Unveiling the Molecular Mechanisms Regulating the Activation of the Erbb Family Receptors at Atomic Resolution Through Molecular Modeling and Simulations

Total Page:16

File Type:pdf, Size:1020Kb

Unveiling the Molecular Mechanisms Regulating the Activation of the Erbb Family Receptors at Atomic Resolution Through Molecular Modeling and Simulations University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Spring 2011 Unveiling the Molecular Mechanisms Regulating the Activation of the ErbB Family Receptors at Atomic Resolution through Molecular Modeling and Simulations Andrew Shih University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biophysics Commons, Other Biomedical Engineering and Bioengineering Commons, and the Structural Biology Commons Recommended Citation Shih, Andrew, "Unveiling the Molecular Mechanisms Regulating the Activation of the ErbB Family Receptors at Atomic Resolution through Molecular Modeling and Simulations" (2011). Publicly Accessible Penn Dissertations. 302. https://repository.upenn.edu/edissertations/302 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/302 For more information, please contact [email protected]. Unveiling the Molecular Mechanisms Regulating the Activation of the ErbB Family Receptors at Atomic Resolution through Molecular Modeling and Simulations Abstract The EGFR/ErbB/HER family of kinases contains four homologous receptor tyrosine kinases that are important regulatory elements in key signaling pathways. To elucidate the atomistic mechanisms of dimerization-dependent activation in the ErbB family, we have performed molecular dynamics simulations of the intracellular kinase domains of the four members of the ErbB family (those with known kinase activity), namely EGFR, ErbB2 (HER2) and ErbB4 (HER4) as well as ErbB3 (HER3), an assumed pseudokinase, in different molecular contexts: monomer vs. dimer, wildtype vs. mutant. Using bioinformatics and fluctuation analyses of the molecular dynamics trajectories, we relate sequence similarities to correspondence of specific bond-interaction networks and collective dynamical modes. We find that in the active conformation of the ErbB kinases (except ErbB3), key subdomain motions are coordinated through conserved hydrophilic interactions: activating bond-networks consisting of hydrogen bonds and salt bridges. The inactive conformations also demonstrate conserved bonding patterns (albeit less extensive) that sequester key residues and disrupt the activating bond network. Both conformational states have distinct hydrophobic advantages through context-specific hydrophobic interactions. The inactive ErbB3 kinase domain also shows coordinated motions similar to the active conformations, in line with recent evidence that ErbB3 is a weakly active kinase, though the coordination seems to arise from hydrophobic interactions rather than hydrophilic ones. We show that the functional (activating) asymmetric kinase dimer interface forces a corresponding change in the hydrophobic and hydrophilic interactions that characterize the inactivating interaction network, resulting in motion of the αC-helix through allostery. Several of the clinically identified activating kinase mutations of EGFR act in a similar fashion to disrupt the inactivating interaction network. Our molecular dynamics study reveals the asymmetric dimer interface helps progress the ErbB family through the activation pathway using both hydrophilic and hydrophobic interaction. There is a fundamental difference in the sequence of events in EGFR activation compared with that described for the Src kinase Hck. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Bioengineering First Advisor Ravi Radhakrishnan Keywords ErbB family, kinase activation, molecular dynamics, hydrophilic and hydrophobic interactions Subject Categories Biophysics | Other Biomedical Engineering and Bioengineering | Structural Biology This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/302 UNVEILING THE MOLECULAR MECHANISMS REGULATING THE ACTIVATION OF THE ERBB FAMILY RECEPTORS AT ATOMIC RESOLUTION THROUGH MOLECULAR MODELING AND SIMULATIONS Andrew J. Shih A DISSERTATION in Bioengineering Presented to the Faculties of the University of Pennsylvania In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2011 Supervisor of Dissertation Dr. Ravi Radhakrishnan, PhD, Associate Professor of Bioengineering Graduate Group Chair Dr. Christopher S. Chen, MD, PhD, Professor of Bioengineering Dissertation Committee Dr. Casim A. Sarkar, PhD, Assistant Professor of Bioengineering Dr. Mark A. Lemmon, PhD, Professor of Biochemistry and Biophysics Dr. Jeffery G. Saven, PhD, Associate Professor of Chemistry Acknowledgements First and foremost my sincerest gratitude to my advisor, Professor Ravi Radhakrishnan, for guiding me and staying with me through the many twists and turns (and sometimes dead ends) in exploring the EGFR kinase that eventually expanded into the other ErbB members. His passion and creativity made it a joy delving deeper into the activation mechanisms of kinases. A special thanks to Professor Casim Sarkar, Professor Mark Lemmon and Professor Jeff Saven, as my thesis committee members and advisors: for being understanding during my first forays into molecular biology as well as for advice inside and outside my field of expertise, giving me the breadth and scope of knowledge for proper perspective. I wish to thank the Sung Hee Choi and Fumin Shi of the Lemmon Lab for all the insights into the ErbB family kinases. Also, I greatly appreciate all the lab members of the Radhakrishnan lab for an enjoyable research environment and knowledgeable discussions. In particular, I would like to thank Shannon Telesco and Yingting Liu for help with new programs and processing developments as we intensified our studies of EGFR and other members of the ErbB family. Beyond the lab, this work could not have possible without Alice Chau and Yuuai, for unquestioned support, keeping me grounded and serving as sounding board to my (sometimes crazy) ideas. Finally, I want to thank my family for everything they have done to make me who I am. ii Abstract Unveiling the Molecular Mechanisms Regulating the Activation of the ErbB Family Receptors at Atomic Resolution through Molecular Modeling and Simulations Andrew Shih Advisor: Ravi Radhakrishnan The EGFR/ErbB/HER family of kinases contains four homologous receptor tyrosine kinases that are important regulatory elements in key signaling pathways. To elucidate the atomistic mechanisms of dimerization-dependent activation in the ErbB family, we have performed molecular dynamics simulations of the intracellular kinase domains of the four members of the ErbB family (those with known kinase activity), namely EGFR, ErbB2 (HER2) and ErbB4 (HER4) as well as ErbB3 (HER3), an assumed pseudokinase, in different molecular contexts: monomer vs. dimer, wildtype vs. mutant. Using bioinformatics and fluctuation analyses of the molecular dynamics trajectories, we relate sequence similarities to correspondence of specific bond-interaction networks and collective dynamical modes. We find that in the active conformation of the ErbB kinases (except ErbB3), key subdomain motions are coordinated through conserved hydrophilic interactions: activating bond-networks consisting of hydrogen bonds and salt bridges. The inactive conformations also demonstrate conserved bonding patterns (albeit less extensive) that sequester key residues and disrupt the activating bond network. Both conformational states have distinct hydrophobic advantages through context-specific hydrophobic interactions. The inactive ErbB3 kinase domain also shows coordinated iii motions similar to the active conformations, in line with recent evidence that ErbB3 is a weakly active kinase, though the coordination seems to arise from hydrophobic interactions rather than hydrophilic ones. We show that the functional (activating) asymmetric kinase dimer interface forces a corresponding change in the hydrophobic and hydrophilic interactions that characterize the inactivating interaction network, resulting in motion of the αC-helix through allostery. Several of the clinically identified activating kinase mutations of EGFR act in a similar fashion to disrupt the inactivating interaction network. Our molecular dynamics study reveals the asymmetric dimer interface helps progress the ErbB family through the activation pathway using both hydrophilic and hydrophobic interaction. There is a fundamental difference in the sequence of events in EGFR activation compared with that described for the Src kinase Hck. iv Table of Contents List of Tables .................................................................................................................. viii List of Figures ................................................................................................................... ix Chapter 1.) Regulation of ErbB Receptor Tyrosine Kinases ........................................ 1 1.1) RTK Structure and Signaling ................................................................................ 1 1.2) Regulation of RTK signaling duration at the cell surface ..................................... 3 1.3) Regulation, Structure and Auto-inhibition of RTKs ............................................. 5 1.4) Kinase Domain Mutations in Cancer and their Therapeutic Importance .............. 8 Chapter 2.) Computational Methods Related to Reaction Chemistry ....................... 15 2.1) Introduction ......................................................................................................... 15 2.2) Computational Methods .....................................................................................
Recommended publications
  • The Role of Vascular Endothelial Growth Factor Receptor-1 Signaling In
    Laboratory Investigation (2015) 95, 456–468 & 2015 USCAP, Inc All rights reserved 0023-6837/15 The role of vascular endothelial growth factor receptor-1 signaling in compensatory contralateral lung growth following unilateral pneumonectomy Yoshio Matsui1, Hideki Amano1,2, Yoshiya Ito3, Koji Eshima4, Hideaki Tamaki5, Fumihiro Ogawa1, Akira Iyoda6, Masafumi Shibuya7, Yuji Kumagai2, Yukitoshi Satoh6 and Masataka Majima1 Compensatory lung growth models have been widely used to investigate alveolization because the remaining lung can be kept intact and volume loss can be controlled. Vascular endothelial growth factor (VEGF) plays an important role in blood formation during lung growth and repair, but the precise mechanisms involved are poorly understood; therefore, the aim of this study was to investigate the role of VEGF signaling in compensatory lung growth. After left pneumonectomy, the right lung weight was higher in VEGF transgenic mice than wild-type (WT) mice. Compensatory lung growth was suppressed significantly in mice injected with a VEGF neutralizing antibody and in VEGF receptor-1 tyrosine kinase-deficient mice (TK À / À mice). The mobilization of progenitor cells expressing VEGFR1 þ cells from bone marrow and the recruitment of these cells to lung tissue were also suppressed in the TK À / À mice.WTmicetransplantedwithbonemarrowfromTKÀ / À transgenic GFP þ mice had significantly lower numbers of GFP þ /aquaporin 5 þ ,GFPþ /surfactant protein A þ ,andGFPþ /VEGFR1 þ cells than WT mice transplanted with bone marrow from WTGFP þ mice. The GFP þ /VEGFR1 þ cells also co-stained for aquaporin 5 and surfactant proteinA.Overall,theseresultssuggest that VEGF signaling contributes to compensatory lung growth by mobilizing VEGFR1 þ cells.
    [Show full text]
  • Platelet-Derived Growth Factor Receptor Expression and Amplification in Choroid Plexus Carcinomas
    Modern Pathology (2008) 21, 265–270 & 2008 USCAP, Inc All rights reserved 0893-3952/08 $30.00 www.modernpathology.org Platelet-derived growth factor receptor expression and amplification in choroid plexus carcinomas Nina N Nupponen1,*, Janna Paulsson2,*, Astrid Jeibmann3, Brigitte Wrede4, Minna Tanner5, Johannes EA Wolff 6, Werner Paulus3, Arne O¨ stman2 and Martin Hasselblatt3 1Molecular Cancer Biology Program, University of Helsinki, Helsinki, Finland; 2Department of Oncology–Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden; 3Institute of Neuropathology, University Hospital Mu¨nster, Mu¨nster, Germany; 4Department of Pediatric Oncology, University of Regensburg, Regensburg, Germany; 5Department of Oncology, Tampere University Hospital, Tampere, Finland and 6Children’s Cancer Hospital, MD Anderson Cancer Center, Houston, TX, USA Platelet-derived growth factor (PDGF) receptor signaling has been implicated in the development of glial tumors, but not yet been examined in choroid plexus carcinomas, pediatric tumors with dismal prognosis for which novel treatment options would be desirable. Therefore, protein expression of PDGF receptors a and b as well as amplification status of the respective genes, PDGFRA and PDGFRB, were examined in a series of 22 patients harboring choroid plexus carcinoma using immunohistochemistry and chromogenic in situ hybridization (CISH). The majority of choroid plexus carcinomas expressed PDGF receptors with 6 cases (27%) displaying high staining scores for PDGF receptor a and 13 cases (59%) showing high staining scores for PDGF receptor b. Correspondingly, copy-number gains of PDGFRA were observed in 8 cases out of 12 cases available for CISH and 1 case displayed amplification (six or more signals per nucleus). The proportion of choroid plexus carcinomas with amplification of PDGFRB was even higher (5/12 cases).
    [Show full text]
  • Trastuzumab and Pertuzumab in Circulating Tumor DNA ERBB2-Amplified HER2-Positive Refractory Cholangiocarcinoma
    www.nature.com/npjprecisiononcology CASE REPORT OPEN Trastuzumab and pertuzumab in circulating tumor DNA ERBB2-amplified HER2-positive refractory cholangiocarcinoma Bhavya Yarlagadda 1, Vaishnavi Kamatham1, Ashton Ritter1, Faisal Shahjehan1 and Pashtoon M. Kasi2 Cholangiocarcinoma is a heterogeneous and target-rich disease with differences in actionable targets. Intrahepatic and extrahepatic types of cholangiocarcinoma differ significantly in clinical presentation and underlying genetic aberrations. Research has shown that extrahepatic cholangiocarcinoma is more likely to be associated with ERBB2 (HER2) genetic aberrations. Various anti-HER2 clinical trials, case reports and other molecular studies show that HER2 is a real target in cholangiocarcinoma; however, anti-HER2 agents are still not approved for routine administration. Here, we show in a metastatic cholangiocarcinoma with ERBB2 amplification identified on liquid biopsy (circulating tumor DNA (ctDNA) testing), a dramatic response to now over 12 months of dual-anti-HER2 therapy. We also summarize the current literature on anti-HER2 therapy for cholangiocarcinoma. This would likely become another treatment option for this target-rich disease. npj Precision Oncology (2019) 3:19 ; https://doi.org/10.1038/s41698-019-0091-4 INTRODUCTION We present a 71-year-old female diagnosed with metastatic Cholangiocarcinoma (CCA) is a lethal tumor arising from the CCA with ERBB2 (HER2) 3+ amplification determined by circulating epithelium of the bile ducts that most often presents at an tumor DNA (ctDNA)
    [Show full text]
  • Ret Oncogene and Thyroid Carcinoma
    ndrom Sy es tic & e G n e e n G e f T o Elisei et al., J Genet Syndr Gene Ther 2014, 5:1 Journal of Genetic Syndromes h l e a r n a DOI: 10.4172/2157-7412.1000214 r p u y o J & Gene Therapy ISSN: 2157-7412 Review Article Open Access Ret Oncogene and Thyroid Carcinoma Elisei R, Molinaro E, Agate L, Bottici V, Viola D, Biagini A, Matrone A, Tacito A, Ciampi R, Vivaldi A and Romei C* Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy Abstract Thyroid cancer is a malignant neoplasm that originates from follicular or parafollicular thyroid cells and is categorized as papillary (PTC), follicular (FTC), anaplastic (ATC) or medullary thyroid carcinoma (MTC). The alteration of the Rearranged during trasfection (RET) (proto-oncogene, a gene coding for a tyrosine-kinase receptor involved in the control of cell differentiation and proliferation, has been found to cause PTC and MTC. In particular, RET/PTC rearrangements and RET point mutations are related to PTC and MTC, respectively. Although RET/PTC rearrangements have been identified in both spontaneous and radiation-induced PTC, they occur more frequently in radiation-associated tumors. RET/PTC rearrangements have also been reported in follicular adenomas. Although controversial, correlations between RET/PTC rearrangements, especially RET/PTC3, and a more aggressive phenotype and a more advanced stage have been identified. Germline point mutations in the RET proto-oncogene are associated with nearly all cases of hereditary MTC, and a strict correlation between genotype and phenotype has been demonstrated.
    [Show full text]
  • Original Article ERBB3, IGF1R, and TGFBR2 Expression Correlate With
    Am J Cancer Res 2018;8(5):792-809 www.ajcr.us /ISSN:2156-6976/ajcr0077452 Original Article ERBB3, IGF1R, and TGFBR2 expression correlate with PDGFR expression in glioblastoma and participate in PDGFR inhibitor resistance of glioblastoma cells Kang Song1,2*, Ye Yuan1,2*, Yong Lin1,2, Yan-Xia Wang1,2, Jie Zhou1,2, Qu-Jing Gai1,2, Lin Zhang1,2, Min Mao1,2, Xiao-Xue Yao1,2, Yan Qin1,2, Hui-Min Lu1,2, Xiang Zhang1,2, You-Hong Cui1,2, Xiu-Wu Bian1,2, Xia Zhang1,2, Yan Wang1,2 1Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; 2Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400038, China. *Equal contributors. Received April 6, 2018; Accepted April 9, 2018; Epub May 1, 2018; Published May 15, 2018 Abstract: Glioma, the most prevalent malignancy in brain, is classified into four grades (I, II, III, and IV), and grade IV glioma is also known as glioblastoma multiforme (GBM). Aberrant activation of receptor tyrosine kinases (RTKs), including platelet-derived growth factor receptor (PDGFR), are frequently observed in glioma. Accumulating evi- dence suggests that PDGFR plays critical roles during glioma development and progression and is a promising drug target for GBM therapy. However, PDGFR inhibitor (PDGFRi) has failed in clinical trials, at least partially, due to the activation of other RTKs, which compensates for PDGFR inhibition and renders tumor cells resistance to PDGFRi. Therefore, identifying the RTKs responsible for PDGFRi resistance might provide new therapeutic targets to syner- getically enhance the efficacy of PDGFRi.
    [Show full text]
  • Review Article Multiple Endocrine Neoplasia Type 2 And
    J Med Genet 2000;37:817–827 817 J Med Genet: first published as 10.1136/jmg.37.11.817 on 1 November 2000. Downloaded from Review article Multiple endocrine neoplasia type 2 and RET: from neoplasia to neurogenesis Jordan R Hansford, Lois M Mulligan Abstract diseases for families. Elucidation of genetic Multiple endocrine neoplasia type 2 (MEN mechanisms and their functional consequences 2) is an inherited cancer syndrome char- has also given us clues as to the broader acterised by medullary thyroid carcinoma systems disrupted in these syndromes which, in (MTC), with or without phaeochromocy- turn, have further implications for normal toma and hyperparathyroidism. MEN 2 is developmental or survival processes. The unusual among cancer syndromes as it is inherited cancer syndrome multiple endocrine caused by activation of a cellular onco- neoplasia type 2 (MEN 2) and its causative gene, RET. Germline mutations in the gene, RET, are a useful paradigm for both the gene encoding the RET receptor tyrosine impact of genetic characterisation on disease kinase are found in the vast majority of management and also for the much broader MEN 2 patients and somatic RET muta- developmental implications of these genetic tions are found in a subset of sporadic events. MTC. Further, there are strong associa- tions of RET mutation genotype and disease phenotype in MEN 2 which have The RET receptor tyrosine kinase led to predictions of tissue specific re- MEN 2 arises as a result of activating mutations of the RET (REarranged during quirements and sensitivities to RET activ- 1–5 ity. Our ability to identify genetically, with Transfection) proto-oncogene.
    [Show full text]
  • Serum Levels of VEGF and MCSF in HER2+ / HER2- Breast Cancer Patients with Metronomic Neoadjuvant Chemotherapy Roberto J
    Arai et al. Biomarker Research (2018) 6:20 https://doi.org/10.1186/s40364-018-0135-x SHORTREPORT Open Access Serum levels of VEGF and MCSF in HER2+ / HER2- breast cancer patients with metronomic neoadjuvant chemotherapy Roberto J. Arai* , Vanessa Petry, Paulo M. Hoff and Max S. Mano Abstract Metronomic therapy has been gaining importance in the neoadjuvant setting of breast cancer treatment. Its clinical benefits may involve antiangiogenic machinery. Cancer cells induce angiogenesis to support tumor growth by secreting factors, such as vascular endothelial growth factor (VEGF). In breast cancer, Trastuzumab (TZM) based treatment is of key importance and is believed to reduce diameter and volume of blood vessels as well as vascular permeability. Here in we investigated serum levels of angiogenic factors VEGF and MCSF in patients receiving metronomic neoadjuvant therapy with or without TZM. We observed in HER2+ cohort stable levels of MCSF through treatment, whereas VEGF trend was of decreasing levels. In HER2- cohort we observed increasing levels of MCSF and VEGF trend. Overall, HER2+ patients had better pathological response to treatment. These findings suggest that angiogenic pathway may be involved in TZM anti-tumoral effect in the neoadjuvant setting. Keywords: Metronomic chemotherapy, Angiogenesis, Biomarker, Neoadjuvant, Breast cancer Background chemotherapeutic drugs in vitro and in vivo studies [9] Neoadjuvant chemotherapy was initially indicated to con- including rectal carcinomas [10]. Proliferation and/or vert a nonresectable into a resectable lesion [1, 2]. Data on induction of apoptosis of activated endothelial cells the efficacy and safety of metronomic chemotherapy in (ECs) is selectively inhibited as well as inhibition of the neoadjuvant setting for breast cancer (BC) is accumu- migration of EC, increase in the expression of lating and supporting application [3–6].
    [Show full text]
  • PDGFRA Gene Rearrangements Are Frequent Genetic Events in PDGFRA-Amplified Glioblastomas
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press PDGFRA gene rearrangements are frequent genetic events in PDGFRA-amplified glioblastomas Tatsuya Ozawa,1,2 Cameron W. Brennan,2,3,12 Lu Wang,4 Massimo Squatrito,1,2 Takashi Sasayama,5 Mitsutoshi Nakada,6 Jason T. Huse,4 Alicia Pedraza,3 Satoshi Utsuki,7 Yoshie Yasui,7 Adesh Tandon,8 Elena I. Fomchenko,1,2 Hidehiro Oka,7 Ross L. Levine,9 Kiyotaka Fujii,7 Marc Ladanyi,4 and Eric C. Holland1,2,10,11 1Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA; 2Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA; 3Department of Neurosurgery and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA; 4Department of Pathology and Human Oncology, Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA; 5Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan; 6Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan; 7Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan; 8Department of Neurosurgery, The Albert Einstein College of Medicine, Bronx, New York 10467, USA; 9Department of Medicine and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA; 10Department of Surgery, Neurosurgery, and Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA Gene rearrangement in the form of an intragenic deletion is the primary mechanism of oncogenic mutation of the epidermal growth factor receptor (EGFR) gene in gliomas.
    [Show full text]
  • Regulation of Vascular Endothelial Growth Factor Receptor-1 Expression by Specificity Proteins 1, 3, and 4In Pancreatic Cancer Cells
    Research Article Regulation of Vascular Endothelial Growth Factor Receptor-1 Expression by Specificity Proteins 1, 3, and 4in Pancreatic Cancer Cells Maen Abdelrahim,1,4 Cheryl H. Baker,4 James L. Abbruzzese,2 David Sheikh-Hamad,3 Shengxi Liu,1 Sung Dae Cho,1 Kyungsil Yoon,1 and Stephen Safe1,5 1Institute of Biosciences and Technology, Texas A&M University Health Science Center; 2Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center; 3Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas; 4Cancer Research Institute, M. D. Anderson Cancer Center, Orlando, Florida; and 5Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas Abstract through their specific interactions with VEGF receptors (VEGFR), Vascular endothelial growth factor receptor-1 (VEGFR1) is which are transmembrane tyrosine kinases and members of the expressed in cancer cell lines and tumors and, in pancreatic PDGF receptor gene family. and colon cancer cells, activation of VEGFR1 is linked to VEGFR1 (Flk-1), VEGFR2(Flt-1/KDR), and VEGFR3 (Flt-4) are the three major receptors for VEGF and related angiogenic factors. increased tumor migration and invasiveness.Tolfenamic acid, The former two receptors are primarily involved in angiogenesis in a nonsteroidal anti-inflammatory drug, decreases Sp protein endothelial cells, whereas VEGFR3 promotes hematopoiesis and expression in Panc-1 and L3.6pl pancreatic cancer cells, and lymphoangiogenesis (2, 3, 7, 8). VEGFR2 plays a critical role in this was accompanied by decreased VEGFR1 protein and angiogenesis; homozygous knockout mice were embryonic lethal mRNA and decreased luciferase activity on cells transfected [gestation day (GD) 8.5–9.0] and this was associated with the with constructs (pVEGFR1) containing VEGFR1 promoter failure to develop blood vessels (9).
    [Show full text]
  • Moguntinones—New Selective Inhibitors for the Treatment of Human Colorectal Cancer
    Published OnlineFirst April 17, 2014; DOI: 10.1158/1535-7163.MCT-13-0224 Molecular Cancer Small Molecule Therapeutics Therapeutics Moguntinones—New Selective Inhibitors for the Treatment of Human Colorectal Cancer Annett Maderer1, Stanislav Plutizki2, Jan-Peter Kramb2, Katrin Gopfert€ 1, Monika Linnig1, Katrin Khillimberger1, Christopher Ganser2, Eva Lauermann2, Gerd Dannhardt2, Peter R. Galle1, and Markus Moehler1 Abstract 3-Indolyl and 3-azaindolyl-4-aryl maleimide derivatives, called moguntinones (MOG), have been selected for their ability to inhibit protein kinases associated with angiogenesis and induce apoptosis. Here, we characterize their mode of action and their potential clinical value in human colorectal cancer in vitro and in vivo. MOG-19 and MOG-13 were characterized in vitro using kinase, viability, and apoptosis assays in different human colon cancer (HT-29, HCT-116, Caco-2, and SW480) and normal colon cell lines (CCD-18Co, FHC, and HCoEpiC) alone or in combination with topoisomerase I inhibitors. Intracellular signaling pathways were analyzed by Western blotting. To determine their potential to inhibit tumor growth in vivo, the human HT-29 tumor xenograft model was used. Moguntinones prominently inhibit several protein kinases associated with tumor growth and metastasis. Specific signaling pathways such as GSK3b and mTOR downstream targets b were inhibited with IC50 values in the nanomolar range. GSK3 signaling inhibition was independent of KRAS, BRAF, and PI3KCA mutation status. While moguntinones alone induced apoptosis only in concentra- tions >10 mmol/L, MOG-19 in combination with topoisomerase I inhibitors induced apoptosis synergistically at lower concentrations. Consistent with in vitro data, MOG-19 significantly reduced tumor volume and weight in combination with a topoisomerase I inhibitor in vivo.
    [Show full text]
  • The Erbb Receptor Tyrosine Family As Signal Integrators
    Endocrine-Related Cancer (2001) 8 151–159 The ErbB receptor tyrosine family as signal integrators N E Hynes, K Horsch, M A Olayioye and A Badache Friedrich Miescher Institute, PO Box 2543, CH-4002 Basel, Switzerland (Requests for offprints should be addressed to N E Hynes, Friedrich Miescher Institute, R-1066.206, Maulbeerstrasse 66, CH-4058 Basel, Switzerland. Email: [email protected]) (M A Olayioye is now at The Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Victoria 3050, Australia) Abstract ErbB receptor tyrosine kinases (RTKs) and their ligands have important roles in normal development and in human cancer. Among the ErbB receptors only ErbB2 has no direct ligand; however, ErbB2 acts as a co-receptor for the other family members, promoting high affinity ligand binding and enhancement of ligand-induced biological responses. These characteristics demonstrate the central role of ErbB2 in the receptor family, which likely explains why it is involved in the development of many human malignancies, including breast cancer. ErbB RTKs also function as signal integrators, cross-regulating different classes of membrane receptors including receptors of the cytokine family. Cross-regulation of ErbB RTKs and cytokines receptors represents another mechanism for controlling and enhancing tumor cell proliferation. Endocrine-Related Cancer (2001) 8 151–159 Introduction The EGF-related peptide growth factors The epidermal growth factor (EGF) or ErbB family of type ErbB receptors are activated by ligands, known as the I receptor tyrosine kinases (RTKs) has four members:EGF EGF-related peptide growth factors (reviewed in Peles & receptor, also termed ErbB1/HER1, ErbB2/Neu/HER2, Yarden 1993, Riese & Stern 1998).
    [Show full text]
  • Intratumoral Heterogeneity of Receptor Tyrosine Kinases EGFR and PDGFRA Amplification in Glioblastoma Defines Subpopulations with Distinct Growth Factor Response
    Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response Nicholas J. Szerlipa, Alicia Pedrazab, Debyani Chakravartyb, Mohammad Azimc, Jeremy McGuirec, Yuqiang Fangd, Tatsuya Ozawae, Eric C. Hollande,f,g,h, Jason T. Hused,h, Suresh Jhanward, Margaret A. Levershac, Tom Mikkelseni, and Cameron W. Brennanb,f,h,1 aDepartment of Neurosurgery, Wayne State University Medical School, Detroit, MI 48201; bHuman Oncology and Pathogenesis Program, cMolecular Cytogenetic Core Laboratory, dDepartment of Pathology, eCancer Biology and Genetics Program, fDepartment of Neurosurgery, gDepartment of Surgery, and hBrain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and iDepartments of Neurology and Neurosurgery, Henry Ford Health System, Detroit, MI 48202 Edited by Webster K. Cavenee, Ludwig Institute, University of California at San Diego, La Jolla, CA, and approved December 29, 2011 (received for review August 29, 2011) Glioblastoma (GBM) is distinguished by a high degree of intra- demonstrated in GBM and has been shown to mediate resistance tumoral heterogeneity, which extends to the pattern of expression to single-RTK inhibition through “RTK switching” in cell lines and amplification of receptor tyrosine kinases (RTKs). Although (11). Although such RTK coactivation has been measured at the most GBMs harbor RTK amplifications, clinical trials of small-mole- protein level, its significance in maintaining tumor cell sub- cule inhibitors targeting individual RTKs have been disappointing to populations has not been established. date. Activation of multiple RTKs within individual GBMs provides We have previously reported prominent PDGFR activation by a theoretical mechanism of resistance; however, the spectrum of platelet-derived growth factor beta (PDGFB) ligand in GBMs EGFR MET fi functional RTK dependence among tumor cell subpopulations in with or ampli cation (12).
    [Show full text]