A Genome-Wide Association Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genome Sequence of the Progenitor of the Wheat D Genome Aegilops Tauschii Ming-Cheng Luo1*, Yong Q
OPEN LETTER doi:10.1038/nature24486 Genome sequence of the progenitor of the wheat D genome Aegilops tauschii Ming-Cheng Luo1*, Yong Q. Gu2*, Daniela Puiu3*, Hao Wang4,5,6*, Sven O. Twardziok7*, Karin R. Deal1, Naxin Huo1,2, Tingting Zhu1, Le Wang1, Yi Wang1,2, Patrick E. McGuire1, Shuyang Liu1, Hai Long1, Ramesh K. Ramasamy1, Juan C. Rodriguez1, Sonny L. Van1, Luxia Yuan1, Zhenzhong Wang1,8, Zhiqiang Xia1, Lichan Xiao1, Olin D. Anderson2, Shuhong Ouyang2,8, Yong Liang2,8, Aleksey V. Zimin3, Geo Pertea3, Peng Qi4,5, Jeffrey L. Bennetzen6, Xiongtao Dai9, Matthew W. Dawson9, Hans-Georg Müller9, Karl Kugler7, Lorena Rivarola-Duarte7, Manuel Spannagl7, Klaus F. X. Mayer7,10, Fu-Hao Lu11, Michael W. Bevan11, Philippe Leroy12, Pingchuan Li13, Frank M. You13, Qixin Sun8, Zhiyong Liu8, Eric Lyons14, Thomas Wicker15, Steven L. Salzberg3,16, Katrien M. Devos4,5 & Jan Dvořák1 Aegilops tauschii is the diploid progenitor of the D genome of We conclude therefore that the size of the Ae. tauschii genome is about hexaploid wheat1 (Triticum aestivum, genomes AABBDD) and 4.3 Gb. an important genetic resource for wheat2–4. The large size and To assess the accuracy of our assembly, sequences of 195 inde- highly repetitive nature of the Ae. tauschii genome has until now pendently sequenced and assembled AL8/78 BAC clones8, which precluded the development of a reference-quality genome sequence5. contained 25,540,177 bp in 2,405 unordered contigs, were aligned to Here we use an array of advanced technologies, including ordered- Aet v3.0. Five contigs failed to align and six extended partly into gaps, clone genome sequencing, whole-genome shotgun sequencing, accounting for 0.25% of the total length of the contigs. -
Proteomics Provides Insights Into the Inhibition of Chinese Hamster V79
www.nature.com/scientificreports OPEN Proteomics provides insights into the inhibition of Chinese hamster V79 cell proliferation in the deep underground environment Jifeng Liu1,2, Tengfei Ma1,2, Mingzhong Gao3, Yilin Liu4, Jun Liu1, Shichao Wang2, Yike Xie2, Ling Wang2, Juan Cheng2, Shixi Liu1*, Jian Zou1,2*, Jiang Wu2, Weimin Li2 & Heping Xie2,3,5 As resources in the shallow depths of the earth exhausted, people will spend extended periods of time in the deep underground space. However, little is known about the deep underground environment afecting the health of organisms. Hence, we established both deep underground laboratory (DUGL) and above ground laboratory (AGL) to investigate the efect of environmental factors on organisms. Six environmental parameters were monitored in the DUGL and AGL. Growth curves were recorded and tandem mass tag (TMT) proteomics analysis were performed to explore the proliferative ability and diferentially abundant proteins (DAPs) in V79 cells (a cell line widely used in biological study in DUGLs) cultured in the DUGL and AGL. Parallel Reaction Monitoring was conducted to verify the TMT results. γ ray dose rate showed the most detectable diference between the two laboratories, whereby γ ray dose rate was signifcantly lower in the DUGL compared to the AGL. V79 cell proliferation was slower in the DUGL. Quantitative proteomics detected 980 DAPs (absolute fold change ≥ 1.2, p < 0.05) between V79 cells cultured in the DUGL and AGL. Of these, 576 proteins were up-regulated and 404 proteins were down-regulated in V79 cells cultured in the DUGL. KEGG pathway analysis revealed that seven pathways (e.g. -
Targeting MYCN in Neuroblastoma by BET Bromodomain Inhibition
Published OnlineFirst February 21, 2013; DOI: 10.1158/2159-8290.CD-12-0418 RESEARCH ARTICLE Targeting MYCN in Neuroblastoma by BET Bromodomain Inhibition Alexandre Puissant1,3, Stacey M. Frumm1,3, Gabriela Alexe1,3,5,6, Christopher F. Bassil1,3, Jun Qi2, Yvan H. Chanthery8, Erin A. Nekritz8, Rhamy Zeid2, William Clay Gustafson8, Patricia Greninger7, Matthew J. Garnett10, Ultan McDermott10, Cyril H. Benes7, Andrew L. Kung1,3, William A. Weiss8,9, James E. Bradner2,4, and Kimberly Stegmaier1,3,6 Downloaded from cancerdiscovery.aacrjournals.org on October 2, 2021. © 2013 American Association for Cancer Research. 15-CD-12-0418_p308-323.indd 1 22/02/13 12:15 AM Published OnlineFirst February 21, 2013; DOI: 10.1158/2159-8290.CD-12-0418 A BSTRACT Bromodomain inhibition comprises a promising therapeutic strategy in cancer, particularly for hematologic malignancies. To date, however, genomic biomarkers to direct clinical translation have been lacking. We conducted a cell-based screen of genetically defined cancer cell lines using a prototypical inhibitor of BET bromodomains. Integration of genetic features with chemosensitivity data revealed a robust correlation between MYCN amplification and sensitivity to bromodomain inhibition. We characterized the mechanistic and translational significance of this finding in neuroblastoma, a childhood cancer with frequent amplification of MYCN. Genome-wide expression analysis showed downregulation of the MYCN transcriptional program accompanied by suppression of MYCN transcription. Functionally, bromodomain-mediated inhibition of MYCN impaired growth and induced apoptosis in neuroblastoma. BRD4 knockdown phenocopied these effects, establishing BET bromodomains as transcriptional regulators of MYCN. BET inhibition conferred a significant survival advantage in 3 in vivo neuroblastoma models, providing a compelling rationale for developing BET bro- modomain inhibitors in patients with neuroblastoma. -
Bioinformatics Integrated Analysis to Investigate Candidate Biomarkers and Associated Metabolites in Osteosarcoma
Wang et al. Journal of Orthopaedic Surgery and Research (2021) 16:432 https://doi.org/10.1186/s13018-021-02578-0 RESEARCH ARTICLE Open Access Bioinformatics integrated analysis to investigate candidate biomarkers and associated metabolites in osteosarcoma Jun Wang, Mingzhi Gong, Zhenggang Xiong, Yangyang Zhao and Deguo Xing* Abstract Background: This study hoped to explore the potential biomarkers and associated metabolites during osteosarcoma (OS) progression based on bioinformatics integrated analysis. Methods: Gene expression profiles of GSE28424, including 19 human OS cell lines (OS group) and 4 human normal long bone tissue samples (control group), were downloaded. The differentially expressed genes (DEGs) in OS vs. control were investigated. The enrichment investigation was performed based on DEGs, followed by protein–protein interaction network analysis. Then, the feature genes associated with OS were explored, followed by survival analysis to reveal prognostic genes. The qRT-PCR assay was performed to test the expression of these genes. Finally, the OS- associated metabolites and disease-metabolic network were further investigated. Results: Totally, 357 DEGs were revealed between the OS vs. control groups. These DEGs, such as CXCL12, were mainly involved in functions like leukocyte migration. Then, totally, 38 feature genes were explored, of which 8 genes showed significant associations with the survival of patients. High expression of CXCL12, CEBPA, SPARCL1, CAT, TUBA1A, and ALDH1A1 was associated with longer survival time, while high expression of CFLAR and STC2 was associated with poor survival. Finally, a disease-metabolic network was constructed with 25 nodes including two disease-associated metabolites cyclophosphamide and bisphenol A (BPA). BPA showed interactions with multiple prognosis-related genes, such as CXCL12 and STC2. -
Os9) and the Hypoxia Response Gene, Hypoxia Inducible Factor 1 (Hif1) Alpha, in Kidney Tubular Cells
North Carolina Agricultural and Technical State University Aggie Digital Collections and Scholarship Theses Electronic Theses and Dissertations 2013 Meprin Interaction With Osteosarcoma 9 (Os9) And The Hypoxia Response Gene, Hypoxia Inducible Factor 1 (Hif1) Alpha, In Kidney Tubular Cells Barry L. Martin North Carolina Agricultural and Technical State University Follow this and additional works at: https://digital.library.ncat.edu/theses Recommended Citation Martin, Barry L., "Meprin Interaction With Osteosarcoma 9 (Os9) And The Hypoxia Response Gene, Hypoxia Inducible Factor 1 (Hif1) Alpha, In Kidney Tubular Cells" (2013). Theses. 287. https://digital.library.ncat.edu/theses/287 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie Digital Collections and Scholarship. It has been accepted for inclusion in Theses by an authorized administrator of Aggie Digital Collections and Scholarship. For more information, please contact [email protected]. Meprin Interaction with Osteosarcoma 9 (OS9) and the Hypoxia Response Gene, Hypoxia- inducible Factor 1 (HIF1) Alpha, in Kidney Tubular Cells Barry L. Martin North Carolina A&T State University A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department: Biology Major: Biology Major Professor: Dr. Elimelda Moige Ongeri Greensboro, North Carolina 2013 i School of Graduate Studies North Carolina Agricultural and Technical State University This is to certify that the Master’s Thesis of Barry L. Martin has met the thesis requirements of North Carolina Agricultural and Technical State University Greensboro, North Carolina 2013 Approved by: Elimelda Moige Ongeri, PhD Jian Han, PhD Major Professor Committee Member Catherine White, PhD Scott Harrison, PhD Committee Member Committee Member Mary Smith, PhD Sanjiv Sarin, PhD Department Chair Dean, The Graduate School ii © Copyright by Barry L. -
Identification and Characterization of Erp29 in Rat Spermatozoa During
REPRODUCTIONRESEARCH Identification and characterization of ERp29 in rat spermatozoa during epididymal transit Wei Guo, Fei Qu, Li Xia1, Qiangsu Guo, Xiaoqian Ying and Zhide Ding Shanghai Key Laboratory for Reproductive Medicine, Departments of Histology and Embryology and 1Department of Patho-Physiology, School of Medicine, Shanghai Jiao Tong University, No. 280, Chong Qing Rd. (South), Shanghai 200025, China Correspondence should be addressed to Z Ding; Email: [email protected] Abstract The mammalian epididymis is able to create sequential changes in the composition of luminal fluid throughout its length, wherein spermatozoa undergo morphological, biochemical, and physiological modifications. Subsequently, spermatozoa acquire the ability for fertilization upon reaching the epididymal cauda. In this study, protein variations in Sprague–Dawley rat spermatozoa along the caput and caudal regions of epididymis were investigated by high-resolution two-dimensional gel electrophoresis (2DE) in combination with mass spectrometry. From total protein spots on the 2DE maps, 43 spots were shown to be significantly modified as sperm traverse the epididymis, and seven unambiguous proteins were identified from them. Finally, using indirect immunofluorescence, we demonstrated that localization of one of these seven proteins, the endoplasmic reticulum protein (ERp29) precursor, which was first reported in mammalian spermatozoa, was apparently up-regulated as the sperm underwent epididymal maturation and expressed mainly on caudal sperm. Western blot analysis also revealed that ERp29 precursor, from both whole spermatozoa and membrane proteins, increased significantly as the sperm underwent epididymal maturation. Furthermore, the results from immunofluorescence-stained epididymal frozen sections demonstrated that ERp29 was localized in cytoplasm of epididymal epithelia, and the fluorescence intensity was significantly higher in the caudal epididymis than in the caput. -
Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts. -
A Polyomavirus Peptide Binds to the Capsid VP1 Pore and Has Potent
RESEARCH ARTICLE A polyomavirus peptide binds to the capsid VP1 pore and has potent antiviral activity against BK and JC polyomaviruses Joshua R Kane1,2, Susan Fong1, Jacob Shaul3, Alexandra Frommlet2, Andreas O Frank2, Mark Knapp2, Dirksen E Bussiere2, Peter Kim1, Elizabeth Ornelas2, Carlos Cuellar2, Anastasia Hyrina3, Johanna R Abend1, Charles A Wartchow2* 1Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, United States; 2Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, United States; 3Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Emeryville, United States Abstract In pursuit of therapeutics for human polyomaviruses, we identified a peptide derived from the BK polyomavirus (BKV) minor structural proteins VP2/3 that is a potent inhibitor of BKV infection with no observable cellular toxicity. The thirteen-residue peptide binds to major structural protein VP1 with single-digit nanomolar affinity. Alanine-scanning of the peptide identified three key residues, substitution of each of which results in ~1000 fold loss of binding affinity with a concomitant reduction in antiviral activity. Structural studies demonstrate specific binding of the peptide to the pore of pentameric VP1. Cell-based assays demonstrate nanomolar inhibition (EC50) of BKV infection and suggest that the peptide acts early in the viral entry pathway. Homologous peptide exhibits similar binding to JC polyomavirus VP1 and inhibits infection with similar potency to BKV in a model cell line. Lastly, these studies validate targeting the VP1 pore as a novel strategy for the development of anti-polyomavirus agents. *For correspondence: [email protected] Introduction Competing interest: See BK polyomavirus (BKV), also known as human polyomavirus 1, is a small non-enveloped virus with a page 25 circular double-stranded DNA genome. -
The Tissue-Specific Transcriptomic Landscape of the Mid-Gestational Mouse Embryo Martin Werber1, Lars Wittler1, Bernd Timmermann2, Phillip Grote1,* and Bernhard G
© 2014. Published by The Company of Biologists Ltd | Development (2014) 141, 2325-2330 doi:10.1242/dev.105858 RESEARCH REPORT TECHNIQUES AND RESOURCES The tissue-specific transcriptomic landscape of the mid-gestational mouse embryo Martin Werber1, Lars Wittler1, Bernd Timmermann2, Phillip Grote1,* and Bernhard G. Herrmann1,3,* ABSTRACT mainly protein-coding genes. However, none of these datasets has Differential gene expression is a prerequisite for the formation of multiple provided an accurate representation of the transcriptome of the mouse cell types from the fertilized egg during embryogenesis. Understanding embryo. In particular, earlier studies using expression profiling did not the gene regulatory networks controlling cellular differentiation requires cover the complete set of protein coding genes or alternative transcripts the identification of crucial differentially expressed control genes and, or noncoding RNA genes. The latter have come into focus in recent ideally, the determination of the complete transcriptomes of each years, as noncoding genes are assumed to play important roles in gene individual cell type. Here, we have analyzed the transcriptomes of six regulation (for reviews, see Pauli et al., 2011; Rinn and Chang, 2012). major tissues dissected from mid-gestational (TS12) mouse embryos. Among the highly diverse class of noncoding genes, long Approximately one billion reads derived by RNA-seq analysis provided noncoding RNAs (lncRNAs) are thought to influence transcription extended transcript lengths, novel first exons and alternative transcripts by a wide range of mechanisms. For example, lncRNAs can interact of known genes. We have identified 1375 genes showing tissue-specific with chromatin-modifying protein complexes involved in gene expression, providing gene signatures for each of the six tissues. -
A SARS-Cov-2 Protein Interaction Map Reveals Targets for Drug Repurposing
Article A SARS-CoV-2 protein interaction map reveals targets for drug repurposing https://doi.org/10.1038/s41586-020-2286-9 A list of authors and affiliations appears at the end of the paper Received: 23 March 2020 Accepted: 22 April 2020 A newly described coronavirus named severe acute respiratory syndrome Published online: 30 April 2020 coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than Check for updates 160,000 individuals and caused worldwide social and economic disruption1,2. There are no antiviral drugs with proven clinical efcacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and eforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identifed the human proteins that physically associated with each of the SARS-CoV-2 proteins using afnity-purifcation mass spectrometry, identifying 332 high-confdence protein–protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors. -
Elucidating the Functions of Protein Disulfide Isomerase Family Proteins During Quality Control in the Endoplasmic Reticulum
Elucidating the Functions of Protein Disulfide Isomerase Family Proteins during Quality Control in the Endoplasmic Reticulum by Michele L. Forster A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cell and Developmental Biology) in the University of Michigan 2009 Doctoral Committee: Associate Professor Billy Tsai, Chair Professor Peter Arvan Associate Professor Roland P. Kwok Associate Professor Kristen J. Verhey © Michele L. Forster 2009 Acknowledgements I am grateful to the following persons for their guidance, assistance, and support throughout this endeavor: my mentor Billy Tsai; members of my thesis committee Kristen J. Verhey, Peter Arvan, and Roland P. Kwok; my dear friends and outstanding colleagues Kaleena Bernardi Dezsi, Emily Rainey-Barger, and Cheryse Furman; departmental administrator Kristen Hug; computer support technician Ryan Schell; my family and friends who are like family, with special thanks to David. I thank the following persons for generating data presented in this thesis: Kelsey Sivick (Figure 2.4 Part A, right panel), Billy Tsai (Figure 2.5), Young-nam Park (Figure 2.6 Part C), and James J. Mahn. (Figure 3.5 Part C). ii Contents Acknowledgements .................................................................................................... ii List of Figures............................................................................................................ iv Abstract..................................................................................................................... -
Quantitative Trait Loci Mapping of Macrophage Atherogenic Phenotypes
QUANTITATIVE TRAIT LOCI MAPPING OF MACROPHAGE ATHEROGENIC PHENOTYPES BRIAN RITCHEY Bachelor of Science Biochemistry John Carroll University May 2009 submitted in partial fulfillment of requirements for the degree DOCTOR OF PHILOSOPHY IN CLINICAL AND BIOANALYTICAL CHEMISTRY at the CLEVELAND STATE UNIVERSITY December 2017 We hereby approve this thesis/dissertation for Brian Ritchey Candidate for the Doctor of Philosophy in Clinical-Bioanalytical Chemistry degree for the Department of Chemistry and the CLEVELAND STATE UNIVERSITY College of Graduate Studies by ______________________________ Date: _________ Dissertation Chairperson, Johnathan D. Smith, PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, David J. Anderson, PhD Department of Chemistry, Cleveland State University ______________________________ Date: _________ Dissertation Committee member, Baochuan Guo, PhD Department of Chemistry, Cleveland State University ______________________________ Date: _________ Dissertation Committee member, Stanley L. Hazen, MD PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, Renliang Zhang, MD PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, Aimin Zhou, PhD Department of Chemistry, Cleveland State University Date of Defense: October 23, 2017 DEDICATION I dedicate this work to my entire family. In particular, my brother Greg Ritchey, and most especially my father Dr. Michael Ritchey, without whose support none of this work would be possible. I am forever grateful to you for your devotion to me and our family. You are an eternal inspiration that will fuel me for the remainder of my life. I am extraordinarily lucky to have grown up in the family I did, which I will never forget.