Taxonomic and Numerical Resolutions of Nepomorpha (Insecta: Heteroptera) in Cerrado Streams

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomic and Numerical Resolutions of Nepomorpha (Insecta: Heteroptera) in Cerrado Streams Taxonomic and Numerical Resolutions of Nepomorpha (Insecta: Heteroptera) in Cerrado Streams Nubia Franc¸a da Silva Giehl1,4*, Karina Dias-Silva2, Leandro Juen3, Joana Darc Batista4, Helena Soares Ramos Cabette4,5 1 Programa de Po´s-graduac¸a˜o em Ecologia e Conservac¸a˜o, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Mato Grosso, Brasil, 2 Programa de Po´s- graduac¸a˜oemCieˆncias Ambientais, ICB1, Universidade Federal de Goia´s, Goiaˆnia, Goia´s, Brasil, 3 Laborato´rio de Ecologia e Conservac¸a˜o, Instituto de Cieˆncias Biolo´gicas, Universidade Federal do Para´ (UFPA), Bele´m, Para´, Brasil, 4 Laborato´rio de Entomologia, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Mato Grosso, Brasil, 5 Departamento de Biologia, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Mato Grosso, Brasil Abstract Transformations of natural landscapes and their biodiversity have become increasingly dramatic and intense, creating a demand for rapid and inexpensive methods to assess and monitor ecosystems, especially the most vulnerable ones, such as aquatic systems. The speed with which surveys can collect, identify, and describe ecological patterns is much slower than that of the loss of biodiversity. Thus, there is a tendency for higher-level taxonomic identification to be used, a practice that is justified by factors such as the cost-benefit ratio, and the lack of taxonomists and reliable information on species distributions and diversity. However, most of these studies do not evaluate the degree of representativeness obtained by different taxonomic resolutions. Given this demand, the present study aims to investigate the congruence between species- level and genus-level data for the infraorder Nepomorpha, based on taxonomic and numerical resolutions. We collected specimens of aquatic Nepomorpha from five streams of first to fourth order of magnitude in the Pindaı´ba River Basin in the Cerrado of the state of Mato Grosso, Brazil, totaling 20 sites. A principal coordinates analysis (PCoA) applied to the data indicated that species-level and genus-level abundances were relatively similar (.80% similarity), although this similarity was reduced when compared with the presence/absence of genera (R = 0.77). The presence/absence ordinations of species and genera were similar to those recorded for their abundances (R = 0.95 and R = 0.74, respectively). The results indicate that analyses at the genus level may be used instead of species, given a loss of information of 11 to 19%, although congruence is higher when using abundance data instead of presence/absence. This analysis confirms that the use of the genus level data is a safe shortcut for environmental monitoring studies, although this approach must be treated with caution when the objectives include conservation actions, and faunal complementarity and/or inventories. Citation: Giehl NFdS, Dias-Silva K, Juen L, Batista JD, Cabette HSR (2014) Taxonomic and Numerical Resolutions of Nepomorpha (Insecta: Heteroptera) in Cerrado Streams. PLoS ONE 9(8): e103623. doi:10.1371/journal.pone.0103623 Editor: Fabio S. Nascimento, Universidade de Sa˜o Paulo, Faculdade de Filosofia Cieˆncias e Letras de Ribeira˜o Preto, Brazil Received December 23, 2013; Accepted June 30, 2014; Published August 1, 2014 Copyright: ß 2014 Giehl et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: The authors thank the Coordenac¸a˜o de Aperfeic¸oamento de Pessoal de Nı´vel Superior (CAPES) for a masters scholarship and PELD/CNPq for a DTI-C Scholarship; KDS thanks the Conselho Nacional de Desenvolvimento Cientı´fico e Tecnolo´gico (CNPq) for a doctoral scholarship; JDB thanks PELD/CNPq for PDJ scholarship; to the Fundac¸a˜o de Amparo a Pesquisa do Estado de Mato Grosso (FAPEMAT) (Proc. 98/04), Programa de Apoio a` Pos-Graduac¸a˜o (PROAP) and Programa de Cooperac¸a˜oTe´cnica (PROCAD #109/2007) for financial support for data collection. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * Email: [email protected] Introduction identification keys may also contribute to the lack of an accurate taxonomic resolution in many studies, few of which are capable of Human activities generate serious impacts on natural aquatic working at the species level. More often than not, then, higher environments, especially by replacing the vegetation with planta- taxonomic levels have been analyzed, and this has been justified tions and pastures [1], constructing dams and reservoirs, and based on arguments such as an effective cost-benefit ratio, the time diverting the natural course of waterways [2,3]. These processes, needed for processing samples [8], limited resources [12], a lack of either alone or in synergy, result in decreased habitat heteroge- taxonomists and/or data on the ranges and ecological require- neity, increased input of sediments into the channel, and the loss of ments of the species [11,13]. aquatic biodiversity [4,5]. Given the difficulties and demands for rapid methods for Due to major environmental problems and limited resources for bioevaluation, a priority issue is understanding the level of evaluating diversity, researchers have resorted to relatively fast and taxonomic identification required for studies of anthropogenic inexpensive methods to evaluate and monitor aquatic ecosystems impacts and the monitoring of aquatic systems [14]. The question [6–9]. In particular, while invertebrates are widely used for the of numerical resolution–whether abundance or presence/absence monitoring of freshwater systems, they are prone to a ‘‘Linnean data are more effective for the analysis of patterns of biodiversity deficit’’ [10], in which closely-related species have been diagnosed and environmental quality–has also been evaluated [9,15]. The based on subtle or even subjective morphological characters, and use of numerical resolution may be an alternative that reduces many have still not been described [11]. The lack of appropriate sample processing time and allows a comparison of results using PLOS ONE | www.plosone.org 1 August 2014 | Volume 9 | Issue 8 | e103623 Taxonomic Resolution of Nepomorpha in Streams different methods of inventory and monitoring, and across classification, first-order watercourses have no tributaries, and different regions [16]. when two first order tributaries are connected, a second-order Insects of the order Heteroptera (Nepomorpha and Gerromor- stream is formed. Thus two combined n order streams form a river pha) have aquatic and semi-aquatic habits, are widely distributed, of (n+1) order. A total of 20 sampling sites (Figure 1), with different and vary considerably in form and niche, allowing them to occupy conservation status were sampled in the Cachoeirinha, Caveira, a diversity of habitats, including both lentic and lotic bodies of Da Mata, Papagaio and Taquaral streams. The sites were visually water [17]. Most heteropterans live exclusively in water from the evaluated using the Habitat Integrity Index (HII) [30]. This index, nymphal stage until becoming adults, as in the case of the adapted from Petersen’s protocol [31] for small brazilian streams, Nepomorpha. These organisms are ecologically-important pred- is composed of twelve questions that describe the pattern of land ators, and provide a variety of ecological services, including: (i) the use outside the riparian forest, riparian forest conditions, and biological control of disease vectors, such as the larvae of stream channel characteristics. The HII provides values from 0 to Anopheles, Culex, and Aedes mosquitoes [18,19] and Biomphalaria 1, and the closer the value is to 1, the more pristine is the stream. snails [20]; (ii) the predation of aquatic and terrestrial organisms at Environments with a HII of less than 0.70 presented the water/air interface; (iii) serving as prey for fish, amphibians, considerable deforestation on one bank and the riparian vegeta- and birds [21]; and (iv) being able to respond to environmental tion, when it existed, was no more than a narrow strip. Land use disturbances [17,22,23]. outside the riparian vegetation consisted of pastures, with periodic Nepomorpha have only recently become the subjects of access of cattle to the streams, resulting in banks with excavations environmental evaluation or conservation studies [e.g. 22–26]. or deep rutting. The most disturbed stream had a weir just In brasilian studies, difficulties have been encountered with regard upstream from the section sampled. Environments with HII$0.70 to the identification of species, which are exacerbated by the lack varied from areas with clearly defined riparian vegetation (from 5 of reference material, which is often dispersed and inaccessible. to 30 m wide) to environments with intact forest without gaps in On the other hand, identification at the generic level is relatively their canopy. Sites with indices closer to 0.70 had extensive simple, being based on well-defined characters. The time pasture or soybean plantations outside the riparian vegetation. necessary for the identification of genera tends to be much shorter, the results more reliable, and there is no need to submit Collection and identification the material to experts. The specimens
Recommended publications
  • NOTES on WATER BUGS from SOUTH EAST ASIA and AUSTRALIA (Heteroptera: Nepomorpha & Gerromorpha)
    F. M. BUZZETTI, N. NIESER & J. DAMGAARD: Notes on water bugs ... 31 FILIPPO MARIA BUZZETTI, NICO NIESER & JAKOB DAMGAARD NOTES ON WATER BUGS FROM SOUTH EAST ASIA AND AUSTRALIA (Heteroptera: Nepomorpha & Gerromorpha) ABSTRACT - BUZZETTI F.M., NIESER N. & DAMGAARD J., 2006 - Notes on water bugs from South East Asia and Australia (Heteroptera: Nepomorpha & Gerromorpha). Atti Acc. Rov. Agiati, a. 256, 2006, ser. VIII, vol. VI, B: 31-45. Faunistical data on some Nepomorpha and Gerromorpha from South East Asia and Australia are given. Hydrometra greeni Kirk., Limnogonus (Limnogonoides) pecto- ralis Mayr and Halobates sp. are reported as new records for Myanmar. KEY WORDS - Faunistics. RIASSUNTO - BUZZETTI F.M., NIESER N. & DAMGAARD J., 2006 - Su alcuni Emitteri acquatici del Sud Est Asiatico e dellAustralia (Heteroptera: Nepomorpha & Gerro- morpha). Si riportano alcuni dati faunistici relativi a Nepomorfi e Gerromorfi dal Sud Est Asiatico e dallAustralia. Hydrometra greeni Kirk., Limnogonus (Limnogonoides) pecto- ralis Mayr e Halobates sp. sono per la prima volta citati per il Myanmar. PAROLE CHIAVE - Faunistica. INTRODUCTION In this publication the Nepomorpha and Gerromorpha from South East Asia and Australia presently in the F. M. B. private collection are reported. Some specimens transferred to the Nieser collection are indi- cated NCTN. Other data from the collection of the Zoological Muse- um of Copenhagen University are indicated as ZMUC. Some synony- my is abbraviated but can be found in the publications cited under the various species. When given, measurements are in mm. The collecting localities from Myanmar are shown in Map 1. 32 Atti Acc. Rov. Agiati, a. 256, 2006, ser.
    [Show full text]
  • A Comparison of the External Morphology and Functions of Labial Tip Sensilla in Semiaquatic Bugs (Hemiptera: Heteroptera: Gerromorpha)
    Eur. J. Entomol. 111(2): 275–297, 2014 doi: 10.14411/eje.2014.033 ISSN 1210-5759 (print), 1802-8829 (online) A comparison of the external morphology and functions of labial tip sensilla in semiaquatic bugs (Hemiptera: Heteroptera: Gerromorpha) 1 2 JOLANTA BROŻeK and HERBERT ZeTTeL 1 Department of Zoology, Faculty of Biology and environmental Protection, University of Silesia, Bankowa 9, PL 40-007 Katowice, Poland; e-mail: [email protected] 2 Natural History Museum, entomological Department, Burgring 7, 1010 Vienna, Austria; e-mail: [email protected] Key words. Heteroptera, Gerromorpha, labial tip sensilla, pattern, morphology, function, apomorphic characters Abstract. The present study provides new data on the morphology and distribution of the labial tip sensilla of 41 species of 20 gerro- morphan (sub)families (Heteroptera: Gerromorpha) obtained using a scanning electron microscope. There are eleven morphologically distinct types of sensilla on the tip of the labium: four types of basiconic uniporous sensilla, two types of plate sensilla, one type of peg uniporous sensilla, peg-in-pit sensilla, dome-shaped sensilla, placoid multiporous sensilla and elongated placoid multiporous sub- apical sensilla. Based on their external structure, it is likely that these sensilla are thermo-hygrosensitive, chemosensitive and mechano- chemosensitive. There are three different designs of sensilla in the Gerromorpha: the basic design occurs in Mesoveliidae and Hebridae; the intermediate one is typical of Hydrometridae and Hermatobatidae, and the most specialized design in Macroveliidae, Veliidae and Gerridae. No new synapomorphies for Gerromorpha were identified in terms of the labial tip sensilla, multi-peg structures and shape of the labial tip, but eleven new diagnostic characters are recorded for clades currently recognized in this infraorder.
    [Show full text]
  • The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V
    The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V. Bennett Edwin F. Cook Technical Bulletin 332-1981 Agricultural Experiment Station University of Minnesota St. Paul, Minnesota 55108 CONTENTS PAGE Introduction ...................................3 Key to Adults of Nearctic Families of Semiaquatic Hemiptera ................... 6 Family Saldidae-Shore Bugs ............... 7 Family Mesoveliidae-Water Treaders .......18 Family Hebridae-Velvet Water Bugs .......20 Family Hydrometridae-Marsh Treaders, Water Measurers ...22 Family Veliidae-Small Water striders, Rime bugs ................24 Family Gerridae-Water striders, Pond skaters, Wherry men .....29 Family Ochteridae-Velvety Shore Bugs ....35 Family Gelastocoridae-Toad Bugs ..........36 Literature Cited ..............................37 Figures ......................................44 Maps .........................................55 Index to Scientific Names ....................59 Acknowledgement Sincere appreciation is expressed to the following individuals: R. T. Schuh, for being extremely helpful in reviewing the section on Saldidae, lending specimens, and allowing use of his illustrations of Saldidae; C. L. Smith for reading the section on Veliidae, checking identifications, and advising on problems in the taxon­ omy ofthe Veliidae; D. M. Calabrese, for reviewing the section on the Gerridae and making helpful sugges­ tions; J. T. Polhemus, for advising on taxonomic prob­ lems and checking identifications for several families; C. W. Schaefer, for providing advice and editorial com­ ment; Y. A. Popov, for sending a copy ofhis book on the Nepomorpha; and M. C. Parsons, for supplying its English translation. The University of Minnesota, including the Agricultural Experi­ ment Station, is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, creed, color, sex, national origin, or handicap. The information given in this publication is for educational purposes only.
    [Show full text]
  • First Record of Sigara (Tropocorixa) Rubyi (Hungeford) (Heteroptera: Corixidae) in Chile, and Comments on the Nomenclature of Two South American Sigara Fabricius
    Revista de la Sociedad Entomológica Argentina ISSN: 0373-5680 ISSN: 1851-7471 [email protected] Sociedad Entomológica Argentina Argentina First record of Sigara (Tropocorixa) rubyi (Hungeford) (Heteroptera: Corixidae) in Chile, and comments on the nomenclature of two South American Sigara Fabricius Campodonico, Juan F.; Faúndez, Eduardo I. First record of Sigara (Tropocorixa) rubyi (Hungeford) (Heteroptera: Corixidae) in Chile, and comments on the nomenclature of two South American Sigara Fabricius Revista de la Sociedad Entomológica Argentina, vol. 78, no. 4, 2019 Sociedad Entomológica Argentina, Argentina Available in: https://www.redalyc.org/articulo.oa?id=322060737009 PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative Notas First record of Sigara (Tropocorixa) rubyi (Hungeford) (Heteroptera: Corixidae) in Chile, and comments on the nomenclature of two South American Sigara Fabricius Primer registro de Sigara (Tropocorixa) rubyi (Hungeford, 1928) (Hemiptera: Corixidae) en Chile y comentarios nomenclaturales sobre dos especies sudamericanas de Sigara Fabricius Juan F. Campodonico Universidad Austral de Chile, Chile Eduardo I. Faúndez [email protected] Universidad de Magallanes, Chile Revista de la Sociedad Entomológica Argentina, vol. 78, no. 4, 2019 Sociedad Entomológica Argentina, Argentina Abstract: Sigara (Tropocorixa) rubyi (Hungerford, 1928), previously known from Received: 09 June 2019 Argentina and Uruguay, is recorded for the first time in Chile, in Valparaíso Region. e Accepted: 13 November 2019 correct spelling of this species and Sigara (Tropocorixa) hosfordi (Hungerford, 1928) is Published: 26 November 2019 commented. Keywords: Faunistics, Nepomorpha, Nomenclature, South America. Redalyc: https://www.redalyc.org/ articulo.oa?id=322060737009 Resumen: Sigara (Tropocorixa) rubyi (Hungerford, 1928), previamente conocida en Argentina y Uruguay, se registra por primera vez en Chile, en la Región de Valparaíso.
    [Show full text]
  • Taxonomic Overview of the Family Naucoridae (Heteroptera: Nepomorpha) in Mexico
    Dugesiana 26(1): ISSN 1405-4094 (edición impresa) Fecha de publicación: 2019 ISSN 2007-9133 (edición online) ©Universidad de Guadalajara Taxonomic overview of the family Naucoridae (Heteroptera: Nepomorpha) in Mexico Sinopsis de la familia Naucoridae (Heteroptera: Nepomorpha) en México Daniel Reynoso-Velasco1* and Robert W. Sites2 1Red de Biodiversidad y Sistemática, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91070, MÉXICO. E-mail: [email protected]; 2Enns Entomology Museum, Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, U.S.A. E-mail: sitesr@missouri. edu. *Corresponding author. ABSTRACT The state of taxonomy of the Mexican fauna of the family Naucoridae is summarized and is fairly complete as a result of recent research. Currently, 71 species from six genera and four subfamilies have been recorded from the country. Species richness is distributed in the subfamilies Cryphocricinae: Ambrysus Stål (53), Cataractocoris Usinger (3), Cryphocricos Signoret (2); Laccocorinae: Interocoris La Rivers (1); Limnocorinae: Limnocoris Stål (10); and Naucorinae: Pelocoris Stål (2). Recent works have focused on the fauna of the genus Ambrysus. Additionally, studies are required for the genera Cryphocricos and Pelocoris, while a taxonomic revision of the genus Limnocoris is close to completion. A key to the subfamilies and genera of Naucoridae from Mexico is provided. Key words: distribution, aquatic insects, Hemiptera, North America. RESUMEN Se resume el conocimiento taxonómico de la fauna Mexicana de la familia Naucoridae, el cual es bastante completo debido a estudios recientes. Actualmente se encuentran registradas para el país 71 species pertenecientes a seis géneros y cuatro subfamilias.
    [Show full text]
  • An Annotated Catalog of the Iranian Miridae (Hemiptera: Heteroptera: Cimicomorpha)
    Zootaxa 3845 (1): 001–101 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3845.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C77D93A3-6AB3-4887-8BBB-ADC9C584FFEC ZOOTAXA 3845 An annotated catalog of the Iranian Miridae (Hemiptera: Heteroptera: Cimicomorpha) HASSAN GHAHARI1 & FRÉDÉRIC CHÉROT2 1Department of Plant Protection, Shahre Rey Branch, Islamic Azad University, Tehran, Iran. E-mail: [email protected] 2DEMNA, DGO3, Service Public de Wallonie, Gembloux, Belgium, U. E. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by M. Malipatil: 15 May 2014; published: 30 Jul. 2014 HASSAN GHAHARI & FRÉDÉRIC CHÉROT An annotated catalog of the Iranian Miridae (Hemiptera: Heteroptera: Cimicomorpha) (Zootaxa 3845) 101 pp.; 30 cm. 30 Jul. 2014 ISBN 978-1-77557-463-7 (paperback) ISBN 978-1-77557-464-4 (Online edition) FIRST PUBLISHED IN 2014 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2014 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 3845 (1) © 2014 Magnolia Press GHAHARI & CHÉROT Table of contents Abstract .
    [Show full text]
  • Antennal Sensory Structures in Water Bugs of Nepoidea (Insecta: Hemiptera: Nepomorpha), Their Morphology and Function
    Zoomorphology (2019) 138:307–319 https://doi.org/10.1007/s00435-019-00446-4 ORIGINAL PAPER Antennal sensory structures in water bugs of Nepoidea (Insecta: Hemiptera: Nepomorpha), their morphology and function Agnieszka Nowińska1 · Jolanta Brożek1 Received: 2 January 2019 / Accepted: 30 April 2019 / Published online: 11 May 2019 © The Author(s) 2019 Abstract The Nepoidea superfamily belongs to the water bugs’ infraorder (Nepomorpha) and consists of two families—Belostoma- tidae and Nepidae. Species from those families are the largest of all nepomorphans and are considered to be top predators in aquatic ecosystems. A characteristic feature of the group is the existence of short antennae concealed in grooves behind the eyes, which is an adaptation to the water habitat. The antennae bear many types of sensillar structures, which receive signals from the environment. Among such structures, mechanosensilla were of the greatest diversity. The antennal sensilla of species from both families were examined under the scanning electron microscope. 11 essential morphological types of sensilla were distinguished, including 5 new mechanosensilla types (sensilla paddle-like, cone-like, squamiformia, brush-like and club-like). Basal types of mechanosensilla such as trichodea, chaetica, basiconica (subtype 1) and campaniformia occur in Nepoidea and other Heteroptera. In some representatives of both families, sensilla paddle-like and sensilla basiconica type 1 were observed. Moreover, sensilla chaetica and cone-like were found in some species of Belostomatidae, whereas in Nepidae sensilla squamiformia, brush-like and club-like were observed. Apart from mechanosensilla, one type of thermo- hygrosensilla (ampullacea) and two diferent shaped olfactory sensilla basiconica (subtypes 2, 3) and coeloconica (subtypes 1, 2, 3) were found.
    [Show full text]
  • Heteroptera: Belostomatidae) in Greece
    Ecologica Montenegrina 41: 56-61 (2021) This journal is available online at: www.biotaxa.org/em http://dx.doi.org/10.37828/em.2021.41.8 Further distributional records of Lethocerus patruelis (Stål, 1854) (Heteroptera: Belostomatidae) in Greece LEONIDAS-ROMANOS DAVRANOGLOU1 & IOANNIS KARAOUZAS2* 1 Department of Zoology, University of Oxford, OX1 3SZ, UK. E-mail: [email protected] 2Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Anavyssos, 19013, Attica, Greece. * Corresponding author: E-mail: [email protected] Received 24 March 2021 │ Accepted by V. Pešić: 6 April 2021 │ Published online 11 April 2021. Abstract Although the Indo-Eastern Mediterranean giant water bug Lethocerus patruelis (Stål, 1854) is Europe’s largest hemipteran and aquatic insect, its distribution in Greece has remained poorly understood. Only a handful of records exists from the Ionian Islands, Macedonia, Thrace, and isolated observations in Preveza (Epirus), Achaia (north-western Peloponnese) and the islands of Rhodes and Thasos. Using records from personal observations, biomonitoring data, online arthropod identification groups and museum collections, we expand the distribution knowledge of this species to Aetolia-Acarnania, Thessaly, southern Peloponnese, Samothraki, North Sporades and the Cyclades. We also include a large number of new localities in areas within its previously known range. Key words: Lethocerinae; Nepomorpha; true bugs; aquatic insects; social networks; biogeography. Introduction Belostomatidae are the most charismatic of the true water bugs (Nepomorpha), due to their large size (up to 120 mm) and their voracious predatory habits, feeding on a wide range of invertebrates, fish, turtles, and even birds (Matheson 1907; Ribeiro et al.
    [Show full text]
  • Marine Insects
    UC San Diego Scripps Institution of Oceanography Technical Report Title Marine Insects Permalink https://escholarship.org/uc/item/1pm1485b Author Cheng, Lanna Publication Date 1976 eScholarship.org Powered by the California Digital Library University of California Marine Insects Edited by LannaCheng Scripps Institution of Oceanography, University of California, La Jolla, Calif. 92093, U.S.A. NORTH-HOLLANDPUBLISHINGCOMPANAY, AMSTERDAM- OXFORD AMERICANELSEVIERPUBLISHINGCOMPANY , NEWYORK © North-Holland Publishing Company - 1976 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,without the prior permission of the copyright owner. North-Holland ISBN: 0 7204 0581 5 American Elsevier ISBN: 0444 11213 8 PUBLISHERS: NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NORTH-HOLLAND PUBLISHING COMPANY LTD. - OXFORD SOLEDISTRIBUTORSFORTHEU.S.A.ANDCANADA: AMERICAN ELSEVIER PUBLISHING COMPANY, INC . 52 VANDERBILT AVENUE, NEW YORK, N.Y. 10017 Library of Congress Cataloging in Publication Data Main entry under title: Marine insects. Includes indexes. 1. Insects, Marine. I. Cheng, Lanna. QL463.M25 595.700902 76-17123 ISBN 0-444-11213-8 Preface In a book of this kind, it would be difficult to achieve a uniform treatment for each of the groups of insects discussed. The contents of each chapter generally reflect the special interests of the contributors. Some have presented a detailed taxonomic review of the families concerned; some have referred the readers to standard taxonomic works, in view of the breadth and complexity of the subject concerned, and have concentrated on ecological or physiological aspects; others have chosen to review insects of a specific set of habitats.
    [Show full text]
  • Hemiptera: Heteroptera) of Khuzestan and the Adjacent Provinces of Iran
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 30.vi.2009 Volume 49(1), pp. 1–32 ISSN 0374-1036 Studies on the Nepomorpha, Gerromorpha, Leptopodomorpha, and Miridae excluding Phylini (Hemiptera: Heteroptera) of Khuzestan and the adjacent provinces of Iran Rauno E. LINNAVUORI Saukkokuja 10, FIN-21220 Raisio, Finland; e-mail: rauno.linnavuori@kolumbus.fi Abstract. A list of 127 true bug species belonging to the families Nepidae (1 spe- cies), Belostomatidae (1 species), Corixidae (11 species), Notonectidae (3 species), Hydrometridae (1 species), Veliidae (2 species), Gerridae (2 species), Saldidae (3 species), Leptopodidae (1 species), and Miridae (Deraeocorinae, Bryocorinae, Mirinae, Orthotylinae, and Phylinae: Hallodapini and Pilophorini) (102 species) from Khuzestan and adjacent provinces in southern Iran is published. One new species, Phytocoris (Compsocerocoris) bavanus sp. nov., is described, and the original description of Phytocoris (Compsocerocoris) thisbe Linnavuori, 1999 is complemented. The following 13 species and subspecies of the Miridae are recorded from Iran for the fi rst time: Deraeocoris (Camptobrochis) pallens atra- mentarius Linnavuori, 1975, Trigonotylus subulifer Golub, 1989, Camponotidea fi eberi (Reuter, 1879), Adelphocoris insignis Horváth, 1898, Agnocoris rubicundus (Fallén, 1807), Calocoris roseomaculatus angularis (Fieber, 1864), Megacoelum irbilanum Linnavuori, 1988, Stenotus brevior Poppius, 1910, Brachynotocoris viticinus Seidenstücker, 1954, Orthotylus (Melanotrichus) nigricollis Wagner, 1962, Reuteria
    [Show full text]
  • Leafhoppers (Hemiptera, Auchenorrhyncha) from the Perspective of Insular Biogeography 531-540 © Biologiezentrum Linz/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Denisia Jahr/Year: 2002 Band/Volume: 0004 Autor(en)/Author(s): Niedringhaus Rolf Artikel/Article: Leafhoppers (Hemiptera, Auchenorrhyncha) from the perspective of insular biogeography 531-540 Leafhoppers (Hemiptera, Auchenorrhyncha) from the perspective of insular biogeography R. NlEDRINGHAUS Abstract Distribution and abundance of leaf- stics, including (1) degree of habitat spe- hoppers (Hemiptera: Auchenorrhyncha) cialization; (2) preference for special were investigated on the chain of the East groups of host plants; (3) preference for Frisian dune islands situated in the particular stages of landscape develop- Wadden Sea from 3 to 13 km off the north ment; (4) degree of niche overlap; (5) western German coast in order to explore abundance in the recruitment area. It is the absence or presence of species on the demonstrated that the specific characteri- islands and to explain differences in colo- stics of each potential colonist species nization success of species. - A total of combine to a "disposition" regarding their 172 leafhopper species was assessed from prevailing colonization chances: high dis- the islands by standardized sweepnet position values render a high colonization samplings from 1982 to 1988. Species rate, low disposition values render a low numbers found on the 7 old islands are colonization rate. roughly on level (110 to 139 species), but Key words: Auchenorrhyncha, North differences in species composition are con- West Germany, East Frisian Islands, insu- siderable. The species-abundance relations lar biogeography. of the leafhopper assemblages show great similarities to those of dynamic and insta- ble communities.
    [Show full text]
  • (2009) a Survey of the Hemiptera Fauna on the Island of Dominica
    A Survey of the Hemiptera Fauna on the Island of Dominica Cassandra J. Garcia Department of Entomology Texas A&M University, College Station TX, USA 778433 Abstract In this study, insects from the order Hemiptera were collected using six different collection methods at ten different locations across the island of Dominica, West Indies. Four hundred and sixty four specimens within twenty three different families of the order Hemiptera were collected by the use of a mercury vapor light trap, a black light trap, a sweep net, a beating sheet, a Malaise Trap, and by hand collection. The collection methods, brief descriptions of each family, and analysis of collection technique is provided. Key Words: Dominica, West Indies, Hemiptera, Heteroptera, Auchenorrhyncha, Sternorrhyncha Introduction The order Hemiptera is very diverse in its phenotypic characteristics. Members of the order Hemiptera are identified by a unique piercing-sucking mouthpart. Four piercing stylets, the paired maxillae and mandibles, makeup the mouthpart. These piercing-sucking mouthparts are most often used for sucking plant sap or blood (Triplehorn and Johnson 2005). There are three suborders within Hemiptera: Heteroptera, Auchenorryhncha, and Sternorrhyncha. Triplehorn states that the suborder Heteroptera is signified by the presence of hardened basal front wings (if present), beak arising from the front of the head, four or five segmented antennae, and the presence of two or three tarsal segments (generally). The suborder Auchenorrhyncha is uniquely identified by the origin of the beak coming from the back of the head, “position of the ocelli, characteristics about the ocelli, form of the pronotum, and lastly the spination of the legs.” The suborder Sternorrhyncha is uniquely identified by the origination of the beak coming from between the procoxae, the tarsal and antennal segment count, and wing specifics.
    [Show full text]