Limits of quotients of real analytic functions in two variables Carlos A. Cadavid*, Sergio Molina**, Juan D. V´elez**, * Corresponding Author, Universidad EAFIT, Departamento de Ciencias B´asicas, Bloque 38, Office 417. Carrera 49 No. 7 Sur -50, Medell´ın, Colombia, ccadavid@eafit.edu.co, (57) (4)-2619500. Fax (57) (4)-3120649. ** Universidad Nacional de Colombia, Departamento de Matem´aticas, Calle 59A No 63 - 20 , Oficina 43-106, Medell´ın, Colombia,
[email protected],
[email protected] August 21, 2018 Abstract Necessary and sufficient conditions for the existence of limits of the form f(x,y) lim (x,y)→(a,b) g(x,y) are given, under the hipothesis that f and g are real analytic functions near the point (a, b), and g has an isolated zero at (a, b). An algorithm arXiv:1011.1591v1 [math.AG] 6 Nov 2010 (implemented in MAPLE 12) is also provided. This algorithm deter- mines the existence of the limit, and computes it in case it exists. It is shown to be more powerful than the one found in the latest versions of MAPLE. The main tools used throughout are Hensel’s Lemma and the theory of Puiseux series. Keywords: Limit, Real Analytic Function, Hensel’s Lemma, Puiseaux Series 1 1 Introduction In the usual calculus courses one is asked to determine the existence of limits of the form f(x, y) lim (x,y)→(a,b) g(x, y) where f and g are real analytic functions (typically, polynomials or trigono- metric and exponential functions) defined in an open disk centered at a point (a, b) in R2.