Données Satellitaires Synthèse - Données Satellitaires Description Générale

Total Page:16

File Type:pdf, Size:1020Kb

Données Satellitaires Synthèse - Données Satellitaires Description Générale Synthèse - données satellitaires Synthèse - données satellitaires Description générale Objectif de la recherche Analyser des données satellitaires pour réaliser une cartographie qui permettra à NAE de connaître l’accessibilité des données, et plus particulièrement la possibilité d’utilisation des données satellitaires pour un projet sur l’analyse visible et IR de flux routiers en très haute resolution et en temps réel ou presqu’en temps reel, et de connaître les possibilités d’utiliser ces données pour d’autres projets. Cette analyse comprend (cf. fichier Excel) : 1. Disponibilité 2. Coût 3. Opérateur 4. Satellite 5. Fréquence 6. Résolution 7. Type de données 8. Contact Synthèse - données satellitaires Résultats Temps de revisite Conclusion № Temps de revisite 1. Le nombre de satellites (bases de données) avec un 70 accès ouvert et accessible sur Internet n’est 60 62 actuellement pas suffisant pour obtenir les fréquences 50 (temps de revisite) souhaitées – chaque 3-5 min ou en 40 temps reel. 30 20 Cause : 21 10 12 10 6 4 3 5 3 3 2 4 6 2 6 2 1 5 6 1 • les satellites qui ont fait partie de l’étude étaient construits pour des 0 missions où la fréquence de repassage de 12 h est déjà considérée t - 0 0,5 h 0,78 h 1 h 1,6 h 4 h 5,3 h 12 h 21,6 h 24 h 26,5 h 33,6 h 48 h 62,4 h 72 h 100 h 120 h 192 h 240 h 384 h comme plus que suffisante. № = nombre des satellites* t = temps d’obtention des données 0 = temps réel n/a = nombre des satellites pour lesquels «t» n’est pas disponible (une recherche plus approfondie est nécessaire) Recommandations 1. Faire une recherche complémentaire approfondie sur le temps exact de repassage des satellites afin de mélanger l’imagerie provenante de constellations différentes pour obtenir une bonne fréquence ~ chaque 30 min +/- 20 min. 2. Elargir les cadres de l’étude et faire la recherche sur des bases de données russo-ukrainiennes, japonaises, purement américano- canadiennes etc. orientées vers le business. 3. Faire une recherche sur le marché des nano-satellites et sur la faisabilité de leur lancement. 4. Négocier avec le CNES, le Ministère de la Défense et l’ESA un accès limité aux satellites et aux bases de données fermées. Synthèse - données satellitaires Résultats Temps d’obtention des données Conclusion 2. Le temps d’obtention de données publiquement ouvertes n’est № Temps d'obtention des données généralement pas assez rapide. 35 Causes : 30 25 • le temps d’envoi des données par le satellite sur une base terrestre et le temps du transfert de ces données au client final varie et peut être trop long pour certaines 20 32 constellations; 15 10 • le temps complémentaire est nécessaire pour traitement des données par les 18 laboratoires / les opérateurs; 5 9 6 6 7 4 3 3 2 2 3 3 2 0 1 • de nombreux satellites qui ont fait partie de cette étude étaient construits pour t - 0 0.21 m 1 m 3 m 5 m 15 m 30 m 45 m 60 m 120 m 144 m 180 m 24 h 48 h 30 j des missions où la rapidité du traitement n’était pas initialement prevue. № = nombre des satellites* t = temps d’obtention des données 0 = temps réel n/a = nombre des satellites pour lesquels «t» n’est pas disponible (une recherche plus approfondie est nécessaire) Recommandations 1. Contacter chaque opérateur et laboratoire du traitement pour négocier un accès direct aux données pré-traitées ou diminuer le temps d’obtention des données bruts 2. Faire une recherche complémentaire sur le marché des nano-satellites et sur la possibilité de construire des nano-satellites à des fins spécifiques et capables d’envoyer les données prêtes à être utilisées sans traitement complémentaire sur la Terre. 3. Élargir les cadres de l’étude et faire la recherche sur des bases de données américano-canadiennes, russo-ukrainiennes, japonais etc. 4. Faire une recherche plus approfondie sur les bases de données fermées. Synthèse - données satellitaires Résultats Temps d’obtention des données + Temps de revisite Graphique Temps de revisite + Temps d’obtention des données 10 9 9 9 9 9 8 7 6 6 6 5 5 4 4 3 3 3 3 3 3 3 3 3 2 2 2 1 1 1 1 0 t = 0 0,517 h 1,083 h 24 h 24,017 h 24,5 h 24,75 h 25 h 26,4 h 2 j 15 m 2 j 1 h 2 j 3 h 3 j 1 h 5 j 2,4 h 5 j 3 h 8 j 1 m 8 j 1 h 10 j 2,4 h 16 j 1 m 16 j 3 m 16 j 2 h № = nombre des satellites* t = temps d’obtention des données 0 = temps réel n/a = nombre des satellites pour lesquels «t» n’est pas disponible (une recherche plus approfondie est nécessaire) Synthèse - données satellitaires Résultats Cout et accessibilité des données Conclusion 3. Le cout d’accès aux bases de données fermées et du traitement des données ouvertes n’est habituellement pas communiqué sans rendez-vous et sans présentation du projet bien cadré. 4. Les données ouvertes gratuites sont généralement publiées par les opérateurs tardivement (de quelques jours à quelques semaines). Pour avoir accès aux données récentes il faut le négocier avec les opérateurs et/ou contacter des laboratoires du traitement qui peuvent demander une rémunération pour le traitement instantané/très rapide. Causes : • Les données satellitaires européennes ouvertes ne sont habituellement pas orientées vers des fins du petit business ou du business de la taille moyenne; • Les conditions très spécifiques du marché des données satellitaires; • Les besoins des clients des laboratoires et des opérateurs sont très différents et souvent très spécifiques; • Le prix d’accès aux mêmes données peut être different pour des acteurs différents selon leur projet, leur besoins, leur taille et leur chiffre d’affaires etc. Recommandations 1. Prendre contact avec chaque opérateur et laboratoire du traitement. 2. Faire une recherche complémentaire sur des bases de données publiques et privées américaines, russes, japonais etc. orientées vers le business. 3. Contacter les opérateurs / laboratoires non-UE dont le business consiste dans le traitement des données spatiales. Synthèse - données satellitaires Résultats Conclusion globale Les programmes spatiaux européens sont principalement orientés vers des fins publics ou des besoins des grands industriels qui possèdent des satellites et/ou les opèrent certains paramètres des données satellitaires ne correspondent pas au projet initial Causes : • Malgré le développement très rapide et fructueux du marché spatial français et européen, le CNES et l’UE ne possèdent pas encore autant de satellites que les Etats-Unis+Canada et la Russie+l’Ukraine; • Les missions spatiales européennes sont orientées principalement vers des fins publiques et secondairement vers des besoins d’acteurs privées. Principales prochaines étapes 1. Faire une recherche complémentaire approfondie sur le temps exact de repassage des satellites : permettrait de diminuer le temps de repassage global des satellites sur une zone donnée. 2. Elargir le cadre de l’etude et faire une recherche des marchés des données satellitaires non-UE (notamment russe et américaine) orientés business. 3. Faire une recherche complémentaire sur les tendances actuelles des marchés des données satellitaires français, européen et mondial. 4. Faire une recherche sur les tendances du marché des nano-satellites et sur la faisabilité de leur lancement : permettrait de comprendre, le cout, la rentabilité, les opportunités, etc. du lancement d'un satellite / constellation des satellites avec des besoins propres à NAE + étudier les aspects lucratifs de la vente des capacités de ce satellite / cette constellation à d’autres acteurs du marché aérospatial. Annexes Synthèse - données satellitaires Annexe A «Nota bene» Types de l’imagerie spatiale Panchromatic Pansharpened Multispectral image image image Panchromatic image A panchromatic band is essentially a black and white band. It is one single band and typically it has a wide bandwidth of a couple of hundred nanometers. The wide bandwidth allows this band to have a high signal to noise, which is why panchromatic data is often available at the highest spatial resolution (e.g. 31 cm on WorldView-3). * nombre des satellites est comptée comme nombre des constellations des satellites par type de données Synthèse - données satellitaires Annexe A «Nota bene» Multispectral image A multispectral image is one that captures image data within specific wavelength ranges across the electromagnetic spectrum. The wavelengths may be separated by filters or by the use of instruments that are sensitive to particular wavelengths, including light from frequencies beyond the visible light range, i.e. infrared and ultra- violet. Spectral imaging can allow extraction of additional information the human eye fails to capture with its receptors for red, green and blue. Spectral bands: (The wavelengths are approximate; exact values depend on the particular satellite's instruments) • Blue, 450-515..520 nm, is used for atmosphere and deep water imaging, and can reach depths up to 150 feet (50 m) in clear water. • Green, 515..520-590..600 nm, is used for imaging vegetation and deep water structures, up to 90 feet (30 m) in clear water. • Red, 600..630-680..690 nm, is used for imaging man-made objects, in water up to 30 feet (9 m) deep, soil, and vegetation. • Near infrared (NIR), 750-900 nm, is used primarily for imaging vegetation. • Mid-infrared (MIR), 1550-1750 nm, is used for imaging vegetation, soil moisture content, and some forest fires. • Far-infrared (FIR), 2080-2350 nm, is used for imaging soil, moisture, geological features, silicates, clays, and fires. • Thermal infrared, 10400-12500 nm, uses emitted instead of reflected radiation to image geological structures, thermal differences in water currents, fires, and for night studies.
Recommended publications
  • Rafael Space Propulsion
    Rafael Space Propulsion CATALOGUE A B C D E F G Proprietary Notice This document includes data proprietary to Rafael Ltd. and shall not be duplicated, used, or disclosed, in whole or in part, for any purpose without written authorization from Rafael Ltd. Rafael Space Propulsion INTRODUCTION AND OVERVIEW PART A: HERITAGE PART B: SATELLITE PROPULSION SYSTEMS PART C: PROPELLANT TANKS PART D: PROPULSION THRUSTERS Satellites Launchers PART E: PROPULSION SYSTEM VALVES PART F: SPACE PRODUCTION CAPABILITIES PART G: QUALITY MANAGEMENT CATALOGUE – Version 2 | 2019 Heritage PART A Heritage 0 Heritage PART A Rafael Introduction and Overview Rafael Advanced Defense Systems Ltd. designs, develops, manufactures and supplies a wide range of high-tech systems for air, land, sea and space applications. Rafael was established as part of the Ministry of Defense more than 70 years ago and was incorporated in 2002. Currently, 7% of its sales are re-invested in R&D. Rafael’s know-how is embedded in almost every operational Israel Defense Forces (IDF) system; the company has a special relationship with the IDF. Rafael has formed partnerships with companies with leading aerospace and defense companies worldwide to develop applications based on its proprietary technologies. Offset activities and industrial co-operations have been set-up with more than 20 countries world-wide. Over the last decade, international business activities have been steadily expanding across the globe, with Rafael acting as either prime-contractor or subcontractor, capitalizing on its strengths at both system and sub-system levels. Rafael’s highly skilled and dedicated workforce tackles complex projects, from initial development phases, through prototype, production and acceptance tests.
    [Show full text]
  • International Charter ‚Space and Major Disasters‘ Outlines
    International Charter ‚Space and Major Disasters‘ Outlines Claire Tinel, CNES (French space agency) 8th UN International Conference on Space-based Technologies for Disasters Risk Reduction , 11-12 September 2019, Beijing, China History Declaration of UNISPACE III Conference (Vienna, 1999) The international space community is asked to initiate a programme to promote the use of […] Earth observation data for disastermanagement by civil protection authorities, particularly those in developing countries. History • Following UNISPACE III, the French Space Agency (CNES) and the European Space Agency (ESA) initiated the International Charter. • The Canadian Space Agency CSA signed the Charter on October 20, 2000. • Charter declared operational as of November 1, 2000 • The Charter is the world’s premier multi-satellite system of data © ESA – S. Corvaja acquisition for emergency response Charter Members CSA Canada UKSA/DMC DLR ROSCOSMOS UK Germany Russia CNES ESA KARI NOAA France EUMETSAT Korea USGS Europe JAXA USA CNSA Japan UAESA China UAE ISRO ABAE India Venezuela INPE Brasil CONAE Argentina 17 members in 2019 from 14 countries + Europe Charter Satellites ABAE VRSS-1 CNES PLEIADES, SPOT CNSA CBERS-4, GF-1, GF-2, GF-3, GF-4, FY-3C CONAE SAOCOM CSA RADARSAT-2 TerraSAR-X/TanDEM-X DLR RapidEye DMC UK-DMC2 ESA Sentinel-1, Sentinel-2, PROBA-V EUMETSAT Meteosat, Metop ISRO Cartosat-2, Resourcesat-2, Resourcesat-2A INPE CBERS-4 JAXA ALOS-2, KIBO HDTV-EF KARI KOMPSAT-2, KOMPSAT-3, KOMPSAT-3A, KOMPSAT-5 NOAA POES, SUOMI-NPP, GOES PLANET Planetscope ROSCOSMO RESURS-DK, METEOR-M, KANOPUS-V, KANOPUS-V-IK, S RESURS-P UAESA DubaiSat-2 USGS Landsat-7, Landsat-8, QuickBird, WorldView, Geoeye What is the Charter? An International agreement among participating Agencies to provide images/information of the member’s Earth-observing satellites in support of the management of major disasters worldwide.
    [Show full text]
  • Rapideye Satellite Imagery Supporting Global REDD+ Activities on a National, Regional Or Local Level
    RapidEye Satellite Imagery Supporting Global REDD+ Activities on a National, Regional or Local Level Clear-cut area in Bolivia Offering the largest collection capacity, the largest archive and the quickest return times to any place on earth, the RapidEye constellation of five identical Earth Observation (EO) satellites is continuously collecting imagery over countries involved in the REDD and REDD+ programs. The combination of large-area coverage, frequent revisit intervals, five multi-spectral bands and high resolution makes RapidEye your best choice within the remote sensing industry. Reducing Emissions from Deforestation and forest Degradation (REDD, and later REDD+) was launched in 2005 as part of the Kyoto protocol. Each of these programs has the larger goal of stabilizing global average temperatures by reducing man-made emissions of carbon dioxide, making an effort to slow global warming. Nearly 20% of global greenhouse gas (GHG) emissions are caused by the following items, which all play a role in raising average global temperatures: » deforestation » expansion of agricultural lands » forest degradation » logging » infrastructure development » forest fires RAPIDEYE FOR REDD+ RapidEye Provides REDD+ MRV Support MRV (Measurement, Reporting and Verification) is a critical element for the implementation of any REDD+ mechanism. Remote sensing is a key ingredient of the ‘monitoring’ component, and imagery from the RapidEye constellation of satellites has been shown by many countries and organizations to be an excellent source of information for credible measurement. Since February 2009, RapidEye has been expanding its archive by over one billion square kilometers every year. Several million square 2009-2012 kilometers of the imagery in RapidEye’s archive are over countries participating in, or intending to participate in the Cloud Coverage: < 20% REDD initiative.
    [Show full text]
  • Maximizing the Utility of Satellite Remote Sensing for the Management of Global Challenges
    UN-GGIM Exchange Forum Maximizing the Utility of Satellite Remote Sensing for the Management of Global Challenges Paulo Bezerra Managing Director MDA Geospatial Services Inc. paulo@mdacorporation . com RESTRICTION ON USE, PUBLICATION OR DISCLOSURE OF PROPRIETARY INFORMATION This document contains information proprietary to MacDonald, Dettwiler and Associates Ltd., to its subsidiaries, or to a third party to which MacDonald, Dettwiler and Associates Ltd. may have a legal obligation to protect such information from unauthorized disclosure, use or duplication. Any disclosure, use or duplication of this document or of any of the information contained herein for other thanUse, the duplication,specific pur orpose disclosure for which of this it wasdocument disclosed or any is ofexpressly the information prohibited, contained except herein as MacDonald, is subject to theDettwiler restrictions and Assoon thciatese title page Ltd. ofmay this agr document.ee to in writing. 1 MDA Geospatial Services Inc. (GSI) Providing Essential Geospatial Products and Services to a global base of customers. SATELLITE DATA DISTRIBUTION DERIVED INFORMATION SERVICES Copyright © MDA ISI GeoCover Regional Mosaic. Generated Top Image - Copyright © 2002 DigitialGlobe from LANDSAT™ data. Bottom Image - RADARSAT-1 Data © CSA (()2001). Received by the Canada Centre for Remote Sensing. Processed and distributed by MDA Geospatial Services Inc. Use, duplication, or disclosure of this document or any of the information contained herein is subject to the restrictions on the title page of this document. MDA GSI - Satellite Data Distribution Worldwide distributor of radar and optical satellite data RADARSAT-2 GeoEye WorldView RapidEye USA Canada Brazil Chile RADARSAT-2 Data and Products © MACDONALD DETTWILER AND Copyright © 2011 GeoEye ASSOCIATES LTD.
    [Show full text]
  • Satellite Remote Sensing and GIS Applications in Agricultural Meteorology
    Satellite Remote Sensing and GIS Applications in Agricultural Meteorology Proceedings of the Training Workshop 7-11 July, 2003, Dehra Dun, India Editors M.V.K. Sivakumar P.S. Roy K. Harmsen S.K. Saha Sponsors World Meteorological Organization (WMO) India Meteorological Department (IMD) Centre for Space Science and Technology Education in Asia and the Pacific (CSSTEAP) Indian Institute of Remote Sensing (IIRS) National Remote Sensing Agency (NRSA) and Space Application Centre (SAC) AGM-8 WMO/TD No. 1182 World Meteorological Organisation 7bis, Avenue de la Paix 1211 Geneva 2 Switzerland 2004 Published by World Meteorological Organisation 7bis, Avenue de la Paix 1211 Geneva 2, Switzerland World Meteorological Organisation All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of the copyright owner. Typesetting and Printing : M/s Bishen Singh Mahendra Pal Singh 23-A New Connaught Place, P.O. Box 137, Dehra Dun -248001 (Uttaranchal), INDIA Ph.: 91-135-2715748 Fax- 91-135-2715107 E.mail: [email protected] Website: http://www.bishensinghbooks.com FOREWORD CONTENTS Satellite Remote Sensing and GIS Applications in Agricultural .... 1 Meteorology and WMO Satellite Activities – M.V.K. Sivakumar and Donald E. Hinsman Principles of Remote Sensing ......... 23 Shefali Aggarwal Earth Resource Satellites ......... 39 – Shefali Aggarwal Meteorological Satellites ......... 67 – C.M. Kishtawal Digital Image Processing ......... 81 – Minakshi Kumar Fundamentals of Geographical Information System ......... 103 – P.L.N. Raju Fundamentals of GPS ......... 121 – P.L.N. Raju Spatial Data Analysis ........
    [Show full text]
  • Affordable SAR Constellations to Support Homeland Security
    SSC09-III-3 Affordable SAR Constellations to Support Homeland Security Adam M. Baker Rachel Bird Surrey Satellite Technology Ltd Surrey Satellite Technology Ltd Tycho House, 20 Stephenson Road, Guildford, Tycho House, 20 Stephenson Road, Guildford, Surrey, GU2 7YE, United Kingdom; Surrey, GU2 7YE, United Kingdom; +44 (0)1483 803803 +44 (0)1483 803803 [email protected] [email protected] Stuart Eves F Brent Abbott Surrey Satellite Technology Ltd Surrey Satellite Technology US LLC, Tycho House, 20 Stephenson Road, Guildford, 600 17th Street, suite 2800 South, Denver, Surrey, GU2 7YE, United Kingdom; Colorado 80202-5428, United States +44 (0)1483 803803 +1 (602) 284 7997 [email protected] [email protected] ABSTRACT This paper describes the applications, benefits and customers for synthetic aperture radar (SAR) payloads carried on small low cost space missions. Although numerous current and soon-to-launch carry SAR, affordability of such missions to serve particular types of customers is poor. This is in part due to the high cost of SAR payloads, and specific needs such as high power drain and support for large, heavy antennae which have mandated large, costly satellites. The paper explores the trade-space between application, customer and performance to show how there is a market for a Disaster Monitoring Constellation class SAR, or DMC-SAR which can support a number of unmet needs in the Earth observation sector. A DMC-SAR mission is shown to be feasible, with various options for sourcing and mating the critical SAR instrument to a small low cost SSTL bus.
    [Show full text]
  • SAR Landcover Part 2 (Jiao)
    National Aeronautics and Space Administration Exploiting SAR to Monitor Agriculture Heather McNairn, Xianfeng Jiao, Sarah Banks, and Amir Behnamian 4 September 2019 Learning Objectives • By the end of this presentation, you will be able to understand: – how to estimate soil moisture from RADARSAT-2 data – how to process multi-frequency data for use in crop classification NASA’s Applied Remote Sensing Training Program 2 SNAP: Sentinel’s Application Platform • ESA SNAP is the free and open-source toolbox for processing and analyzing ESA and 3rd part EO satellite image data • You can download the latest installers for SNAP from: – http://step.esa.int/main/download/snap-download/ NASA’s Applied Remote Sensing Training Program 3 Estimating Soil Moisture from RADARSAT-2 Data RADARSAT-2 RADARSAT-2 SAR Beam Modes – Revisit time: 24 days Image Credits: MDA RADARSAT-2 Product Description NASA’s Applied Remote Sensing Training Program 5 Pre-Processing RADARSAT-2 Data with SNAP Extract Backscatter Speckle Terrain Read Calibration Write Filter Correction NASA’s Applied Remote Sensing Training Program 6 Pre-Processing RADARSAT-2 Data with SNAP Read Image • RADARSAT-2 Wide Fine Quad-Pol single look complex(SLC) product: – Nominal Resolution: 5.2m (Range) * 7.6 m (Azimuth) – Nominal Scene Size: 50 Km (Range) * 25 Km (Azimuth) – Quad (HH, HV,VH and VV) polarizations + phase – Slant range single look complex, contains both amplitude and phase information RADARSAT-2 Wide Fine Quad-Pol FQ16W descending SLC data acquired on May 12, 2016, over Carman, Manitoba,
    [Show full text]
  • Global Forest Monitoring from Earth Observation
    16 Future Perspectives (Way Forward) Alan Belward and Frédéric Achard Joint Research Centre of the European Commission Matthew C. Hansen University of Maryland Olivier Arino European Space Agency CONTENTS 16.1 Introduction ..............................................................................................299 16.2 Future Earth Observation Technology ................................................. 301 16.3 Perspectives ..............................................................................................302 About the Contributors ......................................................................................303 References .............................................................................................................304 16.1 Introduction Satellites in polar orbits, like Landsat, image the entire planet’s surface every day or every couple of weeks, depending on the swath of the satellite overpass; images with detailed spatial measurements (1–30 m) are usually only available once or twice a month—for example Landsat 5 and 7 (image every 16 days at 30 m resolution)—while coarser resolution imagery (e.g., the MODIS sensor on Terra at 250 m or the SPOT satellites’ Vegetation sensor at 1 km) are provided nearly daily. Because the information is captured digitally, computers can be used to process, store, analyze, and distribute the data in a systematic manner. And because the same sensor on the same platform is gathering images for all points on the planet’s surface, these measurements are globally consistent
    [Show full text]
  • Monitoring the Water Quality of Small Water Bodies Using High-Resolution Remote Sensing Data
    International Journal of Geo-Information Article Monitoring the Water Quality of Small Water Bodies Using High-Resolution Remote Sensing Data Zehra Yigit Avdan 1,*, Gordana Kaplan 2 , Serdar Goncu 1 and Ugur Avdan 2 1 Department of Environmental Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey; [email protected] 2 Earth and Space Institute, Eskisehir Technical University, Eskisehir 26555, Turkey; [email protected] (G.K.); [email protected] (U.A.) * Correspondence: [email protected]; Tel.: +90-532-668-1936 Received: 4 November 2019; Accepted: 1 December 2019; Published: 2 December 2019 Abstract: Remotely sensed data can reinforce the abilities of water resources researchers and decision-makers to monitor water quality more effectively. In the past few decades, remote sensing techniques have been widely used to measure qualitative water quality parameters. However, the use of moderate resolution sensors may not meet the requirements for monitoring small water bodies. Water quality in a small dam was assessed using high-resolution satellite data from RapidEye and in situ measurements collected a few days apart. The satellite carries a five-band multispectral optical imager with a ground sampling distance of 5 m at its nadir and a swath width of 80 km. Several different algorithms were evaluated using Pearson correlation coefficients for electrical conductivity (EC), total dissolved soils (TDS), water transparency, water turbidity, depth, suspended particular matter (SPM), and chlorophyll-a. The results indicate strong correlation between the investigated parameters and RapidEye reflectance, especially in the red and red-edge portion with highest correlation between red-edge band and water turbidity (r2 = 0.92).
    [Show full text]
  • Remote Sensing Satellites
    Online Journal of Space Communication Volume 2 Issue 3 Remote Sensing of Earth via Satellite Article 5 (Winter 2003) January 2003 Introduction to Remote Sensing: Remote Sensing Satellites Hugh Bloemer Dale Quattrochi Follow this and additional works at: https://ohioopen.library.ohio.edu/spacejournal Part of the Astrodynamics Commons, Navigation, Guidance, Control and Dynamics Commons, Space Vehicles Commons, Systems and Communications Commons, and the Systems Engineering and Multidisciplinary Design Optimization Commons Recommended Citation Bloemer, Hugh and Quattrochi, Dale (2003) "Introduction to Remote Sensing: Remote Sensing Satellites," Online Journal of Space Communication: Vol. 2 : Iss. 3 , Article 5. Available at: https://ohioopen.library.ohio.edu/spacejournal/vol2/iss3/5 This Articles is brought to you for free and open access by the OHIO Open Library Journals at OHIO Open Library. It has been accepted for inclusion in Online Journal of Space Communication by an authorized editor of OHIO Open Library. For more information, please contact [email protected]. Bloemer and Quattrochi: Introduction to Remote Sensing: Remote Sensing Satellites EROS A & B EROS (Earth Remote Observation System) A1 was launched in December 2000 as the first constellation of eight high-resolution imaging satellites to be launched between year 2001 and 2005. EROS satellites are high performance, low cost, light, and agile and have been designed for low earth orbit (LEO). The satellites are owned and operated by ImageSat International. This Cyprus-based company was established in 1997 by a consortium of leading satellite, sensor and information management companies and information producers around the world. In February 2001, a couple of months after EROS A1 was launched, ImageSat decided to forgo the production and launch of its planned EROS A2 satellite.
    [Show full text]
  • Satellite Image, Source for Terrestrial Information, Threat to National Security
    www.myreaders.info Satellite Image, RC Chakraborty, www.myreaders.info Source for Terrestrial Information, Threat to National Security by R. C. Chakraborty Visiting Professor at JIET, Guna. Former Director of DTRL & ISSA (DRDO), [email protected] www.myreaders.wordpress.com December 11, 2007 MANIT TRAINING PROGRAMME on Information Security December 10 -14, 2007 at Maulana Azad National Institute of Technology (MANIT), Bhopal – 462 016 The Maulana Azad National Institute of Technology (MANIT), Bhopal, conducted a short term course on "Information Security", Dec. 10 -14, 2007. The institute invited me to deliver a lecture. I preferred to talk on "Satellite Image - source for terrestrial information, threat to RC Chakraborty, www.myreaders.info national security". I extended my talk around 50 slides, tried to give an over view of Imaging satellites, Globalization of terrestrial information and views express about National security. Highlights of my talk were: ► Remote sensing, Communication, and the Global Positioning satellite Systems; ► Concept of Remote Sensing; ► Satellite Images Of Different Resolution; ► Desired Spatial Resolution; ► Covert Military Line up in 1950s; ► Concept Of Freedom Of International Space; ► The Roots Of Remote Sensing Satellites; ► Land Remote Sensing Act of 1992; ► Popular Commercial Earth Surface Imaging satellites - Landsat , SPOT and Pleiades , IRS and Cartosat , IKONOS , OrbView & GeoEye, EarlyBird, QuickBird, WorldView, EROS; ► Orbits and Imaging characteristics of the satellites; ► Other Commercial Earth Surface Imaging satellites – KOMPSAT, Resurs DK, Cosmo/Skymed, DMCii, ALOS, RazakSat, FormoSAT, THEOS; ► Applications of Very High Resolution Imaging Satellites; ► Commercial Satellite Imagery Companies; ► National Security and International Regulations – United Nations , United States , India; ► Concern about National Security - Views expressed; ► Conclusion.
    [Show full text]
  • Orthorectification and Pansharpen Rapideye, Ikonos and Alos Optical Imagery Using High Resolution Nextmap® Data
    ORTHORECTIFICATION AND PANSHARPEN RAPIDEYE, IKONOS AND ALOS OPTICAL IMAGERY USING HIGH RESOLUTION NEXTMAP® DATA M. Lorraine Tighe Intermap Technologies 8310 South Valley Highway, Suite 400 Englewood CO 80112 [email protected] John S. Ahlrichs RapidEye Molkenmarkt 30 Brandenburg an der Havel, Germany [email protected] Xiaopeng, Li Intermap Technologies 2 Gurdwara Road, Suite 200, Ottawa Ontario, Canada [email protected] ABSTRACT A plethora of medium to high resolution multi-spectral imagery is available from a host of commercial optical satellites. However, image data acquired by satellite image sensors are affected by systematic sensor and platform- induced geometry errors, which introduce terrain distortions when the image sensor is not pointing directly at the Nadir location of the sensor. Image orthorectification can accurately remove the image distortions related to sensor collection. This study presents the orthorectification multispectral imagery from several satellites (ALOS, Rapid Eye and IKONOS) with high resolution NEXTMap® data over Colorado, California and Alaska test sites, respectively. Orthorectification has been demonstrated using a Rational Functions method which involves the collection of GCPs from the NEXTMap® high resolution ORI (1.25 m pixel; 2 m horizontal accuracy) used in conjunction with the NEXTMap® DTM and off-the-shelf orthorectification software. The resulting orthorectified satellite imagery is processed further to derive pan sharpened imagery.). The accuracy of the orthorectified pan sharpened images
    [Show full text]