The Deubiquitinase TRABID Stabilises the K29/K48-Specific E3 Ubiquitin Ligase HECTD1', Journal of Biological Chemistry, Vol

Total Page:16

File Type:pdf, Size:1020Kb

The Deubiquitinase TRABID Stabilises the K29/K48-Specific E3 Ubiquitin Ligase HECTD1', Journal of Biological Chemistry, Vol Citation for published version: Harris, LD, Le Pen, J, Scholz, N, Mieszczanek, J, Vaughan, N, Davis, S, Berridge, G, Kessler, B, Bienz, M & Licchesi, J 2021, 'The deubiquitinase TRABID stabilises the K29/K48-specific E3 ubiquitin ligase HECTD1', Journal of Biological Chemistry, vol. 296, no. 1, 100246. https://doi.org/10.1074/jbc.RA120.015162 DOI: 10.1074/jbc.RA120.015162 Publication date: 2021 Document Version Peer reviewed version Link to publication Publisher Rights Unspecified Copyright The Authors 2020. Harris, LD, Le Pen, J, Scholz, N, Mieszczanek, J, Vaughan, N, Davis, S, Berridge, G, Kessler, B, Bienz, M & Licchesi, J 2020, 'The deubiquitinase TRABID stabilises the K29/K48-specific E3 ubiquitin ligase HECTD1', Journal of Biological Chemistry. https://doi.org/10.1074/jbc.RA120.015162 University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 JBC Papers in Press. Published on December 30, 2020 as Manuscript RA120.015162 The latest version is at https://www.jbc.org/cgi/doi/10.1074/jbc.RA120.015162 The deubiquitinase TRABID stabilises the K29/K48-specific E3 ubiquitin ligase HECTD1 Lee D. Harris1, 4, Janic Le Pen2, 4, Nico Scholz1, Juliusz Mieszczanek2, Natalie Vaughan1, Simon Davis3, Georgina Berridge3, Benedikt Kessler3, Mariann Bienz2 and Julien D. F. Licchesi1, * 1 Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom 2 MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom 3 Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, United Kingdom 4 These authors contributed equally * Correspondence to Julien D. F. Licchesi, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK. +44(0)1225 386 287; [email protected] Downloaded from Running title: Lys29-specific DUB-E3 pair Keywords: Ubiquitin, Deubiquitination, Polyubiquitin chain, E3 ubiquitin ligase, ubiquitin http://www.jbc.org/ thioesterase, Protein degradation, HECTD1, TRABID, K29/K48-linked polyubiquitin chain at University of Bath on December 30, 2020 1 distinct signals mediate specific and diverse Abstract downstream cellular processes. For example, Ubiquitin is a versatile post-translational while addition of a single ubiquitin molecule on modification which is covalently attached to a protein substrate can regulate its trafficking, protein targets either as a single moiety or as polyubiquitination regulates a plethora of a ubiquitin chain. In contrast to K48 and K63- cellular processes including cell cycle linked chains which have been extensively progression, DNA repair and inflammation (6- studied, the regulation and function of most 9). Polyubiquitin chains are assembled atypical ubiquitin chains is only starting to through an isopeptide bond between the C- emerge. The deubiquitinase terminus of Gly76 of a donor ubiquitin and the TRABID/ZRANB1 is tuned for the recognition and cleavage of K29 and K33-linked chains. a-amino group of any of the seven lysines (K6, Yet, substrates of TRABID and the cellular K11, K27, K29, K33, K48 and K63) or the N- functions of these atypical ubiquitin signals terminus (i.e., linear ubiquitin, Met-1) of an remain unclear. We determined the acceptor ubiquitin. Protein ubiquitination also interactome of two TRABID constructs occurs on non-canonical attachment sites rendered catalytic dead either through a point within substrates, including on serine, mutation in the catalytic cysteine residue or threonine, and cysteine residues (10-12). through removal of the OTU catalytic domain. Some deubiquitinases (DUB), in particular Downloaded from We identified 50 proteins trapped by both those from the Ovarian Tumour (OTU) family, constructs and which therefore represent and E3 ubiquitin ligases such as members of candidate substrates of TRABID. We then the Homologous to the E6AP carboxyl validated the E3 ubiquitin ligase HECTD1 as a terminus (HECT) family have shown substrate of TRABID and used UbiCREST specificity for particular ubiquitin chains. This, http://www.jbc.org/ and Ub-AQUA proteomics to show that combined with the difference in the three- HECTD1 preferentially assembles K29- and dimensional structure of these ubiquitin K48-linked ubiquitin chains. Further in vitro polymers, further suggests that they represent autoubiquitination assays using ubiquitin distinct signals (13). All ubiquitin linkage types mutants established that while HECTD1 can have been identified in yeast (14) and at University of Bath on December 30, 2020 assemble short homotypic K29 and K48- mammalian cells (15). While homotypic K48- linked chains, it requires branching at K29/K48 linked polyubiquitin chains target proteins for in order to achieve its full ubiquitin ligase degradation by the UPS, cargoes modified activity. We next used transient knockdown with K63-linked chains are recognised as part and genetic knock out of TRABID in of the autophagic response (16-18). mammalian cells in order to determine the Nevertheless, the role and function of functional relationship between TRABID and polyubiquitin chains beyond those assembled HECTD1. This revealed that upon TRABID through homotypic (i.e., assembled through depletion, HECTD1 is readily degraded. Thus, one lysine only) such as K48 and K63 this study identifies HECTD1 as a mammalian linkages, is only starting to emerge (19-21). E3 ligase which assembles branched K29/K48 More recently, polyubiquitin has been found to chains and also establishes TRABID-HECTD1 exist as heterotypic and also branched chains. as a DUB/E3 pair regulating K29 linkages. For example, branched K11/K48-linked chains Introduction increase the degradation rate of mitotic cyclins by the UPS, while branched K48/K63 chains Ubiquitin is a small and highly conserved regulate NF-kB gene activation through protein modifier which has emerged as a recognition by TAB2, a subunit of the TAK1 complex yet specific post-translational complex (22,23). modification regulating protein fate and TRABID (also known as ZRANB1), belongs to function. The role of ubiquitin is central to OTU DUB family (24). It contains three highly proteostasis by serving as the key signal for conserved Npl14 zinc finger domains (3xNZF) the degradation of proteins or organelles which function as ubiquitin binding domains whether it be through the Ubiquitin (UBD), and the OTU catalytic domain Proteasome System (UPS) or autophagy (1- responsible for the hydrolysis of ubiquitin 3). Ubiquitin is added to lysine residues on polymers (24-26). The expansion of the protein targets through the sequential activity ubiquitin toolbox through for example the of E1-activating enzymes, E2-conjugating chemical synthesis of ubiquitin dimers, has enzymes and E3 ubiquitin ligases, as a single been instrumental in determining TRABID’s moiety or as a ubiquitin chain (4,5). These specificity for K29-linked ubiquitin chains (27). 2 Further analysis using the full set of eight to further expand on our understanding of ubiquitin dimers revealed that in addition to TRABID as well as the atypical ubiquitin K29-linked ubiquitin dimers, TRABID also chains which it regulates. We first used two cleaves K33-linked ubiquitin chains and that catalytic dead TRABID constructs, a single the activity towards K29 and K33-linked point mutation in the catalytic OTU domain dimers is greater than for K63-linked (TRABIDC443S) and a construct lacking the diubiquitin (28). The discovery of the AnkUBD OTU domain entirely (TRABID DOTU), to as a novel UBD abutting the N-terminus of specifically trap ubiquitinated substrates. By TRABID OTU domain, revealed that it is comparing the interactome of these two required for full DUB activity, and to some constructs, we identified NZF- and OTU- extent specificity too. These findings as well as specific TRABID interactors, including several recent studies which identified TRABID’s NZF E3 ubiquitin ligases as candidate interactors 1 as the minimal UBD required for the and potential substrates of TRABID DUB recognition of K29- and K33-linked diubiquitin activity. We validated HECTD1 as a substrate establish TRABID as a unique DUB highly of TRABID activity and used in vitro tuned for the recognition and processing of autoubiquitination assays, Ubiquitin Chain these atypical ubiquitin chains (29-31). Restriction Analysis (UbiCREST) and Ubiquitin-Absolute QUAntification (Ub-AQUA) TRABID has been proposed to regulate the Downloaded from Wnt/b-catenin/Tcf signaling pathway through to show that the catalytic HECT domain of APC (Adenomatous Polyposis Coli), the HECTD1 preferentially assembles K29- and epithelial to mesenchymal transition (EMT) K48-linked ubiquitin chains. Interestingly, our through Twist, as well as the innate immune data indicate that although UBE3C and response, with these studies implicating the HECTD1 both use K29 and K48 linkages to http://www.jbc.org/ deubiquitination
Recommended publications
  • The Clinical Significance of the Organic Acids Test
    The Clinical Significance of the Organic Acids Test The Organic Acids Test (OAT) provides an accurate metabolic snapshot of what is going on in the body. Besides offering the most complete and accurate evaluation of intestinal yeast and bacteria, it also provides information on important neurotransmitters, nutritional markers, glutathione status, oxalate metabolism, and much more. The test includes 76 urinary metabolite markers that can be very useful for discovering underlying causes of chronic illness. Patients and physicians report that treating yeast and bacterial abnormalities reduces fatigue, increases alertness and energy, improves sleep, normalizes bowel function, and reduces hyperactivity and abdominal pain. The OAT Assists in Evaluating: ■ Krebs Cycle Abnormalities ■ Neurotransmitter Levels ■ Nutritional Deficiencies ■ Antioxidant Deficiencies ■ Yeast and Clostridia Overgrowth ■ Fatty Acid Metabolism ■ Oxalate Levels ■ And More! The OAT Pairs Well with the Following Tests: ■ GPL-TOX: Toxic Non-Metal Chemical Profile ■ IgG Food Allergy + Candida ■ MycoTOX Profile ■ Phospholipase A2 Activity Test Learn how to better integrate the OAT into your practice, along with our other top tests by attending one of our GPL Academy Practitioner Workshops! Visit www.GPLWorkshops.com for workshop dates and locations. The following pages list the 76 metabolite markers of the Organic Acids Test. Included is the name of the metabolic marker, its clinical significance, and usual initial treatment. INTESTINAL MICROBIAL OVERGROWTH Yeast and Fungal Markers Elevated citramalic acid is produced mainly by Saccharomyces species or Propionibacteria Citramalic Acid overgrowth. High-potency, multi-strain probiotics may help rebalance GI flora. A metabolite produced by Aspergillus and possibly other fungal species in the GI tract. 5-Hydroxy-methyl- Prescription or natural antifungals, along with high-potency, multi-strain probiotics, furoic Acid may reduce overgrowth levels.
    [Show full text]
  • 3-Aroyl Pyroglutamic Acid Amides †
    Proceeding Paper Synthesis of (2S,3S)-3-Aroyl Pyroglutamic Acid Amides † Lucia Pincekova * and Dusan Berkes * Department of Organic Chemistry, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovakia * Correspondence: [email protected] (L.P.); [email protected] (D.B.) † Presented at the 24th International Electronic Conference on Synthetic Organic Chemistry, 15 November–15 December 2020; Available online: https://ecsoc-24.sciforum.net/. Abstract: A new methodology for the asymmetric synthesis of enantiomerically enriched 3-aroyl pyroglutamic acid derivatives has been developed through effective 5-exo-tet cyclization of N-chlo- roacetyl aroylalanines. The three-step sequence starts with the synthesis of N-substituted (S,S)-2- amino-4-aryl-4-oxobutanoic acids via highly diastereoselective tandem aza-Michael addition and crystallization-induced diastereomer transformation (CIDT). Their N-chloroacetylation followed by base-catalyzed cyclization and ultimate acid-catalyzed removal of chiral auxiliary without loss of stereochemical integrity furnishes the target substituted pyroglutamic acids. Finally, several series of their benzyl amides were prepared as 3-aroyl analogs of known P2X7 antagonists. Keywords: pyroglutamic acid; P2X7 receptors; aza-Michael addition; CIDT; N-debenzylation 1. Introduction Pyroglutamic acid and its derivatives are a valuable class of compounds found in various natural products and pharmaceuticals, representing either an important chiral Citation: Pincekova, L.; Berkes, D. auxiliary or building block for the asymmetric synthesis of many biologically and phar- Synthesis of (2S,3S)-3-Aroyl maceutically valuable compounds [1]. Moreover, pyroglutamic acid derivatives have re- Pyroglutamic Acid Amides. Chem. cently appeared to be efficient antagonists of specific types of purinergic receptors. Their Proc.
    [Show full text]
  • Response of Downy Oak (Quercus Pubescens Willd.) to Climate Change: Transcriptome Assembly, Differential Gene Analysis and Targe
    plants Article Response of Downy Oak (Quercus pubescens Willd.) to Climate Change: Transcriptome Assembly, Differential Gene Analysis and Targeted Metabolomics Jean-Philippe Mevy 1,*, Beatrice Loriod 2, Xi Liu 3, Erwan Corre 3, Magali Torres 2, Michael Büttner 4, Anne Haguenauer 1, Ilja Marco Reiter 5, Catherine Fernandez 1 and Thierry Gauquelin 1 1 CNRS, Aix-Marseille University, Avignon University, IRD, IMBE, 13331 Marseille, France; [email protected] (A.H.); [email protected] (C.F.); [email protected] (T.G.) 2 TGML-TAGC—Inserm UMR1090 Aix-Marseille Université 163 avenue de Luminy, 13288 Marseille, France; [email protected] (B.L.); [email protected] (M.T.) 3 CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique, 29680 Roscoff, France; xi.liu@sb-roscoff.fr (X.L.); erwan.corre@sb-roscoff.fr (E.C.) 4 Metabolomics Core Technology Platform Ruprecht-Karls-University Heidelberg Centre for Organismal Studies (COS) Im Neuenheimer Feld 360, 69120 Heidelberg, Germany; [email protected] 5 Research Federation ECCOREV FR3098, CNRS, 13545 Aix-en-Provence, France; [email protected] * Correspondence: [email protected]; Tel.: +33-0413550766 Received: 20 July 2020; Accepted: 1 September 2020; Published: 4 September 2020 Abstract: Global change scenarios in the Mediterranean basin predict a precipitation reduction within the coming hundred years. Therefore, increased drought will affect forests both in terms of adaptive ecology and ecosystemic services. However, how vegetation might adapt to drought is poorly understood. In this report, four years of climate change was simulated by excluding 35% of precipitation above a downy oak forest.
    [Show full text]
  • Methods, Compounds, Compositions and Vehicles for Delivering 3-Amino-1-Propanesulfonic Acid
    (19) TZZ _ T (11) EP 2 862 581 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 22.04.2015 Bulletin 2015/17 A61K 47/48 (2006.01) C07K 5/06 (2006.01) C07K 5/08 (2006.01) C07C 309/15 (2006.01) (2006.01) (2006.01) (21) Application number: 14200552.9 C07D 207/16 C07D 209/20 C07D 217/24 (2006.01) C07D 233/64 (2006.01) (2006.01) (2006.01) (22) Date of filing: 12.10.2007 C07D 291/02 C07D 333/24 C12P 11/00 (2006.01) A61K 38/07 (2006.01) A61K 38/08 (2006.01) A61P 25/28 (2006.01) (84) Designated Contracting States: (72) Inventor: The designation of the inventor has not AT BE BG CH CY CZ DE DK EE ES FI FR GB GR yet been filed HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Hoffmann Eitle Patent- und Rechtsanwälte PartmbB (30) Priority: 12.10.2006 US 851039 P Arabellastraße 30 12.04.2007 US 911459 P 81925 München (DE) (62) Document number(s) of the earlier application(s) in Remarks: accordance with Art. 76 EPC: This application was filed on 30-12-2014 as a 07875176.5 / 2 089 417 divisional application to the application mentioned under INID code 62. (71) Applicant: BHI Limited Partnership Laval, QC H7V 4A7 (CA) (54) Methods, compounds, compositions and vehicles for delivering 3- amino-1-propanesulfonic acid (57) The invention relates to methods, compounds, that will yield or generate 3APS, either in vitro or in vivo.
    [Show full text]
  • Interpretive Guide
    INTERPRETIVE GUIDE Contents INTRODUCTION .........................................................................1 NUTREVAL BIOMARKERS ...........................................................5 Metabolic Analysis Markers ....................................................5 Malabsorption and Dysbiosis Markers .....................................5 Cellular Energy & Mitochondrial Metabolites ..........................6 Neurotransmitter Metabolites ...............................................8 Vitamin Markers ....................................................................9 Toxin & Detoxification Markers ..............................................9 Amino Acids ..........................................................................10 Essential and Metabolic Fatty Acids .........................................13 Cardiovascular Risk ................................................................15 Oxidative Stress Markers ........................................................16 Elemental Markers ................................................................17 Toxic Elements .......................................................................18 INTERPRETATION-AT-A-GLANCE .................................................19 REFERENCES .............................................................................23 INTRODUCTION A shortage of any nutrient can lead to biochemical NutrEval profile evaluates several important biochemical disturbances that affect healthy cellular and tissue pathways to help determine nutrient
    [Show full text]
  • Identification of DIR1-Dependant Cellular Responses Required for Guard Cell Systemic
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.446770; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Identification of DIR1-dependant cellular responses required for guard cell systemic 2 acquired resistance1 3 Lisa Davida,b, Jianing Kanga,b,c, Josh Nicklayd, Craig Dufrensee, and Sixue Chena,b,f,g,2,3 4 5 aDepartment of Biology, University of Florida, Gainesville, FL 32611, USA 6 bUniversity of Florida Genetics Institute (UFGI), Gainesville, FL 32610, USA 7 cCollege of Life Science, Northeast Agricultural University, Harbin 150030, China. 8 dThermo Fisher Scientific, Somerset, NJ 08873, USA 9 eThermo Training Institute, Thermo Fisher Scientific, West Palm Beach, FL 33407, USA 10 fPlant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, 11 USA 12 gProteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research 13 (ICBR), University of Florida, Gainesville, FL 32610, USA 14 15 ORCID IDs: 0000-0003-2529-1863 (L.D.); 0000-0002-0425-8792 (J.K.); 0000-0002-7341-1260 16 (J.N.); 0000-0003-0785-7798 (C.D.); 0000-0002-6690-7612 (S.C.) 17 18 Short title 19 DIR1 in guard cell systemic acquired resistance. 20 One-sentence summary 21 DIR1 affects many biological processes in stomatal guard cells during systemic acquired 22 resistance (SAR), as revealed by multi-omics, and it may function through transporting two 18C 23 fatty acids during SAR.
    [Show full text]
  • Occurrence, Properties and Biological Significance of Pyroglutamyl
    Food Science and Human Wellness 8 (2019) 268–274 Contents lists available at ScienceDirect Food Science and Human Wellness jo urnal homepage: www.elsevier.com/locate/fshw Occurrence, properties and biological significance of pyroglutamyl peptides derived from different food sources a,1 a,1 b a,c,∗ Behzad Gazme , Ruth T. Boachie , Apollinaire Tsopmo , Chibuike C. Udenigwe a School of Nutrition Sciences, Faculty of Health Sciences, 415 Smyth Road, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada b Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada c Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada a r t i c l e i n f o a b s t r a c t Article history: Pyroglutamyl (pGlu) peptides are formed from intramolecular cyclization of glutamine or glutamic acid Received 13 March 2019 residue at the N-terminal position of peptides. This process can occur endogenously or during processing Received in revised form 1 May 2019 of foods containing the peptides. Some factors such as heat, high pressure and enzymatic modifications Accepted 27 May 2019 contribute to pGlu formation. pGlu peptides are thought to have different characteristics, especially bitter Available online 28 May 2019 and umani tastes, and thus can affect the sensory properties of foods that contain them. Moreover, some health-promoting properties have been reported for pGlu peptides, including hepatoprotective, antide- Keywords: pressant and anti-inflammatory activities. However, the role of pGlu residue in the peptide bioactivity is Pyroglutamyl peptides not completely established, although the hydrophobic ␥-lactam ring is thought to enhance the peptide Peptide quantification stability against degradation by gastrointestinal proteases.
    [Show full text]
  • WO 2010/037397 Al
    (12) INTERNATIONALAPPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 8 April 2010 (08.04.2010) WO 2010/037397 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 38/17 (2006.01) C07K 14/705 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 47/48 (2006.01) GOlN 33/50 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/DK2009/050257 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 1 October 2009 (01 .10.2009) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, (26) Publication Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every PA 2008 0 1381 1 October 2008 (01 .10.2008) DK kind of regional protection available): ARIPO (BW, GH, 61/101,898 1 October 2008 (01 .10.2008) US GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (71) Applicant (for all designated States except US): DAKO TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, DENMARK A/S [DK/DK]; Produktionsvej 42, DK-2600 ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, Glostrup (DK).
    [Show full text]
  • Waterborne Manganese Exposure Alters Plasma, Brain, and Liver Metabolites Accompanied by Changes in Stereotypic Behaviors
    Waterborne Manganese Exposure Alters Plasma, Brain, and Liver Metabolites Accompanied by Changes in Stereotypic Behaviors By: Steve Fordahl, Paula Cooney, Yunping Qiu, Guoxiang Xie, Wei Jia, and Keith M. Erikson Fordahl, S., Cooney, P., Qiu, Y.P., Xie, G.X., Jia, W., Erikson, K.M. (2012). Waterborne manganese exposure alters plasma brain, and liver metabolites accompanied by changes in stereotypic behaviors. Neurotoxicology and Teratology, 34(1), 27-36. ***Note: This version of the document is not the copy of record. Made available courtesy of Elsevier. Link to Article: http://www.sciencedirect.com/science/article/pii/S0892036211002029 Abstract: Overexposure to waterborne manganese (Mn) is linked with cognitive impairment in children and neurochemical abnormalities in other experimental models. In order to characterize the threshold between Mn-exposure and altered neurochemistry, it is important to identify biomarkers that positively correspond with brain Mn-accumulation. The objective of this study was to identify Mn-induced alterations in plasma, liver, and brain metabolites using liquid/gas chromatography–time of flight–mass spectrometry metabolomic analyses; and to monitor corresponding Mn-induced behavior changes. Weanling Sprague–Dawley rats had access to deionized drinking water either Mn-free or containing 1 g Mn/L for 6 weeks. Behaviors were monitored during the sixth week for a continuous 24 h period while in a home cage environment using video surveillance. Mn-exposure significantly increased liver, plasma, and brain Mn concentrations compared to control, specifically targeting the globus pallidus (GP). Mn significantly altered 98 metabolites in the brain, liver, and plasma; notably shifting cholesterol and fatty acid metabolism in the brain (increased oleic and palmitic acid; 12.57 and 15.48 fold change (FC), respectively), and liver (increased oleic acid, 14.51 FC; decreased hydroxybutyric acid, − 14.29 FC).
    [Show full text]
  • Occurrence of the Free and Peptide Forms of Pyroglutamic Acid In
    6984 J. Agric. Food Chem. 2006, 54, 6984−6988 Occurrence of the Free and Peptide Forms of Pyroglutamic Acid in Plasma from the Portal Blood of Rats That Had Ingested a Wheat Gluten Hydrolysate Containing Pyroglutamyl Peptides NORIKO HIGAKI-SATO,KENJI SATO,* NAOMI INOUE,YUKO NAWA, YASUHIRO KIDO,YUKIHIRO NAKABOU,KAORI HASHIMOTO,† YASUSHI NAKAMURA, AND KOZO OHTSUKI Department of Food Sciences & Nutritional Health, Kyoto Prefectural University, 1-5 Shimogamo, Kyoto 606-8522, Japan In order to determine pyroglutamic acid levels in plasma, we developed a method based on precolumn derivatization of the carboxyl group of pyroglutamic acid with 2-nitrophenylhydrazine. Eight-week-old male SD strain rats were administered 200 mg of an acidic peptide fraction obtained from a commercial wheat gluten hydrolysate containing 0.63 mmol/g pyroglutamyl peptide. After administration, significant amounts of free pyroglutamic acid were observed in the ethanol-soluble fraction of the plasma from the portal vein. In addition, pyroglutamate aminopeptidase digestion of the ethanol-soluble fraction liberated significant amounts of pyroglutamic acid, which indicated the presence of the pyroglutamyl peptide. The presence of the pyroglutamyl peptide in the plasma was further confirmed by size exclusion chromatography. The levels of free and peptide forms of pyroglutamic acid increased significantly and reached a maximum (approximately 40 nmol/mL) at 15 and 30 min after administration, respectively. KEYWORDS: Pyroglutamic acid; wheat gluten hydrolysate; pyroglutamyl peptides INTRODUCTION glutamyl peptides in enzymatic hydrolysates of wheat gluten, cow milk casein, whey protein, and so on has been demonstrated Compared with proteins, peptides present in enzymatic (15-17). We have also demonstrated that some pyroglutamyl hydrolysates of food proteins show higher solubility and peptides present in a gluten hydrolysate resisted exhaustive in adsorption rates and lower antigenicity.
    [Show full text]
  • Rumen Fluid Metabolomics Analysis Associated with Feed Efficiency on Crossbred Steers Received: 8 September 2016 Virginia M
    www.nature.com/scientificreports OPEN Rumen Fluid Metabolomics Analysis Associated with Feed Efficiency on Crossbred Steers Received: 8 September 2016 Virginia M. Artegoitia1, Andrew P. Foote2, Ronald M. Lewis1 & Harvey C. Freetly2 Accepted: 20 April 2017 The rumen has a central role in the efficiency of digestion in ruminants. To identify potential differences Published: xx xx xxxx in rumen function that lead to differences in average daily gain (ADG), rumen fluid metabolomic analysis by LC-MS and multivariate/univariate statistical analysis were used to identify differences in rumen metabolites. Individual feed intake and body-weight was measured on 144 steers during 105 d on a high concentrate ration. Eight steers with the greatest ADG and 8 steers with the least-ADG with dry matter intake near the population average were selected. Blood and rumen fluid was collected from the 16 steers 26 d before slaughter and at slaughter, respectively. As a result of the metabolomics analysis of rumen fluid, 33 metabolites differed between the ADG groups based on t-test, fold changes and partial least square discriminant analysis. These metabolites were primarily involved in linoleic and alpha-linolenic metabolism (impact-value 1.0 and 0.75, respectively; P < 0.05); both pathways were down-regulated in the greatest-ADG compared with least-ADG group. Ruminal biohydrogenation might be associated with the overall animal production. The fatty acids were quantified in rumen and plasma using targeted MS to validate and evaluate the simple combination of metabolites that effectively predict ADG. Improving production efficiency of cattle by increasing meat produced per amount of feed offered would result in economic and environmental benefits1.
    [Show full text]
  • Functional Anthology of Intrinsic Disorder. 3. Ligands, Post-Translational Modifications, and Diseases Associated with Intrinsically Disordered Proteins
    Functional Anthology of Intrinsic Disorder. 3. Ligands, Post-Translational Modifications, and Diseases Associated with Intrinsically Disordered Proteins Hongbo Xie,² Slobodan Vucetic,² Lilia M. Iakoucheva,³ Christopher J. Oldfield,# A. Keith Dunker,# Zoran Obradovic,² and Vladimir N. Uversky*,#,§ Center for Information Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, Laboratory of Statistical Genetics, The Rockefeller University, New York, New York 10021, Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University, School of Medicine, Indianapolis, Indiana 46202, and Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia Received August 2, 2006 Currently, the understanding of the relationships between function, amino acid sequence, and protein structure continues to represent one of the major challenges of the modern protein science. As many as 50% of eukaryotic proteins are likely to contain functionally important long disordered regions. Many proteins are wholly disordered but still possess numerous biologically important functions. However, the number of experimentally confirmed disordered proteins with known biological functions is substantially smaller than their actual number in nature. Therefore, there is a crucial need for novel bionformatics approaches that allow projection of the current knowledge from a few experimentally verified examples to much larger groups of known and potential proteins. The elaboration of a bioinformatics tool for the analysis of functional diversity of intrinsically disordered proteins and application of this data mining tool to >200 000 proteins from the Swiss-Prot database, each annotated with at least one of the 875 functional keywords, was described in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L.
    [Show full text]