Understanding the Stakeholders' Involvement in Utilizing Municipal

Total Page:16

File Type:pdf, Size:1020Kb

Understanding the Stakeholders' Involvement in Utilizing Municipal sustainability Article Understanding the Stakeholders’ Involvement in Utilizing Municipal Solid Waste in Agriculture through Composting: A Case Study of Hanoi, Vietnam Nam Phong Le 1,2,*, Thi Thu Phuong Nguyen 3,4 and Dajian Zhu 3 ID 1 College of Architecture and Urban Planning, Tongji University, Siping Road 1239, Shanghai 200092, China 2 Faculty of Architecture and Planning, National University of Civil Engineering, 55 Giai phong, Hanoi 100000, Vietnam 3 Department of Public Administration, School of Economics and Management, Tongji University, Tongji Building A, Siping Road 1500, Shanghai 200092, China; [email protected] (T.T.P.N.); [email protected] (D.Z.) 4 Faculty of Economics and Rural Development, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 100000, Vietnam * Correspondence: [email protected]; Tel.: +848-6866-5488 Received: 7 June 2018; Accepted: 2 July 2018; Published: 4 July 2018 Abstract: Although the involvement of stakeholders is believed to be the key to the success of sustainable municipal waste management, the specific features of stakeholders, as well as their interdependence, have been under-researched. This study employed a multilevel governance approach to understand the manner in which different types of stakeholder networks interact with one another and how their roles should be reinforced. A combination of stakeholder analysis (SA) and social network analysis (SNA) was employed to investigate the perspective of stakeholders in utilizing municipal solid waste (MSW) in agriculture in Hanoi, Vietnam. SA indicated that the local authorities take the main responsibility for the management of MSW in Hanoi. Although other stakeholders express a significant interest in recycling MSW through composting, many of them do not have sufficient power to make any changes to the current system. SNA revealed the fragmentation of the network, as the coordination among the stakeholders is dominated by hierarchical governance, while there is a lack of horizontal cooperation among the sectors. The fragmentation could be attributed to weak legislative framework, lack of trust, financial constraints, and the limited participation of private enterprises. The governance of MSW use in agriculture should be executed through interdependency rather than hierarchy and through a network comprising both state and non-state actors. Keywords: municipal solid waste; organic waste; stakeholders; composting; social network analysis; agriculture 1. Introduction As in other cities in Asian developing countries, organic waste in Hanoi accounts for the largest proportion of the municipal solid waste (MSW). The city produces more than 6500 tonnes of solid waste per day, and the average amount of MSW generated daily per capita is 0.9 kg. It is estimated that by 2020, this figure will have reached 1.4 kg/day [1]. Its weight is increasing rapidly along with the increase in population and the rapid urbanization process of a city that has been geographically and administratively expanded [2]. Apart from bad odors and unsightliness, organic waste has also caused serious environmental degradation and negative impacts on public health [3,4]. Sustainability 2018, 10, 2314; doi:10.3390/su10072314 www.mdpi.com/journal/sustainability Sustainability 2018, 10, 2314 2 of 32 Utilizing urban waste in agriculture production through composting has been considered as a suitable option to cope with urban waste issues in developing countries [3–9]. This alternative may be attributed to economic, environmental, and social factors, such as the costs associated with landfilling and the transportation of waste, the pollution impacts of accumulated solid waste, public health threats, and Not In My Back Yard (NIMBY) conflicts. It further helps to improve the fertility of the soil because of the large amount of organic matter contained in waste streams in these countries [10,11]. Aware of not only the threats from pollution, but also the opportunities for recycling organic waste, the government of Vietnam approved the National Strategy for Integrated Management of Solid Wastes until 2025 and Vision Towards 2050. It stresses that organic waste needs to be managed in a cycle, involving the separation of the waste, composting, and utilization of the compost in the arable land of the city. However, the question is how to translate the national strategy into the local context when a number of composting projects initiated over the past decades have failed in most developing countries [12,13]. As is the case in many other environmental situations, utilizing MSW through composting requires a holistic approach involving a range of different stakeholders. This suggests that any decision meant to improve the effectiveness of SWM must seriously consider the perceptions, interests, and roles of all the parties involved [14]. In other words, the success in solid waste management depends on the extent to which stakeholders are integrated into the management process, thus harnessing their respective resources to build collective strength with a clear division of roles and responsibilities [15]. So far, with a top-down approach, the municipal authorities of most developing countries retain a key role in the largest part of the solid waste management process [16]. The lack of the involvement of private enterprises, end-users of recycled products, local communities, and other relevant stakeholders in the waste management process is the main reason for the crisis regarding solid waste management [4,13,16]. The literature reveals that the problem of implementing sustainable municipal solid waste management lies in its practical application [17,18]. The practical issues of ability, agreement, coordination, collaboration, and obligations were discussed in the literature [5,15,16]. These problems have been associated with ineffective government policy, poor administration, failures to involve the private sector and local communities, and lack of effective communication [16,19,20]. As a result, low levels of awareness, problems with coordination and bureaucracy, the delicacy of common interests, institutional fragmentation, failure to clarify goals, and an unwillingness to make significant changes to current behavior have existed among stakeholders [13,21,22]. Where the formal problem-solving structures of government are ill-fitted to solve complex problems [23], it may be necessary to use governance networks to integrate the required distributed capacities into a problem-solving framework that is more reflexive and thus more conducive to the achievement of development goals [24]. The adoption of multilevel governance framework has proven to be useful to that end [25,26]. The main value of multilevel governance framework is that it allows for an understanding of complexity at and between levels. The vertical dimension refers to the linkages between higher and lower levels of government, while horizontal dimension focuses on the cooperation arrangement between state, market, and civil society actors. These two dimensions often coexist and link to each other [25]. The use of the governance network approach has been extensively employed to develop conceptual frameworks for addressing the field of environmental management. For example, Francesch-Huidobro [26], based on a multilevel governance perspective, set out a conceptual framework to examine the governing mechanisms through climate change mitigation and energy decisions that are made in Shanghai, China. Likewise, some have applied a social network approach to analyze natural resources governance [27], as well as MSW management [14,28]. Indeed, the development of governance networks can significantly address the common dilemmas in MSW management. For example, Taiwan has been seen as having a successful practice for targeting urban solid waste, thanks to the engagement of various stakeholders in the MSW management [29]. According to Ravetz [30], for cities to be sustainable, there is a need to move towards a situation where the through-put of resources is reduced (i.e., where it contains its own eco-cycle. This is also Sustainability 2018, 10, x FOR PEER REVIEW 3 of 33 Sustainability 2018, 10, 2314 3 of 32 According to Ravetz [30], for cities to be sustainable, there is a need to move towards a situation where the through-put of resources is reduced (i.e., where it contains its own eco-cycle. This is also the basic basic philosophy philosophy of of the the circular circular economy, economy, which which has has received received increasing increasing attention attention worldwide worldwide as aas way a way to toincrease increase the the efficiency efficiency of of resource-use resource-use-based-based adoption adoption of of closing-the-loop production patterns within an economiceconomic systemsystem [[31].31]. Returning Returning organic organic matter matter from from urban urban waste back to agriculture soil is one part ofof thisthis processprocess (Figure(Figure1 ).1). TheThe challengechallenge ofof linkinglinking urbanurban wastewaste toto agriculture is is that that waste waste must must be beseparated separated at th ate source. the source. Waste Waste separation separation provides provides a steady a supply steady ofsupply organic of organicwaste for waste composting for composting plants. For plants. municipal For municipal solid waste, solid which waste, is which high in is volume, high in volume,diverse indiverse nature, in and nature, complicated and complicated in composition, in composition, the
Recommended publications
  • Life Cycle Assessment
    Life cycle assessment http://lcinitiative.unep.fr/ http://lca.jrc.ec.europa.eu/lcainfohub/index.vm http://www.lbpgabi.uni-stuttgart.de/english/referenzen_e.html "Cradle-to-grave" redirects here. For other uses, see Cradle to the Grave (disambiguation). Recycling concepts Dematerialization Zero waste Waste hierarchy o Reduce o Reuse o Recycle Regiving Freeganism Dumpster diving Industrial ecology Simple living Barter Ecodesign Ethical consumerism Recyclable materials Plastic recycling Aluminium recycling Battery recycling Glass recycling Paper recycling Textile recycling Timber recycling Scrap e-waste Food waste This box: view • talk • edit A life cycle assessment (LCA, also known as life cycle analysis, ecobalance, and cradle-to- grave analysis) is the investigation and valuation of the environmental impacts of a given product or service caused or necessitated by its existence. Contents [hide] 1 Goals and Purpose of LCA 2 Four main phases o 2.1 Goal and scope o 2.2 Life cycle inventory o 2.3 Life cycle impact assessment o 2.4 Interpretation o 2.5 LCA uses and tools 3 Variants o 3.1 Cradle-to-grave o 3.2 Cradle-to-gate o 3.3 Cradle-to-Cradle o 3.4 Gate-to-Gate o 3.5 Well-to-wheel o 3.6 Economic Input-Output Life Cycle Assessment 4 Life cycle energy analysis o 4.1 Energy production o 4.2 LCEA Criticism 5 Critiques 6 See also 7 References 8 Further reading 9 External links [edit] Goals and Purpose of LCA The goal of LCA is to compare the full range of environmental and social damages assignable to products and services, to be able to choose the least burdensome one.
    [Show full text]
  • Sample Thesis Template
    Development of a Decision Support System for Resolving Conflicts in Environmentally Sensitive Areas Ahmed Abdelrehim A thesis submitted in partial fulfilment for the degree of Doctor of Philosophy in the School of Architecture, Planning and Landscape at The University of Newcastle upon Tyne 2012 Abstract The aim of this research is to develop a new methodology to assist decision-makers in assessing and measuring the degree of stakeholder conflict in environmentally sensitive areas. The research tried to answer the following question: How can the understanding of the magnitude and direction of consensus among conflicting stakeholders shape the management of an environmentally sensitive area? The case study area of Lake Maryout, Egypt, provided a good example of failure in the management of natural resources. It demonstrated that conflict among different stakeholders coupled with contradiction in the current policies and legislation play a role in exacerbating the deterioration of its environmental quality. The methodology therefore, is applied on simplified application of analytical hierarchical structure as an example to identify the main variables underpinning Lake Maryout‘s stakeholders‘ conflicting priorities. The research adopted both a qualitative and quantitative mixed methodology. The underpinning data was collected through expert and stakeholder questionnaires, interviews, public hearings, field survey and remotely sensed data. The research methodology applies Multi-Criteria Decision Analysis (MCDA), using Analytic Hierarchy Process (AHP), with the support of Geographic Information System (GIS), and the Driving Forces–Pressures–State–Impacts–Responses (DPSIR) analytical framework. The research has shed light on the dynamics of environmental conflicts, illustrating the formation and direction of disagreements between various stakeholders.
    [Show full text]
  • Mathematical and Computational Modelling Frameworks for Integrated Sustainability Assessment (ISA)
    Mathematical and Computational Modelling Frameworks for Integrated Sustainability Assessment (ISA) Maryam Farsi, Amin Hosseinian-Far, Alireza Daneshkhah and Tabassom Sedighi Abstract Sustaining and optimising complex systems are often challenging prob- lems as such systems contain numerous variables that are interacting with each other in a nonlinear manner. Application of integrated sustainability principles in a com- plex system (e.g. the Earth’s global climate, social organisations, Boeing’s supply chain, automotive products and plants’ operations, etc.) is also a challenging pro- cess. This is due to the interactions between numerous parameters such as eco- nomic, ecological, technological, environmental and social factors being required for the life assessment of such a system. Functionality and flexibility assessment of a complex system is a major factor for anticipating the systems’ responses to changes and interruptions. This study outlines generic mathematical and computa- tional approaches to solving the nonlinear dynamical behaviour of complex systems. The goal is to explain the modelling and simulation of system’s responses experi- encing interaction change or interruption (i.e. interactive disruption). Having this knowledge will allow the optimisation of systems’ efficiency and would ultimately reduce the system’s total costs. Although, many research works have studied inte- grated sustainability behaviour of complex systems, this study presents a generic mathematical and computational framework to explain the behaviour of
    [Show full text]
  • Assessment of Eco-Labelling and Green Procurement from a Strategic Sustainability Perspective
    PROCUREMENT FROM ASSESSMENT OF ABSTRACT Efforts to reduce negative impacts from con- but also gaps and thus potentials for improve- sumption and production include voluntary ment. The criteria development processes and E CO-L ASSESSMENT OF ECO-LABELLING AND market-based initiatives. Examples are the con- the resulting criteria mostly concern the cur- A cept of eco-labelling and the concept of green rent market supply and a selection of current A GREEN PROCUREMENT FROM A STRATEGIC BELLING S procurement. These have emerged as policy environmental impacts outside the context of TR SUSTAINABILITY PERSPECTIVE instruments with great potentials to steer pro- long-term objectives. Neither sustainability nor A TEGIC duct innovation and purchasing decisions in a any other clearly defined long-term objective is A sustainable direction. This potential has been re- agreed upon, and the criteria are not structured ND S UST cognized by the United Nations, the European to support procurers, suppliers and product de- G REEN Union, the Organization for Economic Coopera- velopers in a systematic and strategic stepwise A IN tion and Development and national governments approach towards sustainability. Recommended A through, e.g., various programmes and schemes. improvements include a more thorough sustai- BILITY PERS The aim of this thesis is to assess current crite- nability assessment, communication of clearer ria development processes within eco-labelling objectives, broader competence in the criteria Cecilia Bratt and green procurement from a strategic sus- development groups and more emphasis on the P tainability perspective and to describe possible dialogue and interaction between key actors. ECTIVE improvement potentials from such a perspective This includes an extended view on both the pro- to make these instruments more supportive of duct concept and actors involved.
    [Show full text]
  • Stakeholder Engagement – a Good Practice
    Stakeholder Engagement: A Good Practice Handbook for Companies Doing Business in Emerging Markets Cover photo credits: 1st row (L to R): WB Staff, WB Staff, WB Staff 2nd row (L to R): T.Pollett, I. Michuci, Courtesy of AGD 3rd row (L to R): K.Merckens, C. Warren, WB Staff 4th row (L to R): T.Pollett, Courtesy America Latina Logistica, WB Staff ® 2007 INTERNATIONAL FINANCE CORPORATION 2121 Pennsylvania Avenue, N.W. Washington, D.C. 20433 U.S.A. Telephone: 202 473-1000 Facsimile: 202 974-4384 Internet: www.ifc.org/enviro All rights reserved First printing, May 2007 The findings, interpretations, views, and conclusions expressed herein are those of the authors and do not necessarily reflect the views of the Executive Directors of the International Finance Corporation or of the International Bank for Reconstruction and Development (the World Bank) or the governments they represent. Rights and Permissions IFC encourages use and distribution of its publica- tions. Content from this document may be used freely and copied into other formats without prior permission provided that clear attribution is given to the original source. Stakeholder Engagement: A Good Practice Handbook for Companies Doing Business in Emerging Markets iii Table of Contents Introduction. 1 Towards a broader concept of “engagement” . 2 About this handbook . 3 Tips for successful engagement . 4 PART ONE: Key Concepts and Principles of Stakeholder Engagement Stakeholder Identification and Analysis . 13 Information Disclosure . 27 Stakeholder Consultation . 33 Five Steps for Iterative Consultation. 34 Informed Participation . 44 Consultation with Indigenous Peoples . 47 Gender Considerations in Consultation . 56 Negotiation and Partnerships .
    [Show full text]
  • Locating Hotspots for the Social Life Cycle Assessment of Bio-Based Products from Short Rotation Coppice
    BioEnergy Research https://doi.org/10.1007/s12155-021-10261-9 Locating Hotspots for the Social Life Cycle Assessment of Bio-Based Products from Short Rotation Coppice Daniela Fürtner1 & Lea Ranacher1 & E. Alejandro Perdomo Echenique1 & Peter Schwarzbauer2 & Franziska Hesser1,2 Received: 8 July 2020 /Accepted: 17 February 2021 # The Author(s) 2021 Abstract The establishment of new value chains raises expectations in economic and social benefits. To determine whether these expec- tations can be fulfilled or whether there are also negative consequences, social aspects should be assessed as early as the R&D phase. Potential social impacts can be assessed with the help of a social life cycle assessment (SLCA). A common problem in SLCA studies is the large number of social aspects. Thus, it is important to prioritize the most relevant aspects. Scholars agree that socioeconomic indicators should not be selected on a purely intuitive and common sense basis and that a standardized approach is missing. A three-step process has been developed to identify the most vulnerable and relevant social aspects. These three steps were implemented into a case study to empirically test the method. Short-rotation-coppice as an alternative form of agricultural dendromass production is one possibility to obtain wood resources for the processing of bio-based products. The use of agricultural land for dendromass production promises additional income for the region’s farmers and job opportunities for the local population. The extant literature shows that the most frequently addressed impacts are related to workers’ health and safety aspects. The outcome of this study aims to support future research by identifying an appropriate approach for the selection of indicators in SLCA.
    [Show full text]
  • MGE2: a Framework for Cradle-To-Cradle Design MGE2: Un
    MGE2: A framework for cradle-to-cradle design María-Estela Peralta-Álvarez a, Francisco Aguayo-González b, Juan-Ramón Lama-Ruiz c d & María Jesús Ávila-Gutiérrez a . Engineering Design Department, University of Seville, Seville, Spain. [email protected] b, Engineering Design Department, University of Seville, Seville, Spain. [email protected] c Engineering Design Department, University of Seville, Seville, Spain. [email protected] d Engineering Design Department, University of Seville, Seville, Spain. [email protected] Received: May 2th, 2014. Received in revised form: December 1th, 2014. Accepted: December 17th, 2014. Abstract Design and ecology are critical issues in the industrial sector. Products are subject to constant review and optimization for survival in the market, and limited by their impact on the planet. Decisions about a new product affect its life cycle, consumers, and especially the environment. In order to achieve quality solutions, eco-effectiveness must be considered, therefore, in the design of a process, its product development and associated system. An orderly methodology is essential to help towards creating products that meet both user needs and current environmental requirements, under paradigms that create environmental value. To date, the industry has developed techniques in an attempt to address these expectations under Cradle-to-Cradle (C2C), which is loosely structured around the conceptual frameworks and design techniques. The present work describes a new framework that encompasses all stages of design, and enables interaction under a set of principles developed for C2C. Under this innovative new paradigm emerges the Genomic Model of Eco-innovation and Eco-design, proposed as a methodology for designing products that meet individual and collective needs, and which enables the design of eco-friendly products, by integrating them into the framework of the ISO standards of Life Cycle Assessment (LCA), eco-design, eco-labeling, and C2C certification.
    [Show full text]
  • Background Document
    Background document supplementing the “Roadmap for Sustainability Assessment in European Process Industries” Current State of LCSA Authors: N. Minkov1, M. Finkbeiner1, S. Sfez2, J. Dewulf2, 3 3 4 4 A. Manent , E. Rother , P. Weyell , D. Kralisch , 5 6 7 7 D. Schowanek , A. Lapkin , M. Jones , A. Azapagic 1 Technical University of Berlin, Department of Environmental Technology, Chair of Sustainable Engineering 2 Ghent University, Research Group ENVOC 3 Evonik Technology & Infrastructure GmbH, Life Cycle Management 4 Friedrich-Schiller-University Jena, Institute of Pharmacy, Department of Pharmaceutical Tech- nology 5 Procter & Gamble Services Company NV, Global Product Stewardship 6 University of Cambridge, Department of Chemical Engineering and Biotechnology 7 The University of Manchester, School of Chemical Engineering and Analytical Science An initiative from the European Community's framework programme for research and innovation H2020 [H2020/20014-2020] under grant agreement no. 636816 (MEASURE). 2 Version: 1.0 Published online: April 2016 3 Table of Content 1 Introduction ........................................................................................................ 5 2 Challenges in achieving full life cycle sustainability assessment ................ 6 2.1 Introduction .......................................................................................................... 6 2.2 Development and limitations ................................................................................ 7 2.2.1 General LCA and the environmental
    [Show full text]
  • Integrating Cradle to Cradle and Life Cycle Assessment for Product Sustainability: Case Study Insights from International Flavors & Fragrances Inc
    AALBORG UNIVERSITET STUDY BOARD OF PLANNING AND SURVEYING DEPARMENT OF PLANNING Integrating Cradle to Cradle and Life Cycle Assessment for product sustainability: Case study insights from International Flavors & Fragrances Inc. and DuPont Nutrition & Biosciences merger process DANIELA MEJIA ECHEVERRIA MASTER’S THESIS ENVIRONMENTAL MANAGEMENT AND SUSTAINABILITY SCIENCE JUNE 2021 Author: Daniela Mejia Echeverria Title: Integrating Cradle to Cradle and Life In collaboration with International Cycle Assessment for Product Flavors & Fragrances Inc. Sustainability: Case study insights from International Flavors & Fragrances Inc. Supervisor: and DuPont Nutrition & Biosciences Henrik Riisgaard merger process Department of Planning, Aalborg University Project period: February 2021 – June 2021 Main report length: 65 pages Appendices: 7 pages Document type: Annexes (submitted separately): 15 pages Master’s Thesis (30 ECTS) Total length: 97 pages Abstract: Despite the priority given to sustainability topics on the business agenda today, not much information is available on how to address corporate sustainability in shifting business dynamics such as mergers and acquisitions (M&A). This case study analyses the latest combination between International Flavors & Fragrances Inc. (IFF) and DuPont Nutrition & Biosciences (N&B) from a corporate sustainability standpoint. A focus is given to the two product sustainability approaches that have come across after the merger process: Cradle to Cradle (C2C) and Life Cycle Assessment (LCA). Here, the main objective was to explore C2C and LCA as integrated approaches for promoting product sustainability among the stakeholders of the combined company, which keeps operating under the name of IFF. For this, a comprehensive literature review was carried out, followed by semi-structured interviews conducted to key stakeholders.
    [Show full text]
  • Techno-Economic and Environmental Assessments of Replacing Conventional Fossil Fuels: Oil Sands Industry Case Studies
    Techno-Economic and Environmental Assessments of Replacing Conventional Fossil Fuels: Oil Sands Industry Case Studies by Jennifer Marie McKellar A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Civil Engineering University of Toronto © Copyright by Jennifer Marie McKellar (2012) Techno-Economic and Environmental Assessments of Replacing Conventional Fossil Fuels: Oil Sands Industry Case Studies Jennifer Marie McKellar Doctor of Philosophy Graduate Department of Civil Engineering University of Toronto 2012 Abstract Conventional fossil fuels are widely used, however there are growing concerns about the security of their supply, volatility in their prices and the environmental impacts of their extraction and use. The objective of this research is to investigate the potential for replacing conventional fuels in various applications, focusing on the Alberta oil sands industry. Such investigations require systems-level approaches able to handle multiple criteria, uncertainty, and the views of multiple stakeholders. To address this need, the following are developed: life cycle assessment (LCA) and life cycle costing models of polygeneration systems; a life cycle-based framework for multi- sectoral resource use decisions; and a method combining LCA and real options analyses to yield environmental and financial insights into projects. These tools are applied to options for utilizing oil sands outputs, both the petroleum resource (bitumen) and by-products of its processing (e.g., asphaltenes, coke), within the oil sands industry and across other sectors. For oil sands on-site use, multiple fuels are assessed for the polygeneration of electricity, steam and hydrogen, in terms of life cycle environmental and financial impacts; asphaltenes gasification with carbon capture and storage (CCS) is the most promising option, able to reduce greenhouse gas (GHG) emissions to 25% of those of current natural gas-based systems.
    [Show full text]
  • The IEA Climate Change VIA Module.Pdf
    The GEO Approach to Integrated Environmental Assessment VIA Module List of contents Definition of key terms iv List of Acronyms vi Overview vii Course Materials 1 Introduction and Learning Objectives 1 Relevance 3 1. Characteristics of Vulnerability and Scope of the Assessment 7 1.1 Defining vulnerability 7 1.2 Vulnerability to climate change 8 2. Vulnerability Assessments and the DPSIR Framework 12 3. Monitoring Vulnerability 16 4. Impacts of Climate Change and their Assessment 19 5. Creating Responses: Determining the adaptation options 28 5.1 Mainstreaming climate change into development decisions 28 5.2 Developing adaptation responses 30 6. Prioritizing Adaptation Responses 35 7. Developing a Basic Implementation Plan and a Communication Strategy 40 7.1 Implementing adaptation responses 40 7.2 Communicating climate change and adaptation 45 References 46 Appendix 49 A. Setting IEA in the context of existing UNFCCC processes 49 B. Facilitator’s preparation guide 50 C. Suggestions for integration of vulnerability, climate change and adaptation to 54 IEA process D. Examples of the IEA Report Content with Included Vulnerability, Climate 55 Change and Adaptation s for Regional or Sub-National Reports E. Sources of further information 57 IEA Training Manual iii VIA Module An integrated environmental assessment and reporting training manual Definition of Key Terms Adaptation includes initiatives and measures to reduce the vulnerability of natural and human systems against actual or expected stresses, including climate change effects. Various types of adaptation exist, for example, anticipatory and reactive, private and public, and autonomous and planned.Examples include: raising river or coastal dikes, the substitution of more temperature- shock resistant plants for sensitive ones, etc.
    [Show full text]
  • Distribution of Impacts in Biofuels Industry: Applying Social Life-Cycle Assessment Carla Grigoletto Duarte2, Tina Wegg1,4, Ana Paula Dibo2, Amarillis Gallardo2,3
    Distribution of impacts in Biofuels Industry: applying Social Life-cycle Assessment Carla Grigoletto Duarte2, Tina Wegg1,4, Ana Paula Dibo2, Amarillis Gallardo2,3 Abstract This paper considers how Social Life-cycle Assessment (S-LCA) might support the inclusion of equity issues into ethanol production decision-making. We have conducted a case study of a particular sugarcane bioethanol mill, interviewing 36 stakeholders based in and around the site of production in Sao Paulo, Brazil. The conclusions indicate the stakeholders have an overall positive perception of the local mill, presenting just minor caveats that can be mitigated or solved with management measures. Defining equity Equity matters are a core component of sustainable development objectives, including the reduction of social inequalities and poverty (WCED, 1987). Environmental justice literature defines equity issues as how different communities or social groups bear the risks, burdens or benefits associated with environmental impacts resulting from particular activities, policies, plans, developments or technologies (Gross, 2007, p2729; Walker and Bulkeley, 2006; Edwards, 1995, p36). Distributional justice and procedural justice are interlinked, core components of environmental justice (Walker and Bulkeley, 2006; Schlosberg, 2007); distributive justice is concerned with the social patterning of costs and benefits as a result of a phenomenon and procedural justice describes the fairness of decision-making processes (Walker, 2012; Schlosberg, 2007, p517). It is thought here that these concepts provide a useful means of approaching an assessment of inequalities associated with the production and consumption of a product, such as a biofuel. The ‘equitable distribution’ of impacts or an ‘equitable decision-making process’ are difficult assessments to approach.
    [Show full text]