SGI™ Propack 1.3 for Linux™ Start Here
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Linux on the Road
Linux on the Road Linux with Laptops, Notebooks, PDAs, Mobile Phones and Other Portable Devices Werner Heuser <wehe[AT]tuxmobil.org> Linux Mobile Edition Edition Version 3.22 TuxMobil Berlin Copyright © 2000-2011 Werner Heuser 2011-12-12 Revision History Revision 3.22 2011-12-12 Revised by: wh The address of the opensuse-mobile mailing list has been added, a section power management for graphics cards has been added, a short description of Intel's LinuxPowerTop project has been added, all references to Suspend2 have been changed to TuxOnIce, links to OpenSync and Funambol syncronization packages have been added, some notes about SSDs have been added, many URLs have been checked and some minor improvements have been made. Revision 3.21 2005-11-14 Revised by: wh Some more typos have been fixed. Revision 3.20 2005-11-14 Revised by: wh Some typos have been fixed. Revision 3.19 2005-11-14 Revised by: wh A link to keytouch has been added, minor changes have been made. Revision 3.18 2005-10-10 Revised by: wh Some URLs have been updated, spelling has been corrected, minor changes have been made. Revision 3.17.1 2005-09-28 Revised by: sh A technical and a language review have been performed by Sebastian Henschel. Numerous bugs have been fixed and many URLs have been updated. Revision 3.17 2005-08-28 Revised by: wh Some more tools added to external monitor/projector section, link to Zaurus Development with Damn Small Linux added to cross-compile section, some additions about acoustic management for hard disks added, references to X.org added to X11 sections, link to laptop-mode-tools added, some URLs updated, spelling cleaned, minor changes. -
Dm-X: Protecting Volume-Level Integrity for Cloud Volumes and Local
dm-x: Protecting Volume-level Integrity for Cloud Volumes and Local Block Devices Anrin Chakraborti Bhushan Jain Jan Kasiak Stony Brook University Stony Brook University & Stony Brook University UNC, Chapel Hill Tao Zhang Donald Porter Radu Sion Stony Brook University & Stony Brook University & Stony Brook University UNC, Chapel Hill UNC, Chapel Hill ABSTRACT on Amazon’s Virtual Private Cloud (VPC) [2] (which provides The verified boot feature in recent Android devices, which strong security guarantees through network isolation) store deploys dm-verity, has been overwhelmingly successful in elim- data on untrusted storage devices residing in the public cloud. inating the extremely popular Android smart phone rooting For example, Amazon VPC file systems, object stores, and movement [25]. Unfortunately, dm-verity integrity guarantees databases reside on virtual block devices in the Amazon are read-only and do not extend to writable volumes. Elastic Block Storage (EBS). This paper introduces a new device mapper, dm-x, that This allows numerous attack vectors for a malicious cloud efficiently (fast) and reliably (metadata journaling) assures provider/untrusted software running on the server. For in- volume-level integrity for entire, writable volumes. In a direct stance, to ensure SEC-mandated assurances of end-to-end disk setup, dm-x overheads are around 6-35% over ext4 on the integrity, banks need to guarantee that the external cloud raw volume while offering additional integrity guarantees. For storage service is unable to remove log entries documenting cloud storage (Amazon EBS), dm-x overheads are negligible. financial transactions. Yet, without integrity of the storage device, a malicious cloud storage service could remove logs of a coordinated attack. -
Membrane: Operating System Support for Restartable File Systems Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale, Andrea C
Membrane: Operating System Support for Restartable File Systems Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Michael M. Swift Computer Sciences Department, University of Wisconsin, Madison Abstract and most complex code bases in the kernel. Further, We introduce Membrane, a set of changes to the oper- file systems are still under active development, and new ating system to support restartable file systems. Mem- ones are introduced quite frequently. For example, Linux brane allows an operating system to tolerate a broad has many established file systems, including ext2 [34], class of file system failures and does so while remain- ext3 [35], reiserfs [27], and still there is great interest in ing transparent to running applications; upon failure, the next-generation file systems such as Linux ext4 and btrfs. file system restarts, its state is restored, and pending ap- Thus, file systems are large, complex, and under develop- plication requests are serviced as if no failure had oc- ment, the perfect storm for numerous bugs to arise. curred. Membrane provides transparent recovery through Because of the likely presence of flaws in their imple- a lightweight logging and checkpoint infrastructure, and mentation, it is critical to consider how to recover from includes novel techniques to improve performance and file system crashes as well. Unfortunately, we cannot di- correctness of its fault-anticipation and recovery machin- rectly apply previous work from the device-driver litera- ery. We tested Membrane with ext2, ext3, and VFAT. ture to improving file-system fault recovery. File systems, Through experimentation, we show that Membrane in- unlike device drivers, are extremely stateful, as they man- duces little performance overhead and can tolerate a wide age vast amounts of both in-memory and persistent data; range of file system crashes. -
Linux Versions
Linux Versions The Linux "product" is provided in a large number of different versions, known as "distributions," each of which retains the core kernel and GNU tools. Additionally, a variety of common tools (such as KDE, Apache, and Samba) are backed with a collection of additions and service options that meet a particular market niche. Red Hat holds the largest Linux installed base in the US, Novell SUSE Linux in Europe, and TurboLinux (based in Japan) in Asia-Pacific. Mainstream distributions--i.e. commercial applications fully supported by their vendor—have typical license and maintenance fees, just as any other commercial software applications would, while community supported distributions tend to be free to users. Table below lists the best-known Linux distributors, as well as companies that support multiple versions of Linux versions developed by others. Distributor Product Distribution Type Debian Debian GNU/Linux 5.0.0 Free Gentoo Gentoo Linux 2008 Free Mandriva 1. Mandrive Linux One 2009 Commercial 2. Mandriva Linux PowerPack 3. Mandriva Flash (mobile USB Key) 4. Mandriva Corporate Server 4 5. Mandriva Corporate Desktop 6. Mandriva Directory Server 7. Mandriva Pulse 2 (tools) 8. Linbox Rescue Server (backup/restore system) Novell SUSE 1. SUSE Linux Enterprise Server 11 Commercial Linux 2. SUSE Linux Enterprise Desktop 11 3. SUSE Linux Enterprise High Page 1 of 4 Linux Versions Availability Extension 4. SUSE Linux Enterprise Mono Extension 5. SUSE Linux Enterprise Server for System z 6. SUSE Linux Enterprise Real Time Extension 7. SUSE Linux Enterprise Server Priority Support for 8. SAP Applications 9. SUSE Linux Enterprise Point of Service 10. -
Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO
Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO..........................................................................................................................................1 Martin Hinner < [email protected]>, http://martin.hinner.info............................................................1 1. Introduction..........................................................................................................................................1 2. Volumes...............................................................................................................................................1 3. DOS FAT 12/16/32, VFAT.................................................................................................................2 4. High Performance FileSystem (HPFS)................................................................................................2 5. New Technology FileSystem (NTFS).................................................................................................2 6. Extended filesystems (Ext, Ext2, Ext3)...............................................................................................2 7. Macintosh Hierarchical Filesystem − HFS..........................................................................................3 8. ISO 9660 − CD−ROM filesystem.......................................................................................................3 9. Other filesystems.................................................................................................................................3 -
Guest OS Compatibility Guide
Guest OS Compatibility Guide Guest OS Compatibility Guide Last Updated: September 29, 2021 For more information go to vmware.com. Introduction VMware provides the widest virtualization support for guest operating systems in the industry to enable your environments and maximize your investments. The VMware Compatibility Guide shows the certification status of operating system releases for use as a Guest OS by the following VMware products: • VMware ESXi/ESX Server 3.0 and later • VMware Workstation 6.0 and later • VMware Fusion 2.0 and later • VMware ACE 2.0 and later • VMware Server 2.0 and later VMware Certification and Support Levels VMware product support for operating system releases can vary depending upon the specific VMware product release or update and can also be subject to: • Installation of specific patches to VMware products • Installation of specific operating system patches • Adherence to guidance and recommendations that are documented in knowledge base articles VMware attempts to provide timely support for new operating system update releases and where possible, certification of new update releases will be added to existing VMware product releases in the VMware Compatibility Guide based upon the results of compatibility testing. Tech Preview Operating system releases that are shown with the Tech Preview level of support are planned for future support by the VMware product but are not certified for use as a Guest OS for one or more of the of the following reasons: • The operating system vendor has not announced the general availability of the OS release. • Not all blocking issues have been resolved by the operating system vendor. -
State of the Art: Where We Are with the Ext3 Filesystem
State of the Art: Where we are with the Ext3 filesystem Mingming Cao, Theodore Y. Ts’o, Badari Pulavarty, Suparna Bhattacharya IBM Linux Technology Center {cmm, theotso, pbadari}@us.ibm.com, [email protected] Andreas Dilger, Alex Tomas, Cluster Filesystem Inc. [email protected], [email protected] Abstract 1 Introduction Although the ext2 filesystem[4] was not the first filesystem used by Linux and while other filesystems have attempted to lay claim to be- ing the native Linux filesystem (for example, The ext2 and ext3 filesystems on Linux R are when Frank Xia attempted to rename xiafs to used by a very large number of users. This linuxfs), nevertheless most would consider the is due to its reputation of dependability, ro- ext2/3 filesystem as most deserving of this dis- bustness, backwards and forwards compatibil- tinction. Why is this? Why have so many sys- ity, rather than that of being the state of the tem administrations and users put their trust in art in filesystem technology. Over the last few the ext2/3 filesystem? years, however, there has been a significant amount of development effort towards making There are many possible explanations, includ- ext3 an outstanding filesystem, while retaining ing the fact that the filesystem has a large and these crucial advantages. In this paper, we dis- diverse developer community. However, in cuss those features that have been accepted in our opinion, robustness (even in the face of the mainline Linux 2.6 kernel, including direc- hardware-induced corruption) and backwards tory indexing, block reservation, and online re- compatibility are among the most important sizing. -
Mobile Video Ecosystem and Geofencing for Licensed Content Delivery
Mobile Video Ecosystem and Geofencing for Licensed Content Delivery TABLE OF CONTENTS Executive Summary ...................................................................................................................................... 2 1. Introduction ............................................................................................................................................... 4 2. Video Delivery Challenges and Optimizations .......................................................................................... 6 2.1 Delivery technology ............................................................................................................................. 7 2.2 Video Codecs ...................................................................................................................................... 9 2.3 Codec comparison ............................................................................................................................... 9 2.4 Congestion Control Algorithm Enhancements .................................................................................. 11 3. Managing Video Based on Network Load............................................................................................... 12 3.1 Radio Congestion Aware Function (RCAF) ...................................................................................... 12 3.2 Mobile Throughput Guidance ............................................................................................................ 13 3.3 Self Organizing -
Debian \ Amber \ Arco-Debian \ Arc-Live \ Aslinux \ Beatrix
Debian \ Amber \ Arco-Debian \ Arc-Live \ ASLinux \ BeatriX \ BlackRhino \ BlankON \ Bluewall \ BOSS \ Canaima \ Clonezilla Live \ Conducit \ Corel \ Xandros \ DeadCD \ Olive \ DeMuDi \ \ 64Studio (64 Studio) \ DoudouLinux \ DRBL \ Elive \ Epidemic \ Estrella Roja \ Euronode \ GALPon MiniNo \ Gibraltar \ GNUGuitarINUX \ gnuLiNex \ \ Lihuen \ grml \ Guadalinex \ Impi \ Inquisitor \ Linux Mint Debian \ LliureX \ K-DEMar \ kademar \ Knoppix \ \ B2D \ \ Bioknoppix \ \ Damn Small Linux \ \ \ Hikarunix \ \ \ DSL-N \ \ \ Damn Vulnerable Linux \ \ Danix \ \ Feather \ \ INSERT \ \ Joatha \ \ Kaella \ \ Kanotix \ \ \ Auditor Security Linux \ \ \ Backtrack \ \ \ Parsix \ \ Kurumin \ \ \ Dizinha \ \ \ \ NeoDizinha \ \ \ \ Patinho Faminto \ \ \ Kalango \ \ \ Poseidon \ \ MAX \ \ Medialinux \ \ Mediainlinux \ \ ArtistX \ \ Morphix \ \ \ Aquamorph \ \ \ Dreamlinux \ \ \ Hiwix \ \ \ Hiweed \ \ \ \ Deepin \ \ \ ZoneCD \ \ Musix \ \ ParallelKnoppix \ \ Quantian \ \ Shabdix \ \ Symphony OS \ \ Whoppix \ \ WHAX \ LEAF \ Libranet \ Librassoc \ Lindows \ Linspire \ \ Freespire \ Liquid Lemur \ Matriux \ MEPIS \ SimplyMEPIS \ \ antiX \ \ \ Swift \ Metamorphose \ miniwoody \ Bonzai \ MoLinux \ \ Tirwal \ NepaLinux \ Nova \ Omoikane (Arma) \ OpenMediaVault \ OS2005 \ Maemo \ Meego Harmattan \ PelicanHPC \ Progeny \ Progress \ Proxmox \ PureOS \ Red Ribbon \ Resulinux \ Rxart \ SalineOS \ Semplice \ sidux \ aptosid \ \ siduction \ Skolelinux \ Snowlinux \ srvRX live \ Storm \ Tails \ ThinClientOS \ Trisquel \ Tuquito \ Ubuntu \ \ A/V \ \ AV \ \ Airinux \ \ Arabian -
Buffered FUSE: Optimising the Android IO Stack for User-Level Filesystem
Int. J. Embedded Systems, Vol. 6, Nos. 2/3, 2014 95 Buffered FUSE: optimising the Android IO stack for user-level filesystem Sooman Jeong and Youjip Won* Hanyang University, #507-2, Annex of Engineering Center, 17 Haengdang-dong, Sungdong-gu, Seoul, 133-791, South Korea E-mail: [email protected] E-mail: [email protected] *Corresponding author Abstract: In this work, we optimise the Android IO stack for user-level filesystem. Android imposes user-level filesystem over native filesystem partition to provide flexibility in managing the internal storage space and to maintain host compatibility. The overhead of user-level filesystem is prohibitively large and the native storage bandwidth is significantly under-utilised. We overhauled the FUSE layer in the Android platform and propose buffered FUSE (bFUSE) to address the overhead of user-level filesystem. The key technical ingredients of buffered FUSE are: 1) extended FUSE IO size; 2) internal user-level write buffer; 3) independent management thread which performs time-driven FUSE buffer synchronisation. With buffered FUSE, we examined the performances of five different filesystems and three disk scheduling algorithms in a combinatorial manner. With bFUSE on XFS filesystem using the deadline scheduling, we achieved the IO performance improvements of 470% and 419% in Android ICS and JB, respectively, over the existing smartphone device. Keywords: Android; storage; user-level filesystem; FUSE; write buffer; embedded systems. Reference to this paper should be made as follows: Jeong, S. and Won, Y. (2014) ‘Buffered FUSE: optimising the Android IO stack for user-level filesystem’, Int. J. Embedded Systems, Vol. 6, Nos. -
Linux 2.5 Kernel Developers Summit
conference reports This issue’s reports are on the Linux 2.5 Linux 2.5 Kernel Developers Linux development, but I certainly Kernel Developers Summit Summit thought that, in all of this time, someone would have brought this group together OUR THANKS TO THE SUMMARIZER: SAN JOSE, CALIFORNIA before. Rik Farrow, with thanks to La Monte MARCH 30-31, 2001 Yarroll and Chris Mason for sharing their Summarized by Rik Farrow Another difference appeared when the notes. first session started on Friday morning. The purpose of this workshop was to The conference room was set up with cir- provide a forum for discussion of cular tables, each with power strips for changes to be made in the 2.5 release of For additional information on the Linux laptops, and only a few attendees were Linux (a trademark of Linus Torvalds). I not using a laptop. USENIX had pro- 2.5 Kernel Developers Summit, see the assume that many people reading this vided Aeronet wireless setup via the following sites: will be familiar with Linux, and I will hotel’s T1 link, and people were busy <http://lwn.net/2001/features/KernelSummit/> attempt to explain things that might be typing and compiling. Chris Mason of unfamiliar to others. That said, the odd- <http://cgi.zdnet.com/slink?91362:12284618> OSDN noticed that Dave Miller had numbered releases, like 2.3 and now 2.5, <http://www.osdn.com/conferences/kernel/> written a utility to modulate the speed of are development releases where the the CPU fans based upon the tempera- intent is to try out new features or make ture reading from his motherboard. -
Performance Characteristics of VMFS and RDM Vmware ESX Server 3.0.1
Performance Study Performance Characteristics of VMFS and RDM VMware ESX Server 3.0.1 VMware ESX Server offers three choices for managing disk access in a virtual machine—VMware Virtual Machine File System (VMFS), virtual raw device mapping (RDM), and physical raw device mapping. It is very important to understand the I/O characteristics of these disk access management systems in order to choose the right access type for a particular application. Choosing the right disk access management method can be a key factor in achieving high system performance for enterprise‐class applications. This study provides performance characterization of the various disk access management methods supported by VMware ESX Server. The goal is to provide data on performance and system resource utilization at various load levels for different types of work loads. This information offers you an idea of relative throughput, I/O rate, and CPU efficiency for each of the options so you can select the appropriate disk access method for your application. This study covers the following topics: “Technology Overview” on page 2 “Executive Summary” on page 2 “Test Environment” on page 2 “Performance Results” on page 5 “Conclusion” on page 10 “Configuration” on page 10 “Resources” on page 11 Copyright © 2007 VMware, Inc. All rights reserved. 1 Performance Characteristics of VMFS and RDM Technology Overview VMFS is a special high‐performance file system offered by VMware to store ESX Server virtual machines. Available as part of ESX Server, it is a distributed file system that allows concurrent access by multiple hosts to files on a shared VMFS volume.