A Novel Term Weighing Scheme Towards Efficient Crawl Of

Total Page:16

File Type:pdf, Size:1020Kb

A Novel Term Weighing Scheme Towards Efficient Crawl Of International Journal of Computer Engineering and Applications, Volume X, Special Issue, ICRTCST -2016 www.ijcea.com, ISSN 2321-3469 FEATURES AND DIFFERENCES OF LINUX EXT, EXT2, EXT3 AND EXT4 FILE SYSTEMS Sanku Sinha 1, Sadique Nayeem 2 1, 2 Department of Computer Science and Engineering, R.V.S. College of Engineering and Technology, Jamshedpur ABSTRACT: File System is a way used by operating systems to store and organize files so that the files can be accessed efficiently. File system is a component of operating system and it interacts with the abstraction of the underlying hardware known as Block Layer. An open source environment like Linux has over 50 different file systems since its existence. Though, in recent years, the speed of CPUs have been increased and the Hard drive technology have tremendous growth, the file systems have also been evolved so that operating system can provide better performance to the user. To measure the performance of the file systems there are different benchmarks used by different developers. In this work, a study of Linux file system evolution has been carried out. As there are several file systems for different Linux Distributions and different Linux kernel versions, some popular versions of extended file systems like ext, ext2, ext3 and ext4 has been considered. The features and differences on the inode structures of these file systems have been discussed. Keywords: Ext, ext2, ext3, ext4, inode, Linux [1] INTRODUCTION Operating System of a particular system is chosen by a user on the basis of applications to be used or better system performance. For better system performance, the performance of the file system is a key part. A file system is part of modern operating system that provides permanent data storage with relatively low access latencies. In Linux, everything is a file. For instance, device drivers, inter-process-communication channels or network connections can appear as files to the user. The Linux kernel handles all these types by handling the implementation details of the files behind a layer of software called the Virtual File System (VFS) [1, 5]. The file system is usually composed of several layers. Each layer uses the features of lower layers to create new features for use by the higher layers. The lowest layer, the I/O Sanku Sinha and Sadique Nayeem 1 FEATURES AND DIFFERENCES OF LINUX EXT, EXT2, EXT3 AND EXT4 FILE SYSTEMS control, consists of device drivers and interrupts handlers. At this layer, information is transferred between the main memory and the secondary disk system. The purpose of the device drivers is to translate high-level commands, such as retrieving a certain disk block, to low-level hardware specific instructions. The basic file system issues generic commands to the appropriate device driver to read and write physical blocks on the disk. The file- organization module translates logical block addresses to physical block addresses for the basic file system to transfer. Finally, the logical file system manages the metadata information; this includes the directory structure [5]. In the last 24 years the Linux file system evolve from ext file system to the current file system. In 1992, the first extended file system (EXT) was created especially for Linux. The first change to ext happened the following year with the creation of the second extended Application Programs Logical File Systems File-Organization Module Basic File System I/O Control Device filesystem (EXT2). EXT3 was developed in 2001 in order to expand upon EXT2 and is the first major Linux filesystem to enable journaling. EXT4 is a fork of the EXT3 filesystem, started in 2006 and added to the Linux kernel in 2008 [3]. Figure: 1. The Logical Structure of File Systems In this paper, a detail study has been made about the features and differences of ext, ext2, ext3 and ext4 File systems. The rest of the paper is organized as follows. In section 2, the concept of inode has been explained. In section 4 the features of ext, ext2, ext3 and ext4 has been explained. Finally the study has been concluded with the overall discussion of these file systems and future scope of this study has been discussed. [2] INODES 2 International Journal of Computer Engineering and Applications, Volume X, Special Issue, ICRTCST -2016 www.ijcea.com, ISSN 2321-3469 An Inode number points to an Inode. An Inode is a data structure that stores the following information about a file : (a) Size of file, (b) Device ID, (c) User ID of the file, (d) Group ID of the file, (e) The file mode information and access privileges for owner, group and others, (f) File protection flags, (g) The timestamps for file creation, modification etc, (i) link counter to determine the number of hard links and(j)Pointers to the blocks storing file’s contents [7]. When a user requests an I/O operation on the file, the kernel code converts the current offset to a block number, uses this number as an index in the block addresses table and reads or writes the physical block. The following figure represents the structure of an inode [3]. Data Blocks Mode Data Blocks Owner info Size Data Blocks Timestamps Data Direct Blocks Blocks Indirect Blocks Data Double Indirect Blocks Triple Indirect Data Blocks Data Blocks Figure: 2. The Structure of inode [3] FILE SYSTEMS [3.1] Ext To implement support Minix File system in Linux, a Virtual File System (VFS) layer was developed. The VFS layer was initially written by Chris Provenzano and later rewritten by Linus Torvalds. After integration of the VFS in the kernel, a new file system, called the “Extended File System” was implemented in 1992 and added to Linux version 0.96c. The maximum size of the file system was 2 giga bytes and maximum file name size was 255 characters [1]. There was no support for the separate access, inode modification and data modification timestamps. The file system used linked list data structure to keep track of free Sanku Sinha and Sadique Nayeem 3 FEATURES AND DIFFERENCES OF LINUX EXT, EXT2, EXT3 AND EXT4 FILE SYSTEMS blocks and inodes [1]. After a long use, the file system gets fragmented and results bad performance. [3.2] Ext2 The Second Extended File system was devised (by Rémy Card) as an extensible and powerful file system for Linux. The Second Extended File System has been designed and implemented to fix some problems present in the first Extended File System. The Ext2fs supports standard Unix file types: regular files, directories, device special files and symbolic links.Ext2fs is able to manage filesystems created on really big partitions. While the original kernel code restricted the maximal filesystem size to 2 GB, recent work in the VFS layer have raised this limit to 4 TB. Thus, it is now possible to use big disks without the need of creating many partitions. It provides long file names. It uses variable length directory entries. The maximal file name size is 255 characters. This limit could be extended to 1012 if needed [4]. Ext2fs reserves some blocks for the super user (root). Normally, 5% of the blocks are reserved. This allows the administrator to recover easily from situations where user processes fill up file systems [4]. [3.3] Ext3 The third extended file system (Ext3) was Developed by Stephen Tweedie in 2001 and was introduced in Linux Kernel 2.4.15.The main benefit of ext3 is that it allows journaling [5]. Journaling has a dedicated area in the file system, where all the changes are tracked. When the system crashes, the possibility of file system corruption is less because of journaling. There are three types of journaling available in ext3 file system [3,4]. Journal – Metadata and content are saved in the journal. Ordered – Only metadata is saved in the journal. Metadata are journaled only after writing the content to disk. This is the default. Writeback – Only metadata is saved in the journal. Metadata might be journaled either before or after the content is written to the disk. In ext3 the maximum individual file size can be from 16 GB to 2 TB and the overall ext3 file system size can be from 2 TB to 32 TB. An ext2 file system can be converted to ext3 file system directly (without backup/restore) [5]. [3.4] Ext4 Ext4 stands for fourth extended file system and it was introduced in Linux Kernel 2.6.19 in 2008. Ext4 supports huge individual file size and overall file system size. The maximum individual file size can be from 16 GB to 16 TB and overall maximum ext4 file system size is 1 EB (exabyte) [2]. Directory can contain a maximum of 64,000 subdirectories (as opposed to 4 International Journal of Computer Engineering and Applications, Volume X, Special Issue, ICRTCST -2016 www.ijcea.com, ISSN 2321-3469 32,000 in ext3). An existing ext3 file system can be mounted as ext4 file system without having to upgrade it [2]. Several other new features are introduced in ext4: multiblock allocation, delayed allocation, journal checksum. fast fsck, etc. In ext4, there have the option of turning the journaling feature “off” [6]. [6] CONCLUSION In this paper, the evolution and features of mutually compatible Linux file systems ext, ext2, ext3 and ext4 have been studied. Ext4 file system has shown superior characteristics when compared to its four predecessors, ext, ext2, ext3 and ext4. It has also be seen that the limit of individual file size as well as the file system size has been increased with evolution of linux file system. The journaling mechanism has provided stability in Linux file system.
Recommended publications
  • A Dynamic Bitmap for Huge File System in Sans
    A Dynamic Bitmap for Huge File System in SANs G.B.Kim*, D.J.Kang*, C.S.Park*, Y.J.Lee*, B.J.Shin** *Computer System Department, Computer and Software Technology Labs. ETRI(Electronics and Telecommunications Research Institute) 161 Gajong-Dong, Yusong-Gu, Daejon, 305-350, South Korea ** Dept. of Computer Engineering, Miryang National University 1025-1 Naei-dong Miryang Gyeongnam, South Korea Abstract: - A storage area network (SAN) is a high-speed special-purpose network (or subnetwork) that interconnects different kinds of data storage devices with associated data servers on behalf of a larger network of users. In SAN, computers service local file requests directly from shared storage devices. Direct device access eliminates the server machines as bottlenecks to performance and availability. Communication is unnecessary between computers, since each machine views the storage as being locally attached. SAN provides us to very large physical storage up to 64-bit address space, but traditional file systems can’t adapt to the file system for SAN because they have the limitation of scalability. In this paper we propose a new mechanism for file system using dynamic bitmap assignment. While traditional file systems rely on a fixed bitmap structures for metadata such as super block, inode, and directory entries, the proposed file system allocates bitmap and allocation area depend on file system features. Our approaches give a solution of the problem that the utilization of the file system depends on the file size in the traditional file systems. We show that the dynamic bitmap mechanism this improves the efficiency of disk usage in file system when compared to the conventional file systems.
    [Show full text]
  • Membrane: Operating System Support for Restartable File Systems Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale, Andrea C
    Membrane: Operating System Support for Restartable File Systems Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Michael M. Swift Computer Sciences Department, University of Wisconsin, Madison Abstract and most complex code bases in the kernel. Further, We introduce Membrane, a set of changes to the oper- file systems are still under active development, and new ating system to support restartable file systems. Mem- ones are introduced quite frequently. For example, Linux brane allows an operating system to tolerate a broad has many established file systems, including ext2 [34], class of file system failures and does so while remain- ext3 [35], reiserfs [27], and still there is great interest in ing transparent to running applications; upon failure, the next-generation file systems such as Linux ext4 and btrfs. file system restarts, its state is restored, and pending ap- Thus, file systems are large, complex, and under develop- plication requests are serviced as if no failure had oc- ment, the perfect storm for numerous bugs to arise. curred. Membrane provides transparent recovery through Because of the likely presence of flaws in their imple- a lightweight logging and checkpoint infrastructure, and mentation, it is critical to consider how to recover from includes novel techniques to improve performance and file system crashes as well. Unfortunately, we cannot di- correctness of its fault-anticipation and recovery machin- rectly apply previous work from the device-driver litera- ery. We tested Membrane with ext2, ext3, and VFAT. ture to improving file-system fault recovery. File systems, Through experimentation, we show that Membrane in- unlike device drivers, are extremely stateful, as they man- duces little performance overhead and can tolerate a wide age vast amounts of both in-memory and persistent data; range of file system crashes.
    [Show full text]
  • CS 5600 Computer Systems
    CS 5600 Computer Systems Lecture 10: File Systems What are We Doing Today? • Last week we talked extensively about hard drives and SSDs – How they work – Performance characterisEcs • This week is all about managing storage – Disks/SSDs offer a blank slate of empty blocks – How do we store files on these devices, and keep track of them? – How do we maintain high performance? – How do we maintain consistency in the face of random crashes? 2 • ParEEons and MounEng • Basics (FAT) • inodes and Blocks (ext) • Block Groups (ext2) • Journaling (ext3) • Extents and B-Trees (ext4) • Log-based File Systems 3 Building the Root File System • One of the first tasks of an OS during bootup is to build the root file system 1. Locate all bootable media – Internal and external hard disks – SSDs – Floppy disks, CDs, DVDs, USB scks 2. Locate all the parEEons on each media – Read MBR(s), extended parEEon tables, etc. 3. Mount one or more parEEons – Makes the file system(s) available for access 4 The Master Boot Record Address Size Descripon Hex Dec. (Bytes) Includes the starEng 0x000 0 Bootstrap code area 446 LBA and length of 0x1BE 446 ParEEon Entry #1 16 the parEEon 0x1CE 462 ParEEon Entry #2 16 0x1DE 478 ParEEon Entry #3 16 0x1EE 494 ParEEon Entry #4 16 0x1FE 510 Magic Number 2 Total: 512 ParEEon 1 ParEEon 2 ParEEon 3 ParEEon 4 MBR (ext3) (swap) (NTFS) (FAT32) Disk 1 ParEEon 1 MBR (NTFS) 5 Disk 2 Extended ParEEons • In some cases, you may want >4 parEEons • Modern OSes support extended parEEons Logical Logical ParEEon 1 ParEEon 2 Ext.
    [Show full text]
  • W4118: Linux File Systems
    W4118: Linux file systems Instructor: Junfeng Yang References: Modern Operating Systems (3rd edition), Operating Systems Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc File systems in Linux Linux Second Extended File System (Ext2) . What is the EXT2 on-disk layout? . What is the EXT2 directory structure? Linux Third Extended File System (Ext3) . What is the file system consistency problem? . How to solve the consistency problem using journaling? Virtual File System (VFS) . What is VFS? . What are the key data structures of Linux VFS? 1 Ext2 “Standard” Linux File System . Was the most commonly used before ext3 came out Uses FFS like layout . Each FS is composed of identical block groups . Allocation is designed to improve locality inodes contain pointers (32 bits) to blocks . Direct, Indirect, Double Indirect, Triple Indirect . Maximum file size: 4.1TB (4K Blocks) . Maximum file system size: 16TB (4K Blocks) On-disk structures defined in include/linux/ext2_fs.h 2 Ext2 Disk Layout Files in the same directory are stored in the same block group Files in different directories are spread among the block groups Picture from Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 3 Block Addressing in Ext2 Twelve “direct” blocks Data Data BlockData Inode Block Block BLKSIZE/4 Indirect Data Data Blocks BlockData Block Data (BLKSIZE/4)2 Indirect Block Data BlockData Blocks Block Double Block Indirect Indirect Blocks Data Data Data (BLKSIZE/4)3 BlockData Data Indirect Block BlockData Block Block Triple Double Blocks Block Indirect Indirect Data Indirect Data BlockData Blocks Block Block Picture from Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc.
    [Show full text]
  • Ext3 = Ext2 + Journaling
    FS Sistem datoteka-skup metoda i struktura podataka koje operativni sistem koristi za čuvanje podataka Struktura sistema datoteka: - 1. zaglavlje→neophodni podaci za funkcionisanje sistema datoteka - 2. strukture za organizaciju podataka na medijumu→meta podaci - 3. podaci→datoteke i direktorijumi Strukture podataka neophodne za realizaciju sistema datoteka: - PCB(Partition Control Block) - BCB(Boot control Block) - Kontrolne strukture za alokaciju datoteka(i-node tabela kod Linux-a) - Direktorijumske strukture koje sadrže kontrolne blokove datoteka - FCB(File Control Block) ext3 Slide 1 of 51 VIRTUELNI SISTEM DATOTEKA(VFS) Linux podržava rad sa velikim brojem sistema datoteka(ext2,ext3, XFS,FAT, NTFS...) VFS-objektno orjentisani način realizacije sistema datoteka koji omogućava korisniku da na isti način pristupa svim sistemima datoteka Način obraćanja korisnika sistemu datoteka - korisnik->API - VFS->sistem datoteka ext3 Slide 2 of 51 Linux FS Linux posmatra svaki sistem datoteka kao nezavisnu hijerarhijsku strukturu objekata(datoteka i direktorijuma) na čijem se vrhu nalazi root(/) direktorijum Objekti Linux sistema datoteka: Super block - zaglavlje(superblock) - i-node tabela I-Node Table - blokovi sa podacima - direktorijumski blokovi - blokovi indirektnih pokazivača Data Area i-node-opisuje objekte, oko 128B na disku Kompromis između veličine i-node tabele i brzine rada sistema datoteka - prvih 10-12 pokazivača na blokove sa podacima - za alokaciju većih datoteka koristi se single indirection block - za još veće datoteke
    [Show full text]
  • System Administration Storage Systems Agenda
    System Administration Storage Systems Agenda Storage Devices Partitioning LVM File Systems STORAGE DEVICES Single Disk RAID? RAID Redundant Array of Independent Disks Software vs. Hardware RAID 0, 1, 3, 5, 6 Software RAID Parity done by CPU FakeRAID Linux md LVM ZFS, btrfs ◦ Later Hardware RAID RAID controller card Dedicated hardware box Direct Attached Storage SAS interface Storage Area Network Fiber Channel iSCSI ATA-over-Ethernet Fiber Channel Network Attached Storage NFS CIFS (think Windows File Sharing) SAN vs. NAS PARTITIONING 1 File System / Disk? 2 TB maybe… 2TB x 12? 2TB x 128 then? Partitioning in Linux fdisk ◦ No support for GPT Parted ◦ GParted Fdisk Add Partition Delete Partition Save & Exit Parted Add Partition Change Units Delete Partition No need to save Any action you do is permanent Parted will try to update system partition table Script support parted can also take commands from command line: ◦ parted /dev/sda mkpart pri ext2 1Mib 10Gib Resize (Expand) 1. Edit partition table ◦ Delete and create with same start position 2. Reload partition table ◦ Reboot if needed 3. Expand filesystem Resize (Shrink) 1. Shrink filesystem ◦ Slightly smaller than final 2. Edit partition table ◦ Delete and create with same start position 3. Reload partition table ◦ Reboot if needed 4. Expand filesystem to fit partition No Partition Moving LOGICAL VOLUME MANAGER What is LVM? A system to manage storage devices Volume == Disk Why use LVM? Storage pooling Online resizing Resize any way Snapshots Concepts Physical Volume ◦ A disk or partition Volume Group ◦ A group of PVs Logical Volume ◦ A virtual disk/partition Physical Extent ◦ Data blocks of a PV Using a partition for LVM Best to have a partition table 1.
    [Show full text]
  • Measuring Parameters of the Ext4 File System
    File System Forensics : Measuring Parameters of the ext4 File System Madhu Ramanathan Venkatesh Karthik Srinivasan Department of Computer Sciences, UW Madison Department of Computer Sciences, UW Madison [email protected] [email protected] Abstract An extent is a group of physically contiguous blocks. Allocating Operating systems are rather complex software systems. The File extents instead of indirect blocks reduces the size of the block map, System component of Operating Systems is defined by a set of pa- thus, aiding the quick retrieval of logical disk block numbers and rameters that impact both the correct functioning as well as the per- also minimizes external fragmentation. An extent is represented in formance of the File System. In order to completely understand and an inode by 96 bits with 48 bits to represent the physical block modify the behavior of the File System, correct measurement of number and 15 bits to represent length. This allows one extent to have a length of 215 blocks. An inode can have at most 4 extents. those parameters and a thorough analysis of the results is manda- 15 tory. In this project, we measure the various key parameters and If the file is fragmented, every extent typically has less than 2 a few interesting properties of the Fourth Extended File System blocks. If the file needs more than four extents, either due to frag- (ext4). The ext4 has become the de facto File System of Linux ker- mentation or due to growth, an extent HTree rooted at the inode is nels 2.6.28 and above and has become the default file system of created.
    [Show full text]
  • Migrating from Netware to OES 2 Linux
    Best Practice Guide www.novell.com Migrating from NetWare to OES 2 prepared for Novell OES 2 User Community Published: November, 2007 Disclaimer Novell, Inc. makes no representations or warranties with respect to the contents or use of this document, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Trademarks Novell is a registered trademark of Novell, Inc. in the United States and other countries. * All third-party trademarks are property of their respective owner. Copyright 2007 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or transmitted without the express written consent of Novell, Inc. Novell, Inc. 404 Wyman Suite 500 Waltham Massachusetts 02451 USA Prepared By Novell Services and User Community Migrating from NetWare to OES 2—Best Practice Guide November, 2007 Novell OES 2 User Community The latest version of this document, along with other OES 2 Linux Best Practice Guides, can be found with the NetWare to Linux Migration Resources at: http://www.novell.com/products/openenterpriseserver/netwaretolinux/view/all/-9/tle/all Contents Acknowledgments.................................................................................. iv Getting Started...................................................................................... 1 Why OES 2?..............................................................................................1 Which Services Are Right for OES 2? ................................................................4
    [Show full text]
  • Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO
    Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO..........................................................................................................................................1 Martin Hinner < [email protected]>, http://martin.hinner.info............................................................1 1. Introduction..........................................................................................................................................1 2. Volumes...............................................................................................................................................1 3. DOS FAT 12/16/32, VFAT.................................................................................................................2 4. High Performance FileSystem (HPFS)................................................................................................2 5. New Technology FileSystem (NTFS).................................................................................................2 6. Extended filesystems (Ext, Ext2, Ext3)...............................................................................................2 7. Macintosh Hierarchical Filesystem − HFS..........................................................................................3 8. ISO 9660 − CD−ROM filesystem.......................................................................................................3 9. Other filesystems.................................................................................................................................3
    [Show full text]
  • SGI™ Propack 1.3 for Linux™ Start Here
    SGI™ ProPack 1.3 for Linux™ Start Here Document Number 007-4062-005 © 1999—2000 Silicon Graphics, Inc.— All Rights Reserved The contents of this document may not be copied or duplicated in any form, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED AND RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR 52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights reserved under the Copyright Laws of the United States. Contractor/ manufacturer is SGI, 1600 Amphitheatre Pkwy., Mountain View, CA 94043-1351. Silicon Graphics is a registered trademark and SGI and SGI ProPack for Linux are trademarks of Silicon Graphics, Inc. Intel is a trademark of Intel Corporation. Linux is a trademark of Linus Torvalds. NCR is a trademark of NCR Corporation. NFS is a trademark of Sun Microsystems, Inc. Oracle is a trademark of Oracle Corporation. Red Hat is a registered trademark and RPM is a trademark of Red Hat, Inc. SuSE is a trademark of SuSE Inc. TurboLinux is a trademark of TurboLinux, Inc. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company, Ltd. SGI™ ProPack 1.3 for Linux™ Start Here Document Number 007-4062-005 Contents List of Tables v About This Guide vii Reader Comments vii 1. Release Features 1 Feature Overview 2 Qualified Drivers 3 Patches and Changes to Base Linux Distributions 3 2.
    [Show full text]
  • State of the Art: Where We Are with the Ext3 Filesystem
    State of the Art: Where we are with the Ext3 filesystem Mingming Cao, Theodore Y. Ts’o, Badari Pulavarty, Suparna Bhattacharya IBM Linux Technology Center {cmm, theotso, pbadari}@us.ibm.com, [email protected] Andreas Dilger, Alex Tomas, Cluster Filesystem Inc. [email protected], [email protected] Abstract 1 Introduction Although the ext2 filesystem[4] was not the first filesystem used by Linux and while other filesystems have attempted to lay claim to be- ing the native Linux filesystem (for example, The ext2 and ext3 filesystems on Linux R are when Frank Xia attempted to rename xiafs to used by a very large number of users. This linuxfs), nevertheless most would consider the is due to its reputation of dependability, ro- ext2/3 filesystem as most deserving of this dis- bustness, backwards and forwards compatibil- tinction. Why is this? Why have so many sys- ity, rather than that of being the state of the tem administrations and users put their trust in art in filesystem technology. Over the last few the ext2/3 filesystem? years, however, there has been a significant amount of development effort towards making There are many possible explanations, includ- ext3 an outstanding filesystem, while retaining ing the fact that the filesystem has a large and these crucial advantages. In this paper, we dis- diverse developer community. However, in cuss those features that have been accepted in our opinion, robustness (even in the face of the mainline Linux 2.6 kernel, including direc- hardware-induced corruption) and backwards tory indexing, block reservation, and online re- compatibility are among the most important sizing.
    [Show full text]
  • Linux 2.5 Kernel Developers Summit
    conference reports This issue’s reports are on the Linux 2.5 Linux 2.5 Kernel Developers Linux development, but I certainly Kernel Developers Summit Summit thought that, in all of this time, someone would have brought this group together OUR THANKS TO THE SUMMARIZER: SAN JOSE, CALIFORNIA before. Rik Farrow, with thanks to La Monte MARCH 30-31, 2001 Yarroll and Chris Mason for sharing their Summarized by Rik Farrow Another difference appeared when the notes. first session started on Friday morning. The purpose of this workshop was to The conference room was set up with cir- provide a forum for discussion of cular tables, each with power strips for changes to be made in the 2.5 release of For additional information on the Linux laptops, and only a few attendees were Linux (a trademark of Linus Torvalds). I not using a laptop. USENIX had pro- 2.5 Kernel Developers Summit, see the assume that many people reading this vided Aeronet wireless setup via the following sites: will be familiar with Linux, and I will hotel’s T1 link, and people were busy <http://lwn.net/2001/features/KernelSummit/> attempt to explain things that might be typing and compiling. Chris Mason of unfamiliar to others. That said, the odd- <http://cgi.zdnet.com/slink?91362:12284618> OSDN noticed that Dave Miller had numbered releases, like 2.3 and now 2.5, <http://www.osdn.com/conferences/kernel/> written a utility to modulate the speed of are development releases where the the CPU fans based upon the tempera- intent is to try out new features or make ture reading from his motherboard.
    [Show full text]