papua New Guinea Bananas (Musa Spp.) with Particular Respect to Banana Fly (Bactrocera Musae (Tryon)) (Diptera: Tephritidae)

Total Page:16

File Type:pdf, Size:1020Kb

Market Access of Papua New Guinea Bananas (Musa Spp.) with Particular Respect to Banana Fly (Bactrocera Musae (Tryon)) (Diptera: Tephritidae) Market Access of Papua New Guinea Bananas (Musa spp.) with Particular Respect to Banana Fly (Bactrocera musae (Tryon)) (Diptera: Tephritidae) Amanda Mararuai B.Sc Agriculture, Graduate Diploma in Applied Science A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Natural Resource Sciences Queensland University of Technology Brisbane Australia April 2010 Keywords Bactrocera musae, banana fly, bananas, biosecurity, host availability, invasion biology, invasive, market access, Musa spp., novel environment, Papua New Guinea, pest risk analysis, population distribution ii Abstract International market access for fresh commodities is regulated by international accepted phytosanitary guidelines, the objectives of which are to reduce the biosecurity risk of plant pest and disease movement. Papua New Guinea (PNG) has identified banana as a potential export crop and to help meet international market access requirements, this thesis provides information for the development of a pest risk analysis (PRA) for PNG banana fruit. The PRA is a three step process which first identifies the pests associated with a particular commodity or pathway, then assesses the risk associated with those pests, and finally identifies risk management options for those pests if required. As the first step of the PRA process, I collated a definitive list on the organisms associated with the banana plant in PNG using formal literature, structured interviews with local experts, grey literature and unpublished file material held in PNG field research stations. I identified 112 organisms (invertebrates, vertebrate, pathogens and weeds) associated with banana in PNG, but only 14 of these were reported as commonly requiring management. For these 14 I present detailed information summaries on their known biology and pest impact. A major finding of the review was that of the 14 identified key pests, some research information occurs for 13. The single exception for which information was found to be lacking was Bactrocera musae (Tryon), the banana fly. The lack of information for this widely reported ‘major pest on PNG bananas’ would hinder the development of a PNG banana fruit PRA. For this reason the remainder of the thesis focused on this organism, particularly with respect to generation of information required by the PRA process. Utilising an existing, but previously unanalysed fruit fly trapping database for PNG, I carried out a Geographic Information System analysis of the distribution and abundance of banana in four major regions of PNG. This information is required for a PRA to determine if banana fruit grown in different parts of the country are at different risks from the fly. Results showed that the fly was widespread in all cropping regions and that temperature and rainfall were not significantly correlated with banana fly abundance. Abundance of the fly was significantly correlated (albeit weakly) with host iii availability. The same analysis was done with four other PNG pest fruit flies and their responses to the environmental factors differed to banana fly and each other. This implies that subsequent PRA analyses for other PNG fresh commodities will need to investigate the risk of each of these flies independently. To quantify the damage to banana fruit caused by banana fly in PNG, local surveys and one national survey of banana fruit infestation were carried out. Contrary to expectations, infestation was found to be very low, particularly in the widely grown commercial cultivar, Cavendish. Infestation of Cavendish fingers was only 0.41% in a structured, national survey of over 2 700 banana fingers. Follow up laboratory studies showed that fingers of Cavendish, and another commercial variety Lady-finger, are very poor hosts for B. musae, with very low host selection rates by female flies and very poor immature survival. An analysis of a recent (within last decade) incursion of B. musae into the Gazelle Peninsula of East New Britain Province, PNG, provided the final set of B. musae data. Surveys of the fly on the peninsular showed that establishment and spread of the fly in the novel environment was very rapid and thus the fly should be regarded as being of high biosecurity concern, at least in tropical areas. Supporting the earlier impact studies, however, banana fly has not become a significant banana fruit problem on the Gazelle, despite bananas being the primary starch staple of the region. The results of the research chapters are combined in the final Discussion in the form of a B. musae focused PRA for PNG banana fruit. Putting the thesis in a broader context, the Discussion also deals with the apparent discrepancy between high local abundance of banana fly and very low infestation rates. This discussion focuses on host utilisation patterns of specialist herbivores and suggests that local pest abundance, as determined by trapping or monitoring, need not be good surrogate for crop damage, despite this linkage being implicit in a number of international phytosanitary protocols. iv Table of Contents Keywords .................................................................................................................................................. ii Abstract .................................................................................................................................................... iii List of Tables ......................................................................................................................................... viii List of Figures ........................................................................................................................................... x Supplementary material ....................................................................................................................... xiv Statement of original authorship .......................................................................................................... xv Acknowledgements ................................................................................................................................ xvi Chapter 1. Literature review ................................................................................................................... 1 1.1 Introduction ..................................................................................................................................... 1 1.1.1 Agriculture in Papua New Guinea ........................................................................................... 1 1.1.2 Limitations of market access ................................................................................................... 2 1.1.3 Invasive species and export systems ........................................................................................ 3 1.1.4 Overview of chapter ................................................................................................................ 4 1.2 Invasion biology and its role in biosecurity .................................................................................... 5 1.3 Fruit flies as invasive organisms ..................................................................................................... 8 1.4 The study system: banana and banana fly ..................................................................................... 10 1.5 Thesis structure ............................................................................................................................. 13 Chapter 2. Review of banana (Musa spp.) pests in Papua New Guinea ............................................ 17 2.1 Introduction ................................................................................................................................... 17 2.2 Materials & Methodology ............................................................................................................. 19 2.3 Results ........................................................................................................................................... 22 2.3.1 Pest List ................................................................................................................................. 22 2.3.2 Pest Summaries ...................................................................................................................... 27 2.3.3 Pathogens - Bacteria .............................................................................................................. 28 2.3.3.1 Erwinia chrysanthemi Burkholder et al. ................................................................. 28 2.3.4 Pathogens - Fungi .................................................................................................................. 29 2.3.4.1 Cordana musae (Zimm.) ......................................................................................... 29 2.3.4.2 Mycosphaerella fijiensis Morelet ............................................................................ 31 2.3.4.3 Phyllachora musicola Booth & Shaw ..................................................................... 33 2.3.4.4 Ramichloridium musae de Hoog ............................................................................ 34 2.3.5 Insects & Mites - Coleoptera ................................................................................................. 34 2.3.5.1 Cosmopolites sordidus (Germar) ............................................................................ 34 2.3.5.2 Papuana species
Recommended publications
  • Fruit Flies (Diptera: Tephritidae) on Vegetable Crops in Reunion Island (Indian Ocean): State of Knowledge, Control Methods and Prospects for Management
    Review Fruit flies (Diptera: Tephritidae) on vegetable crops in Reunion Island (Indian Ocean): state of knowledge, control methods and prospects for management 1 2 3 4 Philippe RYCKEWAERT *, Jean-Philippe DEGUINE , Thierry BRÉVAULT , Jean-François VAYSSIÈRES 1 Cirad, UPR HortSys, Fruit flies (Diptera: Tephritidae) on vegetable crops in Reunion Island (Indian TA B-103/L, CSIRO, Ocean): state of knowledge, control methods and prospects for management. Campus Int. Baillarguet, Abstract –– Significance of fruit flies in vegetable crops. Vegetable crops hold a key position in agri- F-34398 Montpellier, France cultural production in Reunion (Indian Ocean); however, many pests and diseases threaten the profitability [email protected] of this agricultural sector. Fruit flies (Diptera: Tephritidae) figure among the main pests for solanaceous crops and cucurbits (cucumber, zucchini, melon, etc.). Losses of as much as 80% of tomato and 100% of 2 Cirad, UMR PVBMT, Stn. cucurbit crop harvests have been frequently observed. Inventory and distribution. Four fruit fly species Ligne-Paradis, Pôle 3P, belonging to the Tephritidae family cause major damage to vegetable crops in Reunion: Bactrocera cucur- bitae (Coquillet), Dacus ciliatus Loew and D. demmerezi (Bezzi) on Cucurbitaceae, and Neoceratitis cya- 7 chemin de l'IRAT, nescens (Bezzi) on Solanaceae (primarily the tomato). Distribution of each of them is presented. Biology F-97410 Saint-Pierre, La and behavior. A few studies on the biology and behavior of the four fruit flies were conducted in Reunion Réunion, France in the late 1990s. Their main biological characteristics are summarized. Population control methods used in Reunion. Various methods such as chemical control, preventive measures (sanitation), physical 3 Cirad, UR SCA, Univ.
    [Show full text]
  • Final Report
    Final Report Coordination of Banana Industry R&D (Panama TR4) Project leader: Jim Pekin Delivery partner: Australian Banana Growers’ Council Project code: BA14012 Hort Innovation – Final Report Project: Coordination of Banana Industry R&D (Panama TR4) – BA14012 Disclaimer: Horticulture Innovation Australia Limited (Hort Innovation) makes no representations and expressly disclaims all warranties (to the extent permitted by law) about the accuracy, completeness, or currency of information in this Final Report. Users of this Final Report should take independent action to confirm any information in this Final Report before relying on that information in any way. Reliance on any information provided by Hort Innovation is entirely at your own risk. Hort Innovation is not responsible for, and will not be liable for, any loss, damage, claim, expense, cost (including legal costs) or other liability arising in any way (including from Hort Innovation or any other person’s negligence or otherwise) from your use or non‐use of the Final Report or from reliance on information contained in the Final Report or that Hort Innovation provides to you by any other means. Funding statement: This project has been funded by Hort Innovation, using the banana research and development levy and contributions from the Australian Government. Hort Innovation is the grower‐owned, not‐for‐profit research and development corporation for Australian horticulture. Publishing details: ISBN 978 0 7341 4433 1 Published and distributed by: Hort Innovation Level 8 1 Chifley Square
    [Show full text]
  • Inventory and Review of Quantitative Models for Spread of Plant Pests for Use in Pest Risk Assessment for the EU Territory1
    EFSA supporting publication 2015:EN-795 EXTERNAL SCIENTIFIC REPORT Inventory and review of quantitative models for spread of plant pests for use in pest risk assessment for the EU territory1 NERC Centre for Ecology and Hydrology 2 Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, UK ABSTRACT This report considers the prospects for increasing the use of quantitative models for plant pest spread and dispersal in EFSA Plant Health risk assessments. The agreed major aims were to provide an overview of current modelling approaches and their strengths and weaknesses for risk assessment, and to develop and test a system for risk assessors to select appropriate models for application. First, we conducted an extensive literature review, based on protocols developed for systematic reviews. The review located 468 models for plant pest spread and dispersal and these were entered into a searchable and secure Electronic Model Inventory database. A cluster analysis on how these models were formulated allowed us to identify eight distinct major modelling strategies that were differentiated by the types of pests they were used for and the ways in which they were parameterised and analysed. These strategies varied in their strengths and weaknesses, meaning that no single approach was the most useful for all elements of risk assessment. Therefore we developed a Decision Support Scheme (DSS) to guide model selection. The DSS identifies the most appropriate strategies by weighing up the goals of risk assessment and constraints imposed by lack of data or expertise. Searching and filtering the Electronic Model Inventory then allows the assessor to locate specific models within those strategies that can be applied.
    [Show full text]
  • Molecular Phylogenetics of the Genus Ceratitis (Diptera: Tephritidae)
    Molecular Phylogenetics and Evolution 38 (2006) 216–230 www.elsevier.com/locate/ympev Molecular phylogenetics of the genus Ceratitis (Diptera: Tephritidae) Norman B. Barr ¤, Bruce A. McPheron Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA Received 29 March 2005; revised 3 October 2005; accepted 5 October 2005 Abstract The Afrotropical fruit Xy genus Ceratitis MacLeay is an economically important group that comprises over 89 species, subdivided into six subgenera. Cladistic analyses of morphological and host use characters have produced several phylogenetic hypotheses for the genus. Only monophyly of the subgenera Pardalaspis and Ceratitis (sensu stricto) and polyphyly of the subgenus Ceratalaspis are common to all of these phylogenies. In this study, the hypotheses developed from morphological and host use characters are tested using gene trees pro- duced from DNA sequence data of two mitochondrial genes (cytochrome oxidase I and NADH-dehydrogenase subunit 6) and a nuclear gene (period). Comparison of gene trees indicates the following relationships: the subgenus Pardalaspis is monophyletic, subsection A of the subgenus Pterandrus is monophyletic, the subgenus Pterandrus may be either paraphyletic or polyphyletic, the subgenus Ceratalaspis is polyphyletic, and the subgenus Ceratitis s. s. might not be monophyletic. In addition, the genera Ceratitis and Trirhithrum do not form reciprocally monophyletic clades in the gene trees. Although the data statistically reject monophyly for Trirhithrum under the Shimoda- ira–Hasegawa test, they do not reject monophyly of Ceratitis. 2005 Elsevier Inc. All rights reserved. Keywords: Ceratitis; Trirhithrum; Tephritidae; ND6; COI; period 1. Introduction cies, C. capitata (Wiedemann) (commonly known as the Mediterranean fruit Xy), is already an invasive species The genus Ceratitis MacLeay (Diptera: Tephritidae) with established populations throughout tropical, sub- comprises over 89 Afrotropical species of fruit Xy (De tropical, and mild temperate habitats worldwide (Vera Meyer, 2000a).
    [Show full text]
  • APPS Newsletter Vol 27, No. 3 December 2014 in This Edition
    APPS Newsletter Vol 27, No. 3 December 2014 In this edition: Page 2. President’s message Page 3. News from the Business Manager Page 4. New members Page 4. Dates for your Diary Page 5. Regional news from New South Wales Page 8. Regional news from Victoria Page 10. Regional news from Tasmania Page 11. Report on the 8th Australasian Soilborne Diseases Symposium Page 15. Report on the 11th Australasian Plant Virology Workshop APPS NEWS is the official newsletter of the Australasian Plant Pathology Society, published electronically 3 times per year. Items for inclusion should be sent to: Dr Will Cuddy, Plant Breeding Institute, University of Sydney, Private Mail Bag 4011, Narellan, NSW, 2567. Ph. 02 9351 8871, Email: [email protected] Next deadline: March 31 2015 Web Site: http://www.australasianplantpathologysociety.org.au/ 1 APPS December 2014 Vol 27 No. 3 President’s Message 2014 seems to have gone by very quickly. The Management Committee is busy preparing for the upcoming Annual General Meeting, to be held on Thursday 11 December 2014. By the time you receive this newsletter, the AGM will be over, so I hope you were able to take up the invitation to join the meeting and contribute to the running of our Society. Progress towards the goals outlined in the 2-year plan has been documented in the President’s report prepared for the AGM (see http://www.appsnet.org/members/General/AGM%202014/index.aspx). When you next visit the APPS website I hope you will appreciate the improvements implemented by the Business Manager, Peter Williamson, to make the website more user-friendly.
    [Show full text]
  • Pacific Entomologist 1925-1966
    RECOLLEcnONS OF A Pacific Entomologist 1925-1966 WITH PHOTOGRAPHS BY THE AUTHOR R.W. Paine Australian Centre for International Agricultural Research Canberra 1994 The Australian Centre for Intemational Agricultural Research (ACIAR) was established in June 1982 by an Act of Ihe Australian Parliament. lis primary mandate is 10 help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names ore used this does not constitute endorsement of nar discrimination against any product by the Centre. This peer-reviewed series contains the results of original research supported by ACIAR, or malerial deemed relevant 10 ACIAR's research and development objectives. The series is distributed intemationally, with an emphasis on developing countries. © Australian Centre for Intemational Agricultural Research GPO Box 157 t Conberra, Australia 2601 . Paine, R.w. 1994. Recollections of a Pacific Entomologist 1925 - 1966. ACIAR Monograph No 27. 120pp. ISBN 1 86320 106 8 Technical editing and production: Arowang Information Bureau Ply Ltd. Canberra Cover: BPD Graphic Associates, Canberra in association with Arawang Information Bureau Ply Lld Printed by The Craftsman Press Ply Ltd. Burwood, Victoria. ACIAR acknowledges the generous support of tihe Paine family in the compilation of this book. Long before agricultural 1920s was already at the Foreword sustainability entered forefront of world biological common parlance, or hazards control activities. Many of the associated with misuse of projects studied by Ron Paine pesticides captured headlines, and his colleagues are touched environmentally friendly on in his delightful and biological control of introduced evocative reminiscences.
    [Show full text]
  • Characterisation and Management of Fusarium Wilt of Watermelon
    Characterisation and management of Fusarium wilt of watermelon Dr Lucy Tran-Nguyen Northern Territory Department of Primary Industry and Fisheries Project Number: VM12001 Authors: Lucy Tran-Nguyen Cassie McMaster 1 VM12001 Horticulture Innovation Australia Limited (HIA Ltd) and the Northern Territory Department of Primary Industry and Fisheries make no representations and expressly disclaim all warranties (to the extent permitted by law) about the accuracy, completeness, or currency of information in this Final Report. Users of this Final Report should take independent action to confirm any information in this Final Report before relying on that information in any way. Reliance on any information provided by HIA Ltd is entirely at your own risk. HIA Ltd is not responsible for, and will not be liable for, any loss, damage, claim, expense, cost (including legal costs) or other liability arising in any way (including from HIA Ltd or any other person’s negligence or otherwise) from your use or non-use of the Final Report or from reliance on information contained in the Final Report or that HIA Ltd provides to you by any other means. R&D projects: co-investment funding This project has been funded by Horticulture Innovation Australia Limited with co-investment from Monsanto Australia and Rijk Zwaan Australia Pty. Ltd and funds from the Australian Government. ISBN 978 0 7341 4359 4 Published and distributed by: Horticulture Innovation Australia Ltd Level 8 1 Chifley Square Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 © Copyright
    [Show full text]
  • PERSOONIAL R Eflections
    Persoonia 23, 2009: 177–208 www.persoonia.org doi:10.3767/003158509X482951 PERSOONIAL R eflections Editorial: Celebrating 50 years of Fungal Biodiversity Research The year 2009 represents the 50th anniversary of Persoonia as the message that without fungi as basal link in the food chain, an international journal of mycology. Since 2008, Persoonia is there will be no biodiversity at all. a full-colour, Open Access journal, and from 2009 onwards, will May the Fungi be with you! also appear in PubMed, which we believe will give our authors even more exposure than that presently achieved via the two Editors-in-Chief: independent online websites, www.IngentaConnect.com, and Prof. dr PW Crous www.persoonia.org. The enclosed free poster depicts the 50 CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT most beautiful fungi published throughout the year. We hope Utrecht, The Netherlands. that the poster acts as further encouragement for students and mycologists to describe and help protect our planet’s fungal Dr ME Noordeloos biodiversity. As 2010 is the international year of biodiversity, we National Herbarium of the Netherlands, Leiden University urge you to prominently display this poster, and help distribute branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands. Book Reviews Mu«enko W, Majewski T, Ruszkiewicz- The Cryphonectriaceae include some Michalska M (eds). 2008. A preliminary of the most important tree pathogens checklist of micromycetes in Poland. in the world. Over the years I have Biodiversity of Poland, Vol. 9. Pp. personally helped collect populations 752; soft cover. Price 74 €. W. Szafer of some species in Africa and South Institute of Botany, Polish Academy America, and have witnessed the of Sciences, Lubicz, Kraków, Poland.
    [Show full text]
  • Insect & Mite Management
    BANANAS INSECT & MITE MANAGEMENT Bruno Pinese Queensland Fruit &. Vegetable Growers Richard Piper BANANAS INSECT & MITE MANAGEMENT Bruno Pinese Richard Piper DEPARTMENT OF PRIMARY INDUSTRIES QUEENSLAND ISSN 0727-6273 Agdex 231/620 First published 1994 National Library of Australia Cataloguing-in-Publication data: Pinese, B. (Bruno), 1949-. Bananas: insect and mite management. ISBN 0 7242 5401 3. 1. Banana- Diseases and pests- Control- Queensland. I. Piper, Richard, 1958-. II. Queensland. Dept. of Primary Industries. Ill. Title. (Series: Information series (Queensland. Dept. of Primary Industries); QI93048). 634.77299 Editing, production and printing managed by Publishing Services ©Queensland Government 1994 Department of Primary Industries GPO Box46 Brisbane Q 4001 Cover: Stethorus larva: bunch of Cavendish bananas within a protective polythene sleeve CONTENTS Foreword v Acknowledgements vi About the authors vii Preface IX Notes to growers X 1 THE INTEGRA TED PEST MANAGEMENT (I PM) CONCEPT 2 BIOLOGICAL CONTROL OF BANANA PESTS 3 3 MONITORING PROCEDURES 5 4 MAJOR PESTS 9 Banana scab moth (Nacoleia octasema) 9 Banana rust thrips (Chaetanaphothrips signipennis) 13 Mites: Banana spider mite (Tetranychus lambi) 17 Two-spolled mite (Terranychus urticae) 17 Biological control: M ite-eating ladybird (Stethoms) 2 1 Banana weevil borer (Cosmopolites sordidus) 23 Sugarcane bud moth (Opogona glycyphaga) 26 Banana fl ower Lhrips (Thrips hawaiiensis) 28 5 MINOR PESTS 31 Banana aphid ( Pentalonia nigronervosa) 3 1 Red houldered leaf beetle (Monolepta
    [Show full text]
  • Phylogenetic Lineages in the Capnodiales
    available online at www.studiesinmycology.org StudieS in Mycology 64: 17–47. 2009. doi:10.3114/sim.2009.64.02 Phylogenetic lineages in the Capnodiales P.W. Crous1, 2*, C.L. Schoch3, K.D. Hyde4, A.R. Wood5, C. Gueidan1, G.S. de Hoog1 and J.Z. Groenewald1 1CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The Netherlands; 2Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; 3National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai 57100, Thailand; 5ARC – Plant Protection Research Institute, P. Bag X5017, Stellenbosch, 7599, South Africa *Correspondence: Pedro W. Crous, [email protected] Abstract: The Capnodiales incorporates plant and human pathogens, endophytes, saprobes and epiphytes, with a wide range of nutritional modes. Several species are lichenised, or occur as parasites on fungi, or animals. The aim of the present study was to use DNA sequence data of the nuclear ribosomal small and large subunit RNA genes to test the monophyly of the Capnodiales, and resolve families within the order. We designed primers to allow the amplification and sequencing of almost the complete nuclear ribosomal small and large subunit RNA genes. Other than the Capnodiaceae (sooty moulds), and the Davidiellaceae, which contains saprobes and plant pathogens, the order presently incorporates families of major plant pathological importance such as the Mycosphaerellaceae, Teratosphaeriaceae and Schizothyriaceae. The Piedraiaceae was not supported, but resolves in the Teratosphaeriaceae.
    [Show full text]
  • Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives
    insects Review Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives Francesca Scolari 1,* , Federica Valerio 2 , Giovanni Benelli 3 , Nikos T. Papadopoulos 4 and Lucie Vaníˇcková 5,* 1 Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, I-27100 Pavia, Italy 2 Department of Biology and Biotechnology, University of Pavia, I-27100 Pavia, Italy; [email protected] 3 Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; [email protected] 4 Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou st., N. Ionia, 38446 Volos, Greece; [email protected] 5 Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic * Correspondence: [email protected] (F.S.); [email protected] (L.V.); Tel.: +39-0382-986421 (F.S.); +420-732-852-528 (L.V.) Simple Summary: Tephritid fruit flies comprise pests of high agricultural relevance and species that have emerged as global invaders. Chemical signals play key roles in multiple steps of a fruit fly’s life. The production and detection of chemical cues are critical in many behavioural interactions of tephritids, such as finding mating partners and hosts for oviposition. The characterisation of the molecules involved in these behaviours sheds light on understanding the biology and ecology of fruit flies and in addition provides a solid base for developing novel species-specific pest control tools by exploiting and/or interfering with chemical perception. Here we provide a comprehensive Citation: Scolari, F.; Valerio, F.; overview of the extensive literature on different types of chemical cues emitted by tephritids, with Benelli, G.; Papadopoulos, N.T.; a focus on the most relevant fruit fly pest species.
    [Show full text]
  • PACIFIC INSECTS MONOGRAPH Ll
    PACIFIC INSECTS MONOGRAPH ll Lepidoptera of American Samoa with particular reference to biology and ecology By John Adams Comstock Published by Entomology Department, Bernice P. Bishop Museum Honolulu, Hawaii, U. S. A. 1966 PACIFIC INSECTS MONOGRAPHS Published by Entomology Department, Bernice P. Bishop Museum, Honolulu, Hawaii, 96819, U. S. A. Editorial Committee: J. L. Gressitt, Editor (Honolulu), S. Asahina (Tokyo), R. G. Fennah (London), R. A. Harrison (Christchurch), T. C. Maa (Honolulu & Taipei), C. W. Sabrosky (Washington, D. C), R. L. Usinger (Berkeley), J. van der Vecht (Leiden), K. Yasumatsu (Fukuoka), E. C. Zimmerman (New Hampshire). Assistant Editors: P. D. Ashlock (Honolulu), Carol Higa (Honolulu), Naoko Kunimori (Fukuoka), Setsuko Nakata (Honolulu), Toshi Takata (Fukuoka). Business Manager: C. M. Yoshimoto (Honolulu). Business Assistant: Doris Anbe (Honolulu). Business Agent in Japan: K. Yasumatsu (Fukuoka). Entomological staff, Bishop Museum, 1966: Doris Anbe, Hatsuko Arakaki, P. D. Ashlock, S. Azuma, Madaline Boyes, Candida Cardenas, Ann Cutting, M. L. Goff, J. L. Gressitt (Chairman), J. Harrell, Carol Higa, Y. Hirashima, Shirley Hokama, E. Holzapfel, Dorothy Hoxie, Helen Hurd, June Ibara, Naoko Kuni­ mori, T. C. Maa, Grace Nakahashi, Setsuko Nakata (Adm. Asst.), Tulene Nonomura, Carol Okuma, Ka­ tharine Pigue, Linda Reineccius, T. Saigusa, I. Sakakibara, Judy Sakamoto, G. A. Samuelson, Sybil Seto, W. A. Steffan, Amy Suehiro, Grace Thompson, Clara Uchida, J. R. Vockeroth, Nixon Wilson, Mabel Ya- tsuoka, C. M. Yoshimoto, E. C. Zimmermann. Field associates: M. J. Fitzsimons, E. E. Gless, G. E. Lip- pert, V. Peckham, D. S. Rabor, J. Sedlacek, M. Sedlacek, P. Shanahan, R. Straatman, J. Strong, H. M. Tor- revillas, A.
    [Show full text]