Saturated Aqueous Solutions in the Potash Industry
Total Page:16
File Type:pdf, Size:1020Kb
Saturated aqueous solutions in Potash industry. Modeling of properties and composition Sergei Panasiuk, Ph.D. Chief mineral process specialist WorleyParsons Canada, Minerals & Metals Potash – any potassium compound (KCl – most common). Potash = “pot ashes” old method of making K2CO3 by leaching of wood ashes, evaporating the resulting solution in iron pots. The first U.S patent issued in 1790 and sighed by G. Washington. “in the making of Pot ash … by new Apparatus and Process”. Samuel Hopkins “…making of Pot ash and Pearl ash by a new Apparatus and Process” In 1791, Government of Lower Canada (Quebec) issued “letter of reward” to Hopkins for his improved method. Regarded as the first “patent” issued in Canada. Potassium minerals Mineral Composition K2O, % Chlorides: Mines (Canada, USA, Russia) - 96% Sylvinite KCl · NaCl mixture 28 Sylvite KCl 63 Carnalite KCl · MgCl2 · H2O 17 Evaporating ponds (USA, Jordan, Israel) - 3% Kainite 4KCl · 4MgSO4 · 11H2O 19 Hanksite KCl · 9Na2SO4 · 2Na2CO3 3 Sulphates: Polyhalite K2SO4 · 2MgSO4 · 2CaSO4 · 2H2O 16 Langeinite K2SO4 · 2MgSO4 23 Leonite K2SO4 · MgSO4 · 4H2O 26 Schoenite K2SO4 · MgSO4 · 6H2O 23 Krugite K2SO4 · MgSO4 · 4CaSO4 · 2H2O 11 Glaserite 3K2SO4 · Na2SO4 43 Syngenite K2SO4 · CaSO4 · H2O 29 Aphthitalite (K,Na)2SO4· 30 Kalinite KAl(SO4)2 · 11H2O 10 Alunite K2Al6(OH)12 · (SO4)4 11 NEW Nitrates: Niter KNO3 47 Potash deposits composition Seawater KCl·NaCl K2SO4·2MgSO4 Dead Sea KCl-NaCl mining 1000m deep Surface mining Dead Sea Block Flow Diagram – Potash Solution Mine Solubility: Density: - Flotation (salts and amines) - U/G solution mining - U/G solution mining - Evaporation/crystallization - Brine evaporation - Brine U/G injection - KCl crystallization - Brine U/G injection Boiling point elevation: - Evaporation/crystallization - Dryers Vapor pressure and composition: - Evaporation/crystallization - Exhaust gas scrubbers - Dryers KC l- NaCl - MgCl2 - H2O METSIM(PFD KCl centrifuges) METSIM solubility equilibrium METSIM – Equilibrium functions KC l- NaCl - H2O OLI NaCls NaCl – KCl invariant KCls KC l- NaCl - H2O OLI data 0C 35 25C 30 50C NaCl 75C 25 100C 20 150C 15 NaCl + KCl NaCl, weight % weight NaCl, 10 KCl 5 0 0 5 10 15 20 25 30 35 40 KCl, weight % KC l- NaCl -H2O invariant solubility NaCl KCl Solution mine 65 °C 55 °C NaCl saturated NaCl saturated KCl depleted KCl saturated NaCl 1500 m depth KCl -NaCl NaCl Solution mine KCl NaCl ΔC (KCl) Solution mine with evaporaton KCl NaCl ΔCevp (KCl) ΔC (NaCl) ΔC (KCl) Saskatchewan solution mine KCl NaCl ΔCevp (KCl) ΔC (NaCl) ΔC (KCl) ΔCfr (KCl) KC l- NaCl - MgCl2 - H2O 0 g/ L MgCl2 NaCl + KCl 20 g/ L MgCl2 100 g/ L MgCl2 KC l- NaCl - CaSO4 - H2O pH of vapor condensate Vapor: HCl-H2O No problems? 1 OLI predicts proper pH for the vapor condensate from evaporators but not for dryers. MgCl2·2H2O = MgOHCl + HCl + H2O t > 135 °C Problem 2 65 °C 55 °C NaCl saturated NaCl saturated KCl depleted KCl saturated NaCl 1500 m depth KCl -NaCl NaCl Oversaturation Reality - >10% undersaturation for KCl Problem 3. Complexity Process Flow Diagrams (Dryers) Dynamic process simulation Conclusions: • Potash industry requires accurate prediction of solubility in system K-Na-Mg-Cl-SO4-H2O system • Predictions of the brine density, boiling point elevation, viscosity, vapor pressure and compositions are also very important • METSIM uses polynomial functions to approximate some of the brine parameters • OLI is capable to predict all required brine properties in the wide range of conditions • OLI and METSIM predictions of the brine properties are very similar in the narrow range of the most common potash industry applications. • Computer simulation of the large industrial projects requires to use some simplifications of OLI approach .