Complex Courtship in the Habronattus Clypeatus Group (Araneae: Salticidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sexual Selection Research on Spiders: Progress and Biases
Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters. -
Prey of the Jumping Spider Phidippus Johnsoni (Araneae : Salticidae)
Jackson, R. R . 1977 . Prey of the jumping spider Phidippus johnsoni (Araneae : Salticidae) . J. Arachnol. 5 :145-149 . PREY OF THE JUMPING SPIDER PHIDIPPUS JOHNSONI (ARANEAE : SALTICIDAE) Robert R. Jackson I Zoology Departmen t University of Californi a Berkeley, California 9472 0 ABSTRACT Field data indicate that P. johnsoni is an euryphagous predator, whose diet includes organisms (aphids, ants, opilionids) sometimes considered distasteful to spiders . Other spiders are preyed upon , including conspecifics. Prey size tends to be one quarter to three quarters the size of the predator . INTRODUCTION Since spiders are probably a dominant group of predators of insects (Bristowe, 1941 ; Riechert, 1974; Turnbull, 1973), there is considerable interest in their feeding ecology . Spiders have usually been considered to be euryphagous predators with a stabilizing , rather than regulative, effect on insect populations (Riechert, 1974) . However, informa- tion concerning the prey taken by particular spider species, in the field, is limited . Field studies by Edgar (1969, 1970), Robinson and Robinson (1970) and Turnbull (1960) are especially noteworthy . During the course of a study of the reproductive biology of Phidippus johnsoni (Peckham and Peckham) (Jackson, 1976), occasionally individuals of this species were found in the field holding prey in their chelicerae . Each prey discovered in this way i s listed in Table 1 . In addition, Ken Evans and Charles Griswold, who were familiar wit h this species, recorded observations of P. johnsoni with prey. (Their data are included in Table 1 .) These data came from a variety of habitats in western North America, most o f which have been described elsewhere (Jackson, 1976) . -
Visual Perception in Jumping Spiders (Araneae,Salticidae)
Visual Perception in Jumping Spiders (Araneae,Salticidae) A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Biology at the University of Canterbury by Yinnon Dolev University of Canterbury 2016 Table of Contents Abstract.............................................................................................................................................................................. i Acknowledgments .......................................................................................................................................................... iii Preface ............................................................................................................................................................................. vi Chapter 1: Introduction ................................................................................................................................................... 1 Chapter 2: Innate pattern recognition and categorisation in a jumping Spider ........................................................... 9 Abstract ....................................................................................................................................................................... 10 Introduction ................................................................................................................................................................ 11 Methods ..................................................................................................................................................................... -
SHORT COMMUNICATION a Vertebrate-Eating Jumping Spider
2017. Journal of Arachnology 45:238–241 SHORT COMMUNICATION A vertebrate-eating jumping spider (Araneae: Salticidae) from Florida, USA Martin Nyffeler1, G. B. Edwards2 and Kenneth L. Krysko3: 1Section of Conservation Biology, Department of Environmental Sciences, University of Basel, CH-4056, Basel, Switzerland; E-mail: [email protected]; 2Curator Emeritus: Arachnida & Myriapoda, Florida State Collection of Arthropods, Gainesville, FL 32608, USA; 3Division of Herpetology, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Abstract. The salticid spider Phidippus regius C.L. Koch, 1846 is documented preying on small frogs (Hyla spp., Osteopilus septentrionalis) and lizards (Anolis carolinensis and Anolis sagrei) in Florida, USA. Female as well as male P. regius were engaged in feeding on this type of vertebrate prey. A total of eight incidents of P. regius devouring vertebrates have been witnessed in seven Florida counties. Furthermore, we report an incident of a large unidentified Phidippus sp. (possibly P. bidentatus F. O. Pickard-Cambridge, 1901) preying on an immature anole lizard in Costa Rica. P. regius, otherwise known to feed almost exclusively on insects and spiders, is one of the world’s largest salticid spiders reaching a maximum recorded body length of 2.2 cm. Most other salticid spiders appear to be too small in body size to overcome vertebrate prey. Vertebrate predation by salticid spiders has not been previously documented in the scientific literature. Together with Salticidae, spiders from 27 of 114 families (24%) are currently known to occasionally consume vertebrate prey. Keywords: Generalist predators, predation, prey, Dactyloidae, Hylidae, Southeastern USA With .5,900 described species, the jumping spider family (Salt- observations. -
Acclimation and Evolution in a Changing Climate: Integrating Physiology, Transcriptomics, and Genomics of a Thermal Specialist
Acclimation and evolution in a changing climate: Integrating physiology, transcriptomics, and genomics of a thermal specialist By Maria Tonione A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Neil D. Tsutsui, Chair Professor Caroline M. Williams Professor Ian J. Wang Spring 2018 Acclimation and evolution in a changing climate: Integrating physiology, transcriptomics, and genomics of a thermal specialist © 2018 By Maria Tonione 1 ABSTRACT Acclimation and evolution in a changing climate: Integrating physiology, transcriptomics, and genomics of a thermal specialist By Maria Tonione Doctor of Philosophy in Environmental Science, Policy, and Management University of California, Berkeley Professor Neil D. Tsutsui, Chair Climate change is one of the top causes of biodiversity loss. Organisms will experience many pressures associated with climate change, one of the most obvious being increased temperature. It is therefore important to understand how animals will react to this stress. Ectotherms, such as ants, are especially sensitive to the climate as they rely on environmental temperature for everything from optimal foraging to development time. In this dissertation, I explore the individual and population level reactions to thermal stress of a cold-specialist, the winter ant, Prenolepis imparis. I also identify the role past climatic fluctuations have had in shaping this species’ current distribution. In my first dissertation chapter, I conducted a RNA-seq analysis to identify stress- induced genes in P. imparis individuals at the transcriptome level. To identify candidate genes involved in the stress response, I induced stress by placing the ants at a low or high temperature. -
Evolutionary Divergences Mirror Pleistocene Paleodrainages in A
Molecular Phylogenetics and Evolution 144 (2020) 106696 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Evolutionary divergences mirror Pleistocene paleodrainages in a rapidly- T evolving complex of oasis-dwelling jumping spiders (Salticidae, Habronattus tarsalis) ⁎ Marshal Hedina, , Steven Foldia,b, Brendan Rajah-Boyera,c a Dept of Biology, San Diego State University, San Diego, CA 92182, United States b Valley International Prep School, Chatsworth, CA 91311, United States c St. Francis of Assisi Catholic School, Vista, CA 92083, United States ARTICLE INFO ABSTRACT Keywords: We aimed to understand the diversifcation history of jumping spiders in the Habronattus tarsalis species com- Biogeography plex, with particular emphasis on how history in this system might illuminate biogeographic patterns and Ephemeral speciation processes in deserts of the western United States. Desert populations of H. tarsalis are now confned to highly Introgression discontinuous oasis-like habitats, but these habitats would have been periodically more connected during Pleistocene multiple pluvial periods of the Pleistocene. We estimated divergence times using relaxed molecular clock ana- Saline Valley lyses of published transcriptome datasets. Geographic patterns of diversifcation history were assessed using Sexual selection phylogenetic and cluster analyses of original sequence capture, RADSeq and morphological data. Clock analyses of multiple replicate transcriptome datasets suggest mid- to late-Pleistocene divergence dates within the H. tarsalis group complex. Coalescent and concatenated phylogenetic analyses indicate four early-diverging lineages (H. mustaciata, H. ophrys, and H. tarsalis from the Lahontan and Owens drainage basins), with remaining samples separated into larger clades from the Mojave desert, and western populations from the California Floristic Province of California and northern Baja California. -
Jump Takeoff in a Small Jumping Spider
Journal of Comparative Physiology A https://doi.org/10.1007/s00359-021-01473-7 ORIGINAL PAPER Jump takeof in a small jumping spider Erin E. Brandt1,2 · Yoshan Sasiharan2 · Damian O. Elias1 · Natasha Mhatre2 Received: 27 October 2020 / Revised: 4 February 2021 / Accepted: 23 February 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract Jumping in animals presents an interesting locomotory strategy as it requires the generation of large forces and accurate timing. Jumping in arachnids is further complicated by their semi-hydraulic locomotion system. Among arachnids, jumping spiders (Family Salticidae) are agile and dexterous jumpers. However, less is known about jumping in small salticid species. Here we used Habronattus conjunctus, a small jumping spider (body length ~ 4.5 mm) to examine its jumping performance and compare it to that of other jumping spiders and insects. We also explored how legs are used during the takeof phase of jumps. Jumps were staged between two raised platforms. We analyzed jumping videos with DeepLabCut to track 21 points on the cephalothorax, abdomen, and legs. By analyzing leg liftof and extension patterns, we found evidence that H. conjunc- tus primarily uses the third legs to power jumps. We also found that H. conjunctus jumps achieve lower takeof speeds and accelerations than most other jumping arthropods, including other jumping spiders. Habronattus conjunctus takeof time was similar to other jumping arthropods of the same body mass. We discuss the mechanical benefts and drawbacks of a semi- hydraulic system of locomotion and consider how small spiders may extract dexterous jumps from this locomotor system. -
Visual Reactions to Auditory Stimulus by the Jumping Spider Phidippus Princeps (Araneae, Salticidae)
Visual reactions to auditory stimulus by the jumping spider Phidippus princeps (Araneae, Salticidae) Philip Denbaum Degree project in biology, Master of science (2 years), 2019 Examensarbete i biologi 45 hp till masterexamen, 2019 Biology Education Centre, Uppsala University, and Elizabeth Jakob lab, University of Massachusetts Supervisors: Elizabeth Jakob and Anders Berglund External opponent: Emilie Laurent & Julian Baur Table of contents Abstract 2 Introduction 3 Methods and Materials 5 Spider collection and care 5 General experimental setup 5 Overview of the eyetracker 5 Securing the spider 6 Aligning spider and finding retinas 6 Experiment 7 Data analysis 8 Statistical analyses 9 Results 10 Analysis 1 10 Analysis 2 13 Discussion 14 Future studies 15 Conclusions 16 Acknowledgements 16 References 17 Appendix 19 !1 Abstract Jumping spiders (Family Salticidae) are known for their exceptional vision, including color vision and spatial acuity. Salticids use their vision in many behaviors, including predation and courtship. Recently evidence of their ability to sense airborne vibrations, i.e. sound, was published. I used a specialized jumping-spider-specific eyetracker to study the visual reaction of the retinas of the jumping spider Phidippus princeps when exposed to the sound of a predator. I used a generic wasp sound, previously shown to induce a startle response, as stimulus and played it from different directions. The spiders showed strong reactions to the sound stimulus by large increases in retinal movement when exposed to the stimulus, and they showed no habituation to the stimulus over three rounds of exposure. However, I found no indication that the direction of retinal movement corresponded to the location of the sound source. -
Natural Prey of the Jumping Spider Menemerus Semilimbatus (Hahn, 1827) (Araneae: Salticidae), with Notes on Its Unusual Predatory Behaviour
EUROPEAN ARACHNOLOGY 2003 (LOGUNOV D.V. & PENNEY D. eds.), pp. 93100. © ARTHROPODA SELECTA (Special Issue No.1, 2004). ISSN 0136-006X (Proceedings of the 21st European Colloquium of Arachnology, St.-Petersburg, 49 August 2003) Natural prey of the jumping spider Menemerus semilimbatus (Hahn, 1827) (Araneae: Salticidae), with notes on its unusual predatory behaviour Åñòåñòâåííàÿ äîáû÷à ïàóêà ñêàêóí÷èêà Menemerus semilimbatus (Hahn, 1827) (Araneae: Salticidae) ñ çàìåòêàìè î åãî íåîáû÷íîì õèùíè÷åñêîì ïîâåäåíèè E.F. GUSEINOV Ý.Ô. ÃÓÑÅÉÍΠInstitute of Zoology, Azerbaijan Academy of Sciences, block 504, passage 1128, Baku 370073, Azerbaijan. email: [email protected] Èíñòèòóò çîîëîãèè ÍÀÍ Àçåðáàéäæàíà, êâàðòàë 504, ïðîåçä 1128, Áàêó 370073, Àçåðáàéäæàí. email: [email protected] ABSTRACT. Prey composition and the hunting behaviour of the jumping spider, Menemerus semilimbatus, which inhabits stone walls was studied. Less than 10% of the specimens in the population studied were observed feeding. Adult males fed significantly less frequently than adult females and juveniles. Diptera, the dominant prey group, accounted for more than 70% of all prey consumed. No other single prey type was present in significant numbers. M. semilimbatus adopts a specialized predatory behaviour towards flies that is unusual for salticids. This behaviour depends on how the fly is orientated towards the spider. If the fly is facing away from the spider, M. semilimbatus approaches it directly. When the fly is facing the spider, M. semilimbatus keeps its distance and encircles it until the prey is facing away from the spider. Only then, will the spider start to approach the fly directly. The specific habitat of M. -
Species Delimitation and Phylogeography of Aphonopelma Hentzi (Araneae, Mygalomorphae, Theraphosidae): Cryptic Diversity in North American Tarantulas
Species Delimitation and Phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): Cryptic Diversity in North American Tarantulas Chris A. Hamilton1*, Daniel R. Formanowicz2, Jason E. Bond1 1 Auburn University Museum of Natural History and Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America, 2 Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America Abstract Background: The primary objective of this study is to reconstruct the phylogeny of the hentzi species group and sister species in the North American tarantula genus, Aphonopelma, using a set of mitochondrial DNA markers that include the animal ‘‘barcoding gene’’. An mtDNA genealogy is used to consider questions regarding species boundary delimitation and to evaluate timing of divergence to infer historical biogeographic events that played a role in shaping the present-day diversity and distribution. We aimed to identify potential refugial locations, directionality of range expansion, and test whether A. hentzi post-glacial expansion fit a predicted time frame. Methods and Findings: A Bayesian phylogenetic approach was used to analyze a 2051 base pair (bp) mtDNA data matrix comprising aligned fragments of the gene regions CO1 (1165 bp) and ND1-16S (886 bp). Multiple species delimitation techniques (DNA tree-based methods, a ‘‘barcode gap’’ using percent of pairwise sequence divergence (uncorrected p- distances), and the GMYC method) consistently recognized a number of divergent and genealogically exclusive groups. Conclusions: The use of numerous species delimitation methods, in concert, provide an effective approach to dissecting species boundaries in this spider group; as well they seem to provide strong evidence for a number of nominal, previously undiscovered, and cryptic species. -
The Complete Mitochondrial Genome Sequence of the Spider Habronattus Oregonensis Reveals 2 Rearranged and Extremely Truncated Trnas 3 4 5 Susan E
1 The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals 2 rearranged and extremely truncated tRNAs 3 4 5 Susan E. Masta 6 Jeffrey L. Boore 7 8 9 10 11 DOE Joint Genome Institute 12 Department of Evolutionary Genomics 13 2800 Mitchell Drive 14 Walnut Creek, CA 94598 15 16 Corresponding author: 17 Susan E. Masta 18 Department of Biology 19 P.O. Box 751 20 Portland State University 21 Portland, Oregon 97207 22 email: [email protected] 23 telephone: (503) 725-8505 24 fax: (503) 725-3888 25 26 27 Key words: mitochondrial genome, truncated tRNAs, aminoacyl acceptor stem, gene 28 rearrangement, genome size, Habronattus oregonensis 29 30 31 Running head: mitochondrial genome of a spider 32 33 1 34 We sequenced the entire mitochondrial genome of the jumping spider Habronattus oregonensis 35 of the arachnid order Araneae (Arthropoda: Chelicerata). A number of unusual features 36 distinguish this genome from other chelicerate and arthropod mitochondrial genomes. Most of 37 the transfer RNA gene sequences are greatly reduced in size and cannot be folded into typical 38 cloverleaf-shaped secondary structures. At least nine of the tRNA sequences lack the potential to 39 form TYC arm stem pairings, and instead are inferred to have TV-replacement loops. 40 Furthermore, sequences that could encode the 3' aminoacyl acceptor stems in at least 10 tRNAs 41 appear to be lacking, because fully paired acceptor stems are not possible and because the 42 downstream sequences instead encode adjacent genes. Hence, these appear to be among the 43 smallest known tRNA genes. -
Spineless Spineless Rachael Kemp and Jonathan E
Spineless Status and trends of the world’s invertebrates Edited by Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Spineless Spineless Status and trends of the world’s invertebrates of the world’s Status and trends Spineless Status and trends of the world’s invertebrates Edited by Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Disclaimer The designation of the geographic entities in this report, and the presentation of the material, do not imply the expressions of any opinion on the part of ZSL, IUCN or Wildscreen concerning the legal status of any country, territory, area, or its authorities, or concerning the delimitation of its frontiers or boundaries. Citation Collen B, Böhm M, Kemp R & Baillie JEM (2012) Spineless: status and trends of the world’s invertebrates. Zoological Society of London, United Kingdom ISBN 978-0-900881-68-8 Spineless: status and trends of the world’s invertebrates (paperback) 978-0-900881-70-1 Spineless: status and trends of the world’s invertebrates (online version) Editors Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Zoological Society of London Founded in 1826, the Zoological Society of London (ZSL) is an international scientifi c, conservation and educational charity: our key role is the conservation of animals and their habitats. www.zsl.org International Union for Conservation of Nature International Union for Conservation of Nature (IUCN) helps the world fi nd pragmatic solutions to our most pressing environment and development challenges. www.iucn.org Wildscreen Wildscreen is a UK-based charity, whose mission is to use the power of wildlife imagery to inspire the global community to discover, value and protect the natural world.