Assessing the Pozzolanic Activity of Cements with Added Sugar Cane Straw Ash by Synchrotron X-Ray Diffraction and Rietveld Analysis ⇑ Guilherme A

Total Page:16

File Type:pdf, Size:1020Kb

Assessing the Pozzolanic Activity of Cements with Added Sugar Cane Straw Ash by Synchrotron X-Ray Diffraction and Rietveld Analysis ⇑ Guilherme A Construction and Building Materials 98 (2015) 44–50 Contents lists available at ScienceDirect Construction and Building Materials journal homepage: www.elsevier.com/locate/conbuildmat Assessing the pozzolanic activity of cements with added sugar cane straw ash by synchrotron X-ray diffraction and Rietveld analysis ⇑ Guilherme A. Calligaris a, Margareth K.K.D. Franco b, , Laurence P. Aldrige c, Michelle S. Rodrigues d, Antônio Ludovico Beraldo d, Fabiano Yokaichiya b,e, Xavier Turrillas f, Lisandro P. Cardoso a a Universidade Estadual de Campinas (UNICAMP), Instituto de Física Gleb Wataghin (IFGW), 13083-859 Campinas, SP, Brazil b Comissão Nacional de Energia Nuclear (CNEN), Instituto de Pesquisas Energéticas e Nucleares (IPEN), Reator Multipropósito Brasileiro (RMB), Brazil c Institute of Material Engineering, ANSTO, PMB 1 Menai, New South Wales 2234, Australia d Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia Agrícola (FEAGRI), Campinas, SP, Brazil e Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Germany f Consejo Superior de Investigaciones Científicas, Institut de Ciència de Materials de Barcelona, Spain highlights Sustainability is the key word in the development of new technologies. The use of alternative materials in the cement paste is focused. Cement pastes and cement pastes blended with Sugar Cane Straw Ashes were studied. Our findings contribute in the phase identifications of cementitious pastes. The pozzolanicity of the agroindustrial wastes was proven using synchrotron radiation. article info abstract Article history: Sugar and alcohol industries generate large amount of wastes that could produce ashes of great reactivity Received 6 June 2014 with pozzolan properties. The objective of this paper is to evaluate the pozzolanicity of Sugar Cane Straw Received in revised form 7 August 2015 Ashes (SCSA), thermal treated, at different curing times. Employing Synchrotron X-ray radiation for XRD Accepted 10 August 2015 measurements, scans from 10 to 110 (h À 2h setup) allowed the quantification of several phases of the Available online 24 August 2015 cement pasts through Rietveld analysis. The SCSA substitution of 20% (weight) in Ordinary Portland Cement (OPC) has improved the AFt (Ettringite) formation up to 47% for 90 days curing time. The Keywords: Portlandite concentration analysis allowed concluding that this addition of SCSA in OPC has caused a Synchrotron radiation characterisation delay in the cement setting time. Moreover, the behaviour of the C3S and Calcite contents in both OPC Sugar cane straw ash Pozzolan and OPC/SCSA samples were determined by refinement of the XRD pattern using the Rietveld method. Waste management Ó 2015 Elsevier Ltd. All rights reserved. 1. Introduction and also by the use of biomass for power generation. Despite these mitigating factors, the expansion of construction activity in Brazil Industrial production of cement in Brazil started in 1920, reach- motivates the search for materials that can replace cement. This ing a maximum of 40.2 million tones in 1999 [1]. Despite of a series replacement is necessary due to the environmental and social of up and downs due to economic upheaval, another peak of 65 impacts caused by the production of cement. million tons was attained in 2011. Preliminary information about Researches involving the use of pozzolans in cementitious cement consumption on April 2013 reached 5.9 million of tons [2]. matrices have increased significantly in recent years. In the Nowadays, the Brazilian cement industry is among the 10 absence of natural pozzolan, cement industries look for new mate- largest cement world producers and consumers, has a modern rials in agroindustry. Several authors have reported the use of industrial park, is internationally recognised for recycling waste agroindustrial ashes to partially replace Portland cement [3–7]. minerals and by preserving the environment (low CO2 emissions) The use of sugar cane straw, as forage, contributes to decrease the soil erosion and to reduce the carbon emission from soil to ⇑ atmosphere [8]. Furthermore, the wastes of sugar cane production Corresponding author. can be recycled by biorefinaries to get energy with a substantial E-mail address: [email protected] (M.K.K.D. Franco). http://dx.doi.org/10.1016/j.conbuildmat.2015.08.103 0950-0618/Ó 2015 Elsevier Ltd. All rights reserved. G.A. Calligaris et al. / Construction and Building Materials 98 (2015) 44–50 45 generation of ashes. Since Brazil is the world’s largest producer of 2.1.2. Ordinary Portland Cement (OPC) and OPC/SCSA sugar cane having a huge organic by-products surplus of bagasse The highly initial resistance cement, Ordinary Portland Cement and straw [8,9] has a strong interest in finding a way to recycle this (OPC), (CPV-ARI, Cauê) was utilised in this study, according to the waste. One possible solution could be its combustion. Indeed, some ABNT NBR 5733 (1991) [15]. This cement does not show mineral authors have reported that these wastes when burned under additions. On the other hand it shows higher quantities of C3S controlled temperature may show high reactivity, reacting as a and C2S than others, resulting more reactivity. It was prepared pozzolanic material [10,11]. two pastes, the control (pure OPC) and OPC/SCSA (80%/20% by To assess a pozzolanic material it is necessary to carry out a weight). OPC, without mineral addition, calcium hydroxide (95% complete series of chemical, physical and mechanical tests to eval- of purity) and deionised water were used in blended cement uate its performance. One of them involves the direct identification pastes. Firstly, OPC and ash was mixed and then it was added deio- of calcium silicate hydrates (CSH) phases, promoted by pozzolanic nised water; the water/binder ratio was 0.5. After mixing the mate- reaction, as a function of time [12–14] up to ninety days. This can rials, pastes were stored in sealed plastic bottles and then left in a be carried out by X-ray diffraction, quantifying both the initial curing room at 20 C until the tests applied. At ages test manual crystalline phases and the hydration products over long periods grinding pulverised the samples. The hydration of the samples (months), since the pozzolanic reaction is normally slow. was stopped by putting the samples into an acetone solution. The aim of this paper, consequently, is to evaluate the poz- Afterward, samples were dried at 60 °C for 30 min in furnace. zolanic reaction in blended cement pastes, both without (control) and with sugar cane ashes added, treated at 700 C, for periods of 2.2. Experimental characterisation techniques three, seven, twenty-eight and ninety days. To achieve that, syn- chrotron X-ray diffraction data acquired at the Brazilian facilities 2.2.1. SCSA of LNLS, have been studied and crystalline phases quantified by The chemical composition of the ash was determined using the Rietveld analysis in order to have a picture of the major phases X-ray fluorescence method, Axios from Panalytical, and the loss on evolution during the cement pastes hydration. ignition (LOI) was measured according with ASTM C 114 method [16]. X-ray diffraction (XRD) of SCSA was performed at D10B- XPD [17] and D12A-XRD1[18] in the Brazilian Synchrotron 2. Experimental procedure Laboratory (LNLS) using 4 + 2-circle Huber diffractometers in a high-resolution mode, with Ge 111 analyser crystal, at 8 keV. 2.1. Materials This mode was chosen in order to minimise the superposition of neighbouring Bragg peaks allowing for more reliable solution of 2.1.1. Sugar Cane Straw Ashes (SCSA) the mineralogical characterisation. Data were obtained at room The sugar cane straw was harvested from Centro de Tecnologia temperature, in a h À 2h geometry (Bragg–Brentano configuration), Canavieira (CTC), placed at Piracicaba, São Paulo – Brazil. It was col- with a flat plane sample holder, over a 2h range of 10–70° with a lected directly from the ground and exposed to the natural environ- step size of 0.01° and a step time of 1s. Granulometric distribution ment to naturally dry for 24 h. The ash was obtained from the of Ordinary Portland Cement and ash were measured using a burning control in an electrical furnace with 10 C/min heating rate Malvern Mastersizer 2000 apparatus which allows an analysis of during 3 h at 700 C X(hereafter SCSA). The production of the ashes particles by laser diffraction from 0.02 to 2000 lm in liquid mode was divided in two levels in order to obtain a homogeneous burning, as dispersant, with 10–15% of obscuration and ultrasonic agitation according to Fig. 1. On reaching the first temperature level, 400 C, for 60 s. The fineness of the material is an important parameter to the system remains 20 min in order to burn all the organic matter evaluate the pozzolanicity. Higher the contacts surface of the poz- to get the best homogenisation of the ash. In the second level, the zolan with calcium hydroxide, greater the rate of pozzolanic material was maintained at 700 C for 1 h. At the end, the muffle reaction. furnace was turned off and a slow and natural cooling process began. The muffle furnace model 10013 from Jung, used to treat the sam- ples, has the dimension of 27 cm  40 cm  100 cm. Afterwards, it 2.2.2. Ordinary Portland Cement (OPC) and OPC/SCSA was used a rotor mill from Tecnal to mill the ashes at 200 rpm during Synchrotron X-ray powder diffraction has become a well- 120 min. established technique, being suitable for applications in character- isation of cementicious materials [19,20]. This technique that pre- sents the advantage of large photon flux of a synchrotron source and high resolution compared with the conventional X-ray diffrac- tometers, allow us to evaluate with more accuracy the composition of blend paste cement in different curing time.
Recommended publications
  • New Mineral Names*,†
    American Mineralogist, Volume 100, pages 1649–1654, 2015 New Mineral Names*,† DMITRIY I. BELAKOVSKIY1 AND OLIVIER C. GAGNE2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada IN THIS ISSUE This New Mineral Names has entries for 10 new minerals, including debattistiite, evdokimovite, ferdowsiite, karpovite, kolskyite, markhininite, protochabournéite, raberite, shulamitite, and vendidaite. DEBATTISTIITE* for 795 unique I > 2σ(I) reflections] corner-sharing As(S,Te)3 A. Guastoni, L. Bindi, and F. Nestola (2012) Debattistiite, pyramids form three-membered distorted rings linked by Ag atoms in triangular or distorted tetrahedral coordination. Certain Ag9Hg0.5As6S12Te2, a new Te-bearing sulfosalt from Len- genbach quarry, Binn valley, Switzerland: description and features of that linkage are similar to those in the structures of crystal structure. Mineralogical Magazine, 76(3), 743–750. trechmannite and minerals of pearceite–polybasite group. Of the seven anion positions, one is almost fully occupied by Te (Te0.93S0.07). The Hg atom is in a nearly perfect linear coordination Debattistiite (IMA 2011-098), ideally Ag9Hg0.5As6S12Te2, is a new mineral discovered in the famous for Pb-Cu-Ag-As-Tl with two Te/S atoms. One of five Ag sites and Hg site, which are bearing sulfosalts Lengenbach quarry in the Binn Valley, Valais, very close (separation 1.137 Å), are partially occupied (50%). Switzerland. Debattistiite has been identified in two specimens Thus there is a statistical distribution (50:50) between Hg(Te,S)2 from zone 1 of the quarry in cavities in dolomitic marble with and AgS2(Te,S)2 polyhedra in the structure.
    [Show full text]
  • Brownmillerite Ca2(Al, Fe )2O5 C 2001-2005 Mineral Data Publishing, Version 1
    3+ Brownmillerite Ca2(Al, Fe )2O5 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: mm2. As square platelets, to about 60 µm; massive. Physical Properties: Hardness = n.d. D(meas.) = 3.76 D(calc.) = 3.68–3.73 Optical Properties: Semitransparent. Color: Reddish brown. Optical Class: Biaxial (–). Pleochroism: Distinct; X = Y = yellow-brown; Z = dark brown. Orientation: Y and Z lie in the plane of the platelets; extinction in that plane is diagonal. α = < 2.02 β = > 2.02 γ = > 2.02 2V(meas.) = n.d. Cell Data: Space Group: Ibm2. a = 5.584(5) b = 14.60(1) c = 5.374(5) Z = 2 X-ray Powder Pattern: Near Mayen, Germany. 2.65 (vs), 7.19 (s), 2.78 (s), 1.93 (s), 2.05 (ms), 3.65 (m), 1.82 (m) Chemistry: (1) (2) (3) TiO2 1.5 1.9 Al2O3 17.2 22.3 13.1 Fe2O3 30.5 27.6 41.9 Cr2O3 0.1 n.d. MgO n.d. n.d. CaO 46.2 44.8 43.7 insol. 4.0 LOI 0.5 Total 94.4 100.3 100.6 (1) Near Mayen, Germany; by semiquantitative spectroscopy. (2) Hatrurim Formation, Israel; corresponds to Ca1.99(Al1.09Fe0.86Ti0.05)Σ=2.00O5. (3) Do.; corresponds to Ca1.95(Fe1.31Al0.64 Ti0.06)Σ=2.01O5. Occurrence: In thermally metamorphosed limestone blocks included in volcanic rocks (near Mayen, Germany); in high-temperature, thermally metamorphosed, impure limestones (Hatrurim Formation, Israel). Association: Calcite, ettringite, wollastonite, larnite, mayenite, gehlenite, diopside, pyrrhotite, grossular, spinel, afwillite, jennite, portlandite, jasmundite (near Mayen, Germany); melilite, mayenite, wollastonite, kalsilite, corundum (Kl¨och, Austria); spurrite, larnite, mayenite (Hatrurim Formation, Israel).
    [Show full text]
  • Investigation of the Incompatibilities of Cement and Superplasticizers and Their Influence on the Rheological Behavior
    materials Article Investigation of the Incompatibilities of Cement and Superplasticizers and Their Influence on the Rheological Behavior Ursula Pott 1, Cordula Jakob 2, Daniel Jansen 2, Jürgen Neubauer 2 and Dietmar Stephan 1,* 1 Department of Civil Engineering, Building Materials and Construction Chemistry, Technische Universität Berlin, 13355 Berlin, Germany; [email protected] 2 Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander-University, 91054 Erlangen, Germany; [email protected] (C.J.); [email protected] (D.J.); [email protected] (J.N.) * Correspondence: [email protected] Received: 2 December 2019; Accepted: 18 February 2020; Published: 21 February 2020 Abstract: The rheological behavior of cement paste and the improvement of its flowability takes center stage in many research projects. An improved flowability can be achieved by the addition of superplasticizers (SP), such as polycarboxylate ethers (PCE). In order to be able to use these PCEs effectively and in a variety of ways and to make them resistant to changes in the environment, it is crucial to understand the influence of SPs on cement hydration. For that reason, the topic of this paper was the incompatibility of a specific SP and an ordinary Portland cement (OPC). The incompatible behavior was analyzed using rheological tests, such as the spread flow test and penetration test, and the behavior was compared by means of an ultrasound technique and explained by the phase content measured by in-situ X-ray diffraction (XRD) the heat evolution measured by calorimetry, and scanning electron microscope (SEM) images. We showed that the addition of the SP in a high dosage led to a prevention of the passivation of the most reactive and aluminum-containing clinker phases, aluminate and brownmillerite.
    [Show full text]
  • Production and Hydration of Calcium Sulfoaluminate-Belite Cements Derived from Aluminium Anodising Sludge
    This is a repository copy of Production and hydration of calcium sulfoaluminate-belite cements derived from aluminium anodising sludge. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/103378/ Version: Accepted Version Article: da Costa, E.B., Rodríguez, E.D., Bernal, S. et al. (3 more authors) (2016) Production and hydration of calcium sulfoaluminate-belite cements derived from aluminium anodising sludge. Construction and Building Materials, 122. pp. 373-383. ISSN 0950-0618 https://doi.org/10.1016/j.conbuildmat.2016.06.022 Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Preprint of a paper published in Construction and Building Materials, 122(2016):373-383. Version of record is available at http://dx.doi.org/10.1016/j.conbuildmat.2016.06.022 1 Production and hydration of calcium sulfoaluminate-belite 2 cements derived from aluminium anodising sludge 3 Eugênio Bastos da Costa1, Erich D. Rodríguez1,2*, Susan A.
    [Show full text]
  • Mayenite Ca12al14o33 C 2001-2005 Mineral Data Publishing, Version 1
    Mayenite Ca12Al14O33 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 43m (synthetic). In rounded anhedral grains, to 60 µm. Physical Properties: Hardness = n.d. D(meas.) = 2.85 D(calc.) = [2.67] Alters immediately to hydrated calcium aluminates on exposure to H2O. Optical Properties: Transparent. Color: Colorless. Optical Class: Isotropic. n = 1.614–1.643 Cell Data: Space Group: I43d (synthetic). a = 11.97–12.02 Z = 2 X-ray Powder Pattern: Near Mayen, Germany. 2.69 (vs), 4.91 (s), 2.45 (ms), 3.00 (m), 2.19 (m), 1.95 (m), 1.66 (m) Chemistry: (1) (2) (3) SiO2 0.4 Al2O3 45.2 49.5 51.47 Fe2O3 2.0 1.5 MnO 1.4 CaO 45.7 47.0 48.53 LOI 2.2 Total 95.1 99.8 100.00 (1) Near Mayen, Germany; by semiquantitative spectroscopy. (2) Hatrurim Formation, Israel; by electron microprobe, corresponding to (Ca11.7Mg0.5)Σ=12.2(Al13.5Fe0.25Si0.10)Σ=13.85O33. (3) Ca12Al14O33. Occurrence: In thermally metamorphosed limestone blocks included in volcanic rocks (near Mayen, Germany); common in high-temperature, thermally metamorphosed, impure limestones (Hatrurim Formation, Israel). Association: Calcite, ettringite, wollastonite, larnite, brownmillerite, gehlenite, diopside, pyrrhotite, grossular, spinel, afwillite, jennite, portlandite, jasmundite (near Mayen, Germany); melilite, wollastonite, kalsilite, brownmillerite, corundum (Kl¨och, Austria); spurrite, larnite, grossite, brownmillerite (Hatrurim Formation, Israel). Distribution: From the Ettringer-Bellerberg volcano, near Mayen, Eifel district, Germany. Found at Kl¨och, Styria, Austria. In the Hatrurim Formation, Israel. From Kopeysk, Chelyabinsk coal basin, Southern Ural Mountains, Russia. Name: For Mayen, Germany, near where the mineral was first described.
    [Show full text]
  • The Efficiency of Quartz Addition on Electric Arc Furnace (EAF)
    The efficiency of quartz addition on electric arc furnace (EAF) carbon steel slag stability D. Mombelli a,∗, C. Mapelli a, S. Barella a, A. Gruttadauria a, G. Le Saout b, E. Garcia-Diaz b a Politecnico di Milano, Dipartimento di Meccanica, Via La Masa 1, 20156 Milano, Italy b Centre des Matériaux des Mines d’Alès (C2MA) —Ecole des Mines d’Alès (Institut Mines Telecom), Avenue de Clavières 6, 30100 Alès cedex, France h i g h l i g h t s • A method to stabilize EAF slag was implemented in an actual steel plant. • The stabilization treatment lead to the formation of slag with gehlenite matrix. • The stabilization process efficacy was confirmed by several leaching tests. • Gehlenite inhibits heavy metals leaching. a b s t r a c t Electric arc furnace slag (EAF) has the potential to be re-utilized as an alternative to stone material, however, only if it remains chemically stable on contact with water. The presence of hydraulic phases such as larnite (2CaO SiO2) could cause dangerous elements to be released into the environment, i.e. Ba, V, Cr. Chemical treatment appears to be the only way to guarantee a completely stable structure, especially for long-term applications. This study presents the efficiency of silica addition during the deslagging period. Microstructural characterization of modified slag was performed by SEM and XRD analysis. Elution tests were performed according to the EN 12457-2 standard, with the addition of silica and without, and the obtained results were compared. These results demonstrate the efficiency of the inertization process: the added silica induces the formation of gehlenite, which, even in caustic environments, does not exhibit hydraulic behaviour.
    [Show full text]
  • Guide to Compounds of Interest in Cement and Concrete Research
    GUIDE TO COMPOUNDS OF INTEREST IN CEMENT AND CONCRETE RESEARCH Special Report 127 • Highway Research Board • National;Research Council National Academy of Sciences • National Academ Of Engineering P4 1972 HIGHWAY RESEARCH BOARD OFFICERS Alan M. Voorhees, Chairman William L. Garrison, First Vice Chairman Jay W. Brown, Second Vice Chairman W. N. Carey, Jr., Executive Director EXECUTIVE COMMITTEE A. E.Johnson, Executive Director, American Association of State Highway Officials (cx officio) F. C. Turner, Federal Highway Administrator, U.S. Department of Transportation (cx officio) Carlos C. Villarrcal, Urban Mass Transportation Administrator, U.S. Department of Transportation (cx officio) Ernst Weber, Chairman, Division of Engineering, National Research Council (cx officio) D. Grant Mickle, President, Highway Users Federation for Safety and Mobility (cx officio, Past Chairman 1970) Charles E. Shumate, Executive Director, Colorado Department of Highways (ex officio, Past Chairman 1971) Hendrik W. Bode, Gordon McKay Professor of Systems Engineering, Harvard University Jay W. Brown, Director of Road Operations, Florida Department of Transportation W. J. Burmeister, Executive Director, Wisconsin Asphalt Pavement Association Howard A. Coleman, Consultant, Missouri Portland Cement Company Douglas B. Fugate, Commissioner, Virginia Department of Highways William L. Garrison, Edward R. IVeidlein Professor of Environmental Engineering, University of Pittsburgh Roger H. Gilman, Director of Planning and Development, Port of New York Authority George E. Holbrook, E. L du Pont de Nemours and Company George Krambles, Superintendent of Research and Planning, Chicago Transit Authority A. Scheffer Lang, Department of Civil Engineering, Massachusetts Institute of Technology John A. Legarra, Deputy State Highway Engineer, California Division of Highways William A. McConnell, Director, Product Test Operations Office, Product Development Group, Ford Motor Company John J.
    [Show full text]
  • Mayenite Supergroup, Part I: Recommended Nomenclature
    Eur. J. Mineral. 2015, 27, 99–111 Published online 3 December 2014 Mayenite supergroup, part I: Recommended nomenclature 1, 2 1 2 1 EVGENY V. GALUSKIN *,FRANK GFELLER ,IRINA O. GALUSKINA ,THOMAS ARMBRUSTER ,RADU BAILAU and 3,4 VIKTOR V. SHARYGIN 1 Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Be˛dzin´ska 60, 41–200 Sosnowiec, Poland *Corresponding author, e-mail: [email protected] 2 Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland 3 V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, 3 prosp. Akad. Koptyuga, Novosibirsk, 630090, Russia 4 Russia and Department of Geology and Geophysics, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia Abstract: The mayenite supergroup, accepted by the IMA-CNMNC (proposal 13-C), is a new mineral supergroup comprising two groups of minerals isostructural with mayenite (space group No. 220, I43d, a 12 A˚ ) with the general formula X12T14O32Àx(OH)3x[W6À3x]: the mayenite group (oxides) and the wadalite group (silicates), for which the anionic charge over 6 W sites is À2 and À6, respectively. Currently only minerals dominated by end-members with x ¼ 0 and the simplified formula X12T14O32[W6] have been reported. The mayenite group includes four minerals: (1) chlormayenite, Ca12Al14O32[&4Cl2]; (2) chlorkyuygenite, Ca12Al14O32[(H2O)4Cl2]; (3) fluormayenite, Ca12Al14O32[&4F2]; and (4) fluorkyuygenite, Ca12Al14O32[(H2O)4 F2]. The wadalite group comprises the two mineral species wadalite, with the end-member formula Ca12Al10Si4O32[Cl6], and 3þ eltyubyuite, with the end-member formula Ca12Fe 10Si4O32[Cl6].
    [Show full text]
  • A Natural Analogue Study of CO2-Cement Interaction: Carbonate Alteration of Calcium Silicate Hydrate-Bearing Rocks from Northern Ireland
    A natural analogue study of CO2- cement interaction: carbonate alteration of calcium silicate hydrate-bearing rocks from Northern Ireland Sustainable and Renewable Energy Programme Commissioned Report CR/09/096 BRITISH GEOLOGICAL SURVEY COMMISSIONED REPORT CR/09/096 A natural analogue study of CO2- cement interaction: carbonate alteration of calcium silicate hydrate-bearing rocks from Northern Ireland A.E. Milodowski, A Lacinska and D Wagner The National Grid and other Ordnance Survey data are used with the permission of the Controller of Her Majesty’s Stationery Office. Ordnance Survey licence number GD 272191/1999 Key words CCS, CO2, cement, carbon sequestration, natural analogue, carbonation, borehole infrastructure. Front cover Scawt Hill, Co. Antrim, Northern Ireland. Bibliographical reference MILODOWSKI, A E, LACINSKA, A, AND WAGNER, D. 2009. A natural analogue study of CO2- cement interaction: carbonate alteration of calcium silicate hydrate-bearing rocks from Northern Ireland. British Geological Survey Commissioned Report, CR/09/096. 40pp. © NERC 2009 Keyworth, Nottingham British Geological Survey 2009 BRITISH GEOLOGICAL SURVEY The full range of Survey publications is available from the BGS Keyworth, Nottingham NG12 5GG Sales Desks at Nottingham and Edinburgh; see contact details 0115-936 3241 Fax 0115-936 3488 below or shop online at www.thebgs.co.uk e-mail: [email protected] The London Information Office maintains a reference collection www.bgs.ac.uk of BGS publications including maps for consultation. Shop online at: www.thebgs.co.uk The Survey publishes an annual catalogue of its maps and other publications; this catalogue is available from any of the BGS Sales Murchison House, West Mains Road, Edinburgh EH9 3LA Desks.
    [Show full text]
  • Study on Mineral Compositions of Direct Carbonated Steel Slag by QXRD, TG, FTIR, and XPS
    energies Article Study on Mineral Compositions of Direct Carbonated Steel Slag by QXRD, TG, FTIR, and XPS Xue Wang 1,2 , Wen Ni 1,2,*, Jiajie Li 1,2 , Siqi Zhang 1,2 and Keqing Li 1,2 1 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China; [email protected] (X.W.); [email protected] (J.L.); [email protected] (S.Z.); [email protected] (K.L.) 2 Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China * Correspondence: [email protected] Abstract: Steel slag CO2 sequestration helps mitigate global warming and decrease the stockpile of steel slag (SS). Through orthogonal design tests and single-factor tests, this paper evaluated the effects of the water/solid mass ratio (w/s), gypsum ratio (G/SS), molding pressure, and curing duration on uniaxial compressive strength (UCS) and CO2 uptake of the compacts. The results indicated that high w/s enhanced both strength and CO2 capture ability. The proper addition of gypsum helps promote UCS increase and CO2 uptake of steel slag. In addition, increasing the molding pressure can significantly improve UCS without reducing CO2 uptake. The optimum conditions in the study were a w/s of 0.20, G/SS of 1/16, and molding pressure of 27 MPa, under which conditions 1 d UCS and CO2 uptake were 55.30 MPa and 12.36%, respectively. Microanalyses showed that gypsum activates mainly mayenite in steel slag. An increase in water addition also increased the hydration and carbonation products greatly, and the strengthened molding pressure had a significant densification effect on micro-pore structures.
    [Show full text]
  • New Mineral Names
    American Mineralogist, Volume 80, pages 630-635, 1995 NEW MINERAL NAMES. JOHN L. JAMBOR Departmentof Earth Sciences,Universityof Waterloo,Waterloo,OntarioN2L 3Gl, Canada VLADIMIR A. KOVALENKER IGREM RAN, Russian Academy of Sciences, Moscow 10917, Staromonetnii 35, Russia ANDREW C. ROBERTS Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario KIA OE8, Canada Briziite* Co and increased Ni content in conireite, the name allud- F. Olmi, C. Sabelli (1994) Briziite, NaSb03, a new min- ing to the principal cations Co-Ni-Fe. eral from the Cetine mine (Tuscany, Italy): Description Discussion. An unapproved name for an incompletely and crystal structure. Eur. Jour. MineraL, 6, 667-672. described mineral. J.L.J. The mineral occurs as light pink to yellow, compact aggregates of platy to thin tabular crystals that encrust Grossite* weathered waste material and slag at the Cetine antimony D. Weber, A Bischoff(1994) Grossite (CaAl.O,)-a rare (stibnite) mine near Siena, Tuscany, Italy. Electron mi- phase in terrestrial rocks and meteorites. Eur. Jour. croprobe analysis gave Na20 15.98, Sb20s 83.28 wt%, Mineral., 6,591-594. corresponding to NaSb03. Platy crystals are hexagonal in D. Weber, A Bischoff (1994) The occurrence of grossite outline, up to 0.2 mm across, colorless, transparent, white (CaAl.O,) in chondrites. Geochim. Cosmochim. Acta, streak, pearly luster, perfect {001} cleavage, flexible, 58,3855-3817. VHNIS = 57 (41-70), nonfluorescent, polysynthetically twinned on (100), Dmeas= 4.8(2), Deale= 4.95 g/cm3 for Z Electron microprobe analysis gave CaO 21.4, A1203 = 6. Optically uniaxial negative, E= 1.631(1), w = 1.84 17.8, FeO 0.31, Ti02 0.15, Si02 0.11, MgO 0.06, sum (calculated).
    [Show full text]
  • Effect of Mineralogical Changes on Mechanical Properties of Well Cement
    ARMA 19–1981 Well integrity of high temperature wells: Effect of mineralogical changes on mechanical properties of well cement TerHeege, J.H. and Wollenweber, J. TNO Applied Geosciences, Utrecht, the Netherlands Marcel Naumann Equinor ASA, Sandsli, Norway Downloaded from http://onepetro.org/armausrms/proceedings-pdf/arma19/all-arma19/arma-2019-1981/1133466/arma-2019-1981.pdf by guest on 27 September 2021 Pipilikaki, P. TNO Structural Reliability, Delft, the Netherlands Vercauteren, F. TNO Material Solutions, Eindhoven, the Netherlands This paper w as prepared for presentation at the 53rd US Rock Mechanics/Geomechanics Symposium held in New Y ork, NY , USA , 23–26 June 2019. This paper w as selected for presentation at the symposium by an ARMA Technical Program Committee based on a technical and critical review of the paper by a minimum of tw o technical reviewers. The material, as presented, does not necessarily reflect any position of ARMA, its of ficers, or members. ABSTRACT: Wells used for steam-assisted gravity drainage (SAGD), for cyclic steam stimulation (CSS), for hydrocarbon production in areas with anomalous high geothermal gradient, or for geothermal energy extraction all are operated in high temperature environments where maintaining long term wellbore integrity is one of the key challenges. Changes in cement mineralogy and associated mechanical properties may critically affect the integrity of high temperature wells. In this study, the relation between changes in mineralogy and mechanical properties of API class G cement with 40% silica flour was investigated by exposing samples for 1-4 weeks to temperatures of 60-420°C. The effect of mineralogical changes on mechanical properties was investigated using a combination of chemical and microstructural analysis and triaxial strength tests at confining pressures of 2-15 MPa.
    [Show full text]