Ret Oncogene and Thyroid Carcinoma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Role of Vascular Endothelial Growth Factor Receptor-1 Signaling In
Laboratory Investigation (2015) 95, 456–468 & 2015 USCAP, Inc All rights reserved 0023-6837/15 The role of vascular endothelial growth factor receptor-1 signaling in compensatory contralateral lung growth following unilateral pneumonectomy Yoshio Matsui1, Hideki Amano1,2, Yoshiya Ito3, Koji Eshima4, Hideaki Tamaki5, Fumihiro Ogawa1, Akira Iyoda6, Masafumi Shibuya7, Yuji Kumagai2, Yukitoshi Satoh6 and Masataka Majima1 Compensatory lung growth models have been widely used to investigate alveolization because the remaining lung can be kept intact and volume loss can be controlled. Vascular endothelial growth factor (VEGF) plays an important role in blood formation during lung growth and repair, but the precise mechanisms involved are poorly understood; therefore, the aim of this study was to investigate the role of VEGF signaling in compensatory lung growth. After left pneumonectomy, the right lung weight was higher in VEGF transgenic mice than wild-type (WT) mice. Compensatory lung growth was suppressed significantly in mice injected with a VEGF neutralizing antibody and in VEGF receptor-1 tyrosine kinase-deficient mice (TK À / À mice). The mobilization of progenitor cells expressing VEGFR1 þ cells from bone marrow and the recruitment of these cells to lung tissue were also suppressed in the TK À / À mice.WTmicetransplantedwithbonemarrowfromTKÀ / À transgenic GFP þ mice had significantly lower numbers of GFP þ /aquaporin 5 þ ,GFPþ /surfactant protein A þ ,andGFPþ /VEGFR1 þ cells than WT mice transplanted with bone marrow from WTGFP þ mice. The GFP þ /VEGFR1 þ cells also co-stained for aquaporin 5 and surfactant proteinA.Overall,theseresultssuggest that VEGF signaling contributes to compensatory lung growth by mobilizing VEGFR1 þ cells. -
A Gain-Of-Function P53-Mutant Oncogene Promotes Cell Fate Plasticity and Myeloid Leukemia Through the Pluripotency Factor FOXH1
Published OnlineFirst May 8, 2019; DOI: 10.1158/2159-8290.CD-18-1391 RESEARCH ARTICLE A Gain-of-Function p53-Mutant Oncogene Promotes Cell Fate Plasticity and Myeloid Leukemia through the Pluripotency Factor FOXH1 Evangelia Loizou1,2, Ana Banito1, Geulah Livshits1, Yu-Jui Ho1, Richard P. Koche3, Francisco J. Sánchez-Rivera1, Allison Mayle1, Chi-Chao Chen1, Savvas Kinalis4, Frederik O. Bagger4,5, Edward R. Kastenhuber1,6, Benjamin H. Durham7, and Scott W. Lowe1,8 Downloaded from cancerdiscovery.aacrjournals.org on September 27, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst May 8, 2019; DOI: 10.1158/2159-8290.CD-18-1391 ABSTRACT Mutations in the TP53 tumor suppressor gene are common in many cancer types, including the acute myeloid leukemia (AML) subtype known as complex karyotype AML (CK-AML). Here, we identify a gain-of-function (GOF) Trp53 mutation that accelerates CK-AML initiation beyond p53 loss and, surprisingly, is required for disease maintenance. The Trp53 R172H muta- tion (TP53 R175H in humans) exhibits a neomorphic function by promoting aberrant self-renewal in leu- kemic cells, a phenotype that is present in hematopoietic stem and progenitor cells (HSPC) even prior to their transformation. We identify FOXH1 as a critical mediator of mutant p53 function that binds to and regulates stem cell–associated genes and transcriptional programs. Our results identify a context where mutant p53 acts as a bona fi de oncogene that contributes to the pathogenesis of CK-AML and suggests a common biological theme for TP53 GOF in cancer. SIGNIFICANCE: Our study demonstrates how a GOF p53 mutant can hijack an embryonic transcrip- tion factor to promote aberrant self-renewal. -
Wnt-Independent and Wnt-Dependent Effects of APC Loss on the Chemotherapeutic Response
International Journal of Molecular Sciences Review Wnt-Independent and Wnt-Dependent Effects of APC Loss on the Chemotherapeutic Response Casey D. Stefanski 1,2 and Jenifer R. Prosperi 1,2,3,* 1 Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46617, USA; [email protected] 2 Mike and Josie Harper Cancer Research Institute, South Bend, IN 46617, USA 3 Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA * Correspondence: [email protected]; Tel.: +1-574-631-4002 Received: 30 September 2020; Accepted: 20 October 2020; Published: 22 October 2020 Abstract: Resistance to chemotherapy occurs through mechanisms within the epithelial tumor cells or through interactions with components of the tumor microenvironment (TME). Chemoresistance and the development of recurrent tumors are two of the leading factors of cancer-related deaths. The Adenomatous Polyposis Coli (APC) tumor suppressor is lost in many different cancers, including colorectal, breast, and prostate cancer, and its loss correlates with a decreased overall survival in cancer patients. While APC is commonly known for its role as a negative regulator of the WNT pathway, APC has numerous binding partners and functional roles. Through APC’s interactions with DNA repair proteins, DNA replication proteins, tubulin, and other components, recent evidence has shown that APC regulates the chemotherapy response in cancer cells. In this review article, we provide an overview of some of the cellular processes in which APC participates and how they impact chemoresistance through both epithelial- and TME-derived mechanisms. Keywords: adenomatous polyposis coli; chemoresistance; WNT signaling 1. -
Serum Levels of VEGF and MCSF in HER2+ / HER2- Breast Cancer Patients with Metronomic Neoadjuvant Chemotherapy Roberto J
Arai et al. Biomarker Research (2018) 6:20 https://doi.org/10.1186/s40364-018-0135-x SHORTREPORT Open Access Serum levels of VEGF and MCSF in HER2+ / HER2- breast cancer patients with metronomic neoadjuvant chemotherapy Roberto J. Arai* , Vanessa Petry, Paulo M. Hoff and Max S. Mano Abstract Metronomic therapy has been gaining importance in the neoadjuvant setting of breast cancer treatment. Its clinical benefits may involve antiangiogenic machinery. Cancer cells induce angiogenesis to support tumor growth by secreting factors, such as vascular endothelial growth factor (VEGF). In breast cancer, Trastuzumab (TZM) based treatment is of key importance and is believed to reduce diameter and volume of blood vessels as well as vascular permeability. Here in we investigated serum levels of angiogenic factors VEGF and MCSF in patients receiving metronomic neoadjuvant therapy with or without TZM. We observed in HER2+ cohort stable levels of MCSF through treatment, whereas VEGF trend was of decreasing levels. In HER2- cohort we observed increasing levels of MCSF and VEGF trend. Overall, HER2+ patients had better pathological response to treatment. These findings suggest that angiogenic pathway may be involved in TZM anti-tumoral effect in the neoadjuvant setting. Keywords: Metronomic chemotherapy, Angiogenesis, Biomarker, Neoadjuvant, Breast cancer Background chemotherapeutic drugs in vitro and in vivo studies [9] Neoadjuvant chemotherapy was initially indicated to con- including rectal carcinomas [10]. Proliferation and/or vert a nonresectable into a resectable lesion [1, 2]. Data on induction of apoptosis of activated endothelial cells the efficacy and safety of metronomic chemotherapy in (ECs) is selectively inhibited as well as inhibition of the neoadjuvant setting for breast cancer (BC) is accumu- migration of EC, increase in the expression of lating and supporting application [3–6]. -
Regulation of Vascular Endothelial Growth Factor Receptor-1 Expression by Specificity Proteins 1, 3, and 4In Pancreatic Cancer Cells
Research Article Regulation of Vascular Endothelial Growth Factor Receptor-1 Expression by Specificity Proteins 1, 3, and 4in Pancreatic Cancer Cells Maen Abdelrahim,1,4 Cheryl H. Baker,4 James L. Abbruzzese,2 David Sheikh-Hamad,3 Shengxi Liu,1 Sung Dae Cho,1 Kyungsil Yoon,1 and Stephen Safe1,5 1Institute of Biosciences and Technology, Texas A&M University Health Science Center; 2Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center; 3Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas; 4Cancer Research Institute, M. D. Anderson Cancer Center, Orlando, Florida; and 5Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas Abstract through their specific interactions with VEGF receptors (VEGFR), Vascular endothelial growth factor receptor-1 (VEGFR1) is which are transmembrane tyrosine kinases and members of the expressed in cancer cell lines and tumors and, in pancreatic PDGF receptor gene family. and colon cancer cells, activation of VEGFR1 is linked to VEGFR1 (Flk-1), VEGFR2(Flt-1/KDR), and VEGFR3 (Flt-4) are the three major receptors for VEGF and related angiogenic factors. increased tumor migration and invasiveness.Tolfenamic acid, The former two receptors are primarily involved in angiogenesis in a nonsteroidal anti-inflammatory drug, decreases Sp protein endothelial cells, whereas VEGFR3 promotes hematopoiesis and expression in Panc-1 and L3.6pl pancreatic cancer cells, and lymphoangiogenesis (2, 3, 7, 8). VEGFR2 plays a critical role in this was accompanied by decreased VEGFR1 protein and angiogenesis; homozygous knockout mice were embryonic lethal mRNA and decreased luciferase activity on cells transfected [gestation day (GD) 8.5–9.0] and this was associated with the with constructs (pVEGFR1) containing VEGFR1 promoter failure to develop blood vessels (9). -
Moguntinones—New Selective Inhibitors for the Treatment of Human Colorectal Cancer
Published OnlineFirst April 17, 2014; DOI: 10.1158/1535-7163.MCT-13-0224 Molecular Cancer Small Molecule Therapeutics Therapeutics Moguntinones—New Selective Inhibitors for the Treatment of Human Colorectal Cancer Annett Maderer1, Stanislav Plutizki2, Jan-Peter Kramb2, Katrin Gopfert€ 1, Monika Linnig1, Katrin Khillimberger1, Christopher Ganser2, Eva Lauermann2, Gerd Dannhardt2, Peter R. Galle1, and Markus Moehler1 Abstract 3-Indolyl and 3-azaindolyl-4-aryl maleimide derivatives, called moguntinones (MOG), have been selected for their ability to inhibit protein kinases associated with angiogenesis and induce apoptosis. Here, we characterize their mode of action and their potential clinical value in human colorectal cancer in vitro and in vivo. MOG-19 and MOG-13 were characterized in vitro using kinase, viability, and apoptosis assays in different human colon cancer (HT-29, HCT-116, Caco-2, and SW480) and normal colon cell lines (CCD-18Co, FHC, and HCoEpiC) alone or in combination with topoisomerase I inhibitors. Intracellular signaling pathways were analyzed by Western blotting. To determine their potential to inhibit tumor growth in vivo, the human HT-29 tumor xenograft model was used. Moguntinones prominently inhibit several protein kinases associated with tumor growth and metastasis. Specific signaling pathways such as GSK3b and mTOR downstream targets b were inhibited with IC50 values in the nanomolar range. GSK3 signaling inhibition was independent of KRAS, BRAF, and PI3KCA mutation status. While moguntinones alone induced apoptosis only in concentra- tions >10 mmol/L, MOG-19 in combination with topoisomerase I inhibitors induced apoptosis synergistically at lower concentrations. Consistent with in vitro data, MOG-19 significantly reduced tumor volume and weight in combination with a topoisomerase I inhibitor in vivo. -
Unveiling the Molecular Mechanisms Regulating the Activation of the Erbb Family Receptors at Atomic Resolution Through Molecular Modeling and Simulations
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Spring 2011 Unveiling the Molecular Mechanisms Regulating the Activation of the ErbB Family Receptors at Atomic Resolution through Molecular Modeling and Simulations Andrew Shih University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biophysics Commons, Other Biomedical Engineering and Bioengineering Commons, and the Structural Biology Commons Recommended Citation Shih, Andrew, "Unveiling the Molecular Mechanisms Regulating the Activation of the ErbB Family Receptors at Atomic Resolution through Molecular Modeling and Simulations" (2011). Publicly Accessible Penn Dissertations. 302. https://repository.upenn.edu/edissertations/302 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/302 For more information, please contact [email protected]. Unveiling the Molecular Mechanisms Regulating the Activation of the ErbB Family Receptors at Atomic Resolution through Molecular Modeling and Simulations Abstract The EGFR/ErbB/HER family of kinases contains four homologous receptor tyrosine kinases that are important regulatory elements in key signaling pathways. To elucidate the atomistic mechanisms of dimerization-dependent activation in the ErbB family, we have performed molecular dynamics simulations of the intracellular kinase domains of the four members of the ErbB family (those with known kinase activity), namely EGFR, ErbB2 (HER2) -
Dual Inhibition Using Cabozantinib Overcomes HGF/MET Signaling Mediated Resistance to Pan-VEGFR Inhibition in Orthotopic and Metastatic Neuroblastoma Tumors
INTERNATIONAL JOURNAL OF ONCOLOGY 50: 203-211, 2017 Dual inhibition using cabozantinib overcomes HGF/MET signaling mediated resistance to pan-VEGFR inhibition in orthotopic and metastatic neuroblastoma tumors ESTELLE DAUDIGEOS-DUBUS1, LUDIVINE LE DRET1, OLIVIA Bawa2, PAULE OPOLON2, ALBANE Vievard3, IRÈNE VILLA4, JACQUES BOSQ4, GILLES VASSAL1 and BIRGIT GEOERGER1 1Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif; 2Preclinical Evaluation Platform, Gustave Roussy, Villejuif; 3Tribvn, Châtillon; 4Pathology Laboratory, Gustave Roussy, Villejuif, France Received August 8, 2016; Accepted October 6, 2016 DOI: 10.3892/ijo.2016.3792 Abstract. MET is expressed on neuroblastoma cells and Introduction may trigger tumor growth, neoangiogenesis and metastasis. MET upregulation further represents an escape mechanism The tyrosine kinase receptor c-MET, also called MET or to various anticancer treatments including VEGF signaling hepatocyte growth factor receptor (HGFR), is the only known inhibitors. We developed in vitro a resistance model to pan- receptor for hepatocyte growth factor (HGF) (1). Aberrant VEGFR inhibition and explored the simultaneous inhibition MET signaling plays a pivotal role in angiogenesis as well as in of VEGFR and MET in neuroblastoma models in vitro and tumor cell proliferation, survival and migration (2-4). Several in vivo using cabozantinib, an inhibitor of the tyrosine kinases studies suggest that HGF/c-MET signaling promotes angio- including VEGFR2, MET, AXL and RET. Resistance in genesis directly by stimulating endothelial cells in response to IGR-N91-Luc neuroblastoma cells under continuous in vitro VEGF in various tumor types (5-8). Moreover, MET has been exposure pressure to VEGFR1-3 inhibition using axitinib was described as an oncogene in different pathologies such as liver associated with HGF and p-ERK overexpression. -
Targeting the Function of the HER2 Oncogene in Human Cancer Therapeutics
Oncogene (2007) 26, 6577–6592 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW Targeting the function of the HER2 oncogene in human cancer therapeutics MM Moasser Department of Medicine, Comprehensive Cancer Center, University of California, San Francisco, CA, USA The year 2007 marks exactly two decades since human HER3 (erbB3) and HER4 (erbB4). The importance of epidermal growth factor receptor-2 (HER2) was func- HER2 in cancer was realized in the early 1980s when a tionally implicated in the pathogenesis of human breast mutationally activated form of its rodent homolog neu cancer (Slamon et al., 1987). This finding established the was identified in a search for oncogenes in a carcinogen- HER2 oncogene hypothesis for the development of some induced rat tumorigenesis model(Shih et al., 1981). Its human cancers. An abundance of experimental evidence human homologue, HER2 was simultaneously cloned compiled over the past two decades now solidly supports and found to be amplified in a breast cancer cell line the HER2 oncogene hypothesis. A direct consequence (King et al., 1985). The relevance of HER2 to human of this hypothesis was the promise that inhibitors of cancer was established when it was discovered that oncogenic HER2 would be highly effective treatments for approximately 25–30% of breast cancers have amplifi- HER2-driven cancers. This treatment hypothesis has led cation and overexpression of HER2 and these cancers to the development and widespread use of anti-HER2 have worse biologic behavior and prognosis (Slamon antibodies (trastuzumab) in clinical management resulting et al., 1989). -
Extensive Analysis of the Retinoblastoma Gene in Adult T Cell Leukemia/Lymphoma (ATL) Y Hatta1, Y Yamada2, M Tomonaga2 and HP Koeffler1
Leukemia (1997) 11, 984–989 1997 Stockton Press All rights reserved 0887-6924/97 $12.00 Extensive analysis of the retinoblastoma gene in adult T cell leukemia/lymphoma (ATL) Y Hatta1, Y Yamada2, M Tomonaga2 and HP Koeffler1 1Division of Hematology/Oncology, Department of Medicine, Cedars-Sinai Research Institute, UCLA School of Medicine, Los Angeles, CA, USA; and 2Department of Hematology, Atomic Disease Institute, Nagasaki University, School of Medicine, Nagasaki, Japan The retinoblastoma susceptibility gene (Rb) plays a key role in Tax;38 a long period of clinical latency (20–30 years) precedes regulating the cell cycle in association with cyclins and cyclin- the development of ATL;39,40 only a small percentage of dependent kinases (CDKs). Alteration of the Rb gene as well 40 as CDK inhibitors (CDKIs) leads to deregulated cellular growth HTLV-I-infected individuals develop this malignancy; and which promotes cancer formation. We examined the genomic ATL cells are monoclonal. configuration of the entire Rb gene in 40 primary adult T cell The missense inactivating mutations of the p53 gene have leukemias/lymphomas (ATL) and two ATL cell lines by South- been observed in ATL.41–44 We tested for the inactivation of ern blotting and also by polymerase chain reaction-single several CDK inhibitors (CDKIs) including p15INK4B, p16INK4A, strand conformation polymorphism (PCR-SSCP) analyses. p18INK4C, p19INK4D and p27KIP1, and have found deletions of Homozygous loss of exon 1 was identified in one of 21 acute the p16INK4A gene in 10 of 37 cases (27%); deletions of the ATL, one of 15 chronic ATL, and none of four lymphomatous INK4B 45 ATL samples. -
Physical Interaction of the Retinoblastoma Protein with Human D Cyclins
Cell, Vol. 73, 499-511, May 7, 1993, Copyright 0 1993 by Cell Press Physical Interaction of the Retinoblastoma Protein with Human D Cyclins Steven F. Dowdy,* Philip W. Hinds,’ Kenway Louie,’ into Rb- tumor cells by microinjection, viral infection, or Steven I. Reed,t Andrew Arnold,* transfection can lead to the growth arrest of these recipient and Robert A. Weinberg” cells (Huang et al., 1988; Goodrich et al., 1991; Templeton *The Whitehead Institute for Biomedical Research et al., 1991; Hinds et al., 1992). and Department of Biology Oncoproteins specified by the SV40, adenovirus, and Massachusetts Institute of Technology papilloma DNA tumor viruses have been shown to associ- Cambridge, Massachusetts 02142 ate with pRb in virus-transformed cells (Whyte et al., 1988; tThe Scripps Research Institute DeCaprio et al., 1988; Dyson et al., 1989). Oncoprotein Department of Molecular Biology binding of pRb is presumed to lead to its sequestration 10666 North Torrey Pines Road and functional inactivation. Conserved region II mutants La Jolla, California 92037 of adenovirus ElA, SV40 large T antigen, human papil- *Endocrine Unit loma E7 viral oncoproteins that have lost their ability to and Massachusetts General Hospital Cancer Center bind pflb, and other pRb-related proteins exhibit signifi- Massachusetts General Hospital cantly reduced transforming potential (Moran et al., 1986; and Harvard Medical School Lillie et al., 1987; Cherington et al., 1988; DeCaprio et al., Boston, Massachusetts 02114 1988; Moran, 1988; Smith and Ziff, 1988; Whyte et al., 1989). This suggests that binding of pRb and related pro- teins by these oncoproteins is critical to their transforming abilities. -
Vascular Endothelial Growth Factor (VEGF) Signaling in Tumor Progression Robert Roskoski Jr
Critical Reviews in Oncology/Hematology 62 (2007) 179–213 Vascular endothelial growth factor (VEGF) signaling in tumor progression Robert Roskoski Jr. ∗ Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116A, Box 19, Horse Shoe, NC 28742, USA Accepted 29 January 2007 Contents 1. Vasculogenesis and angiogenesis....................................................................................... 180 1.1. Definitions .................................................................................................... 180 1.2. Physiological and non-physiological angiogenesis ................................................................. 181 1.3. Activators and inhibitors of angiogenesis ......................................................................... 181 1.4. Sprouting and non-sprouting angiogenesis ........................................................................ 181 1.5. Tumor vessel morphology....................................................................................... 183 2. The vascular endothelial growth factor (VEGF) family ................................................................... 183 3. Properties and expression of the VEGF family .......................................................................... 183 3.1. VEGF-A ...................................................................................................... 183 3.2. VEGF-B ...................................................................................................... 185 3.3. VEGF-C .....................................................................................................