Arctic Coastal Dynarnics Report of the 3Rd International Workshop University of Oslo (Norway) 2-5 December 2002
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Handbok07.Pdf
- . - - - . -. � ..;/, AGE MILL.YEAR$ ;YE basalt �- OUATERNARY votcanoes CENOZOIC \....t TERTIARY ·· basalt/// 65 CRETACEOUS -� 145 MESOZOIC JURASSIC " 210 � TRIAS SIC 245 " PERMIAN 290 CARBONIFEROUS /I/ Å 360 \....t DEVONIAN � PALEOZOIC � 410 SILURIAN 440 /I/ ranite � ORDOVICIAN T 510 z CAM BRIAN � w :::;: 570 w UPPER (J) PROTEROZOIC � c( " 1000 Ill /// PRECAMBRIAN MIDDLE AND LOWER PROTEROZOIC I /// 2500 ARCHEAN /(/folding \....tfaulting x metamorphism '- subduction POLARHÅNDBOK NO. 7 AUDUN HJELLE GEOLOGY.OF SVALBARD OSLO 1993 Photographs contributed by the following: Dallmann, Winfried: Figs. 12, 21, 24, 25, 31, 33, 35, 48 Heintz, Natascha: Figs. 15, 59 Hisdal, Vidar: Figs. 40, 42, 47, 49 Hjelle, Audun: Figs. 3, 10, 11, 18 , 23, 28, 29, 30, 32, 36, 43, 45, 46, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 75 Larsen, Geir B.: Fig. 70 Lytskjold, Bjørn: Fig. 38 Nøttvedt, Arvid: Fig. 34 Paleontologisk Museum, Oslo: Figs. 5, 9 Salvigsen, Otto: Figs. 13, 59 Skogen, Erik: Fig. 39 Store Norske Spitsbergen Kulkompani (SNSK): Fig. 26 © Norsk Polarinstitutt, Middelthuns gate 29, 0301 Oslo English translation: Richard Binns Editor of text and illustrations: Annemor Brekke Graphic design: Vidar Grimshei Omslagsfoto: Erik Skogen Graphic production: Grimshei Grafiske, Lørenskog ISBN 82-7666-057-6 Printed September 1993 CONTENTS PREFACE ............................................6 The Kongsfjorden area ....... ..........97 Smeerenburgfjorden - Magdalene- INTRODUCTION ..... .. .... ....... ........ ....6 fjorden - Liefdefjorden................ 109 Woodfjorden - Bockfjorden........ 116 THE GEOLOGICAL EXPLORATION OF SVALBARD .... ........... ....... .......... ..9 NORTHEASTERN SPITSBERGEN AND NORDAUSTLANDET ........... 123 SVALBARD, PART OF THE Ny Friesland and Olav V Land .. .123 NORTHERN POLAR REGION ...... ... 11 Nordaustlandet and the neigh- bouring islands........................... 126 WHA T TOOK PLACE IN SVALBARD - WHEN? .... -
Manuscript Necessary to Identify Individual Reflections and Structures Can Be Found at Dataverseno 955 (
Early Cenozoic Eurekan strain partitioning and decoupling in central Spitsbergen, Svalbard Jean-Baptiste P. Koehl1,2,3,4 5 1Centre for Earth Evolution and Dynamics (CEED), University of Oslo, PO Box 1028 Blindern, N-0315 Oslo, Norway. 2Department of Geosciences, UiT The Arctic University of Norway in Tromsø, NO-9037 Tromsø, Norway. 3Research Centre for Arctic Petroleum Exploration (ARCEx), University of Tromsø, NO-9037 Tromsø, Norway. 4 CAGE – Centre for Arctic Gas Hydrate, Environment and Climate, NO-9037 Tromsø, Norway. 10 Correspondence: Jean-Baptiste P. Koehl ([email protected]) Abstract The present study of field, petrological, exploration well and seismic data describes backward- 15 dipping duplexes comprised of phyllitic coal and bedding-parallel décollements and thrusts localized along lithological transitions in tectonically thickened Lower–lowermost Upper Devonian, uppermost Devonian–Mississippian and uppermost Pennsylvanian–lowermost Permian sedimentary strata of the Wood Bay and/or Widje Bay and/or Grey Hoek formations, of the Billefjorden Group and of the Wordiekammen Formation respectively. The study shows that these 20 structures partially decoupled uppermost Devonian–Permian sedimentary rocks of the Billefjorden and Gipsdalen groups from Lower–lowermost Upper Devonian rocks of the Andrée Land Group and Mimerdalen Subgroup during early Cenozoic Eurekan deformation in central Spitsbergen. Eurekan strain decoupling along these structures explains differential deformation between Lower– lowermost Upper Devonian rocks -
World Map Showing Surface and Subsurface Distribution, and Lithologic Character of Middle and Late Neoproterozoic Rocks
World Map Showing Surface and Subsurface Distribution, and Lithologic Character of Middle and Late Neoproterozoic Rocks By John H. Stewart1 Open-File Report 2007-1087 2007 U.S. Department of the Interior U.S. Geological Survey 1 Menlo Park, Calif. U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2007 Revised and reprinted: 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Stewart, John H., 2007, World map showing surface and subsurface distribution, and lithologic character of Middle and Late Neoproterozoic rocks: U.S. Geological Survey Open-File Report 2007-1087. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Introduction......................................................................................................................... 3 Sources of information ........................................................................................................ 2 Africa [AF] -
9 Paleontological Conference Th
Polish Academy of Sciences Institute of Paleobiology 9th Paleontological Conference Warszawa, 10–11 October 2008 Abstracts Warszawa Praha Bratislava Edited by Andrzej Pisera, Maria Aleksandra Bitner and Adam T. Halamski Honorary Committee Prof. Oldrich Fatka, Charles University of Prague, Prague Prof. Josef Michalík, Slovak Academy of Sciences, Bratislava Assoc. Prof. Jerzy Nawrocki, Polish Geological Institute, Warszawa Prof. Tadeusz Peryt, Polish Geological Institute, Warszawa Prof. Grzegorz Racki, Institute of Paleobiology, Warszawa Prof. Jerzy Trammer, University of Warsaw, Warszawa Prof. Alfred Uchman, Jagiellonian University, Kraków Martyna Wojciechowska, National Geographic Polska, Warszawa Organizing Committee Dr Maria Aleksandra Bitner (Secretary), Błażej Błażejewski, MSc, Prof. Andrzej Gaździcki, Dr Adam T. Halamski, Assoc. Prof. Anna Kozłowska, Assoc. Prof. Andrzej Pisera Sponsors Institute of Paleobiology, Warszawa Polish Geological Institute, Warszawa National Geographic Polska, Warszawa Precoptic Co., Warszawa Cover picture: Quenstedtoceras henrici Douvillé, 1912 Cover designed by Aleksandra Hołda−Michalska Copyright © Instytut Paleobiologii PAN Nakład 150 egz. Typesetting and Layout: Aleksandra Szmielew Warszawska Drukarnia Naukowa PAN ABSTRACTS Paleotemperature and paleodiet reconstruction on the base of oxygen and carbon isotopes from mammoth tusk dentine and horse teeth enamel during Late Paleolith and Mesolith MARTINA ÁBELOVÁ State Geological Institute of Dionýz Štúr, Mlynská dolina 1, SK−817 04 Bratislava 11, Slovak Republic; [email protected] The use of stable isotopes has proven to be one of the most effective methods in re− constructing paleoenvironments and paleodiet through the upper Pleistocene period (e.g. Fricke et al. 1998; Genoni et al. 1998; Bocherens 2003). This study demonstrates how isotopic data can be employed alongside other forms of evidence to inform on past at great time depths, making it especially relevant to the Palaeolithic where there is a wealth of material potentially available for study. -
The Franklinian Geosyncline in the Canadian Arctic and Its Relationship to Svalbard
The Franklinian Geosyncline in the Canadian Arctic and its relationship to Svalbard By R. L. CHRISTIE1 Contents P age Abstract 263 lntroduction . 264 The Franklinian Geosyncline . 265 General tectonic pattern . 265 Stratigraphy . 267 Tectonic events .................. .............................. 274 a) Late Precambrian orogeny ... ........... .... ...... ........ 274 b) Middle Ordovician or earlier orogeny ...................... .. 274 c) Late Silurian to Early Devonian orogeny ....... ... .............. 274 d) Midd le Devonian?, Acadian orogeny . 275 e) Latest Devonian to Ear!y Mississippian orogeny ................ 276 Structural features of the Innuitian orogen .......................... 276 The principal structures : Acadian - Ellesmerian ... ................. 277 Older structural zones . 278 Y o unger structures . 279 A review of some tectonic features of the Innuitian region . 280 Tectonic development of Svalbard and the Innuitian region ............ 284 Tectonic models to account for the Arctic Ocean basins and the geology of Svalbard . 284 The geology of Svalbard and the lnnuitian region . 287 Pre-Carboniferous time . 287 Carboniferous and later time . 295 Tectonic connections between Svalbard and Innuitia ...... .......... 295 A tectonic model for Svalbard and Innuitia .................... .... 297 The de Geer Line and other lineaments. 300 The geosynclinal concept and the model for Svalbard-Innuitia ........ 304 Conclusions . 309 References . 309 Abstract Development of the Franklinian Geosyncline began, perhaps ear!ier, but -
Downloaded Daily to the Geodetic Survey Division in Ottawa, Where They Are Reviewed for Quality Control, Archived, and Uploaded to the International GPS Service
Arctic Coastal Dynamics Report of the 4th International Workshop VNIIOkeangeologia, St. Petersburg (Russia), 10-13 November 2003 Edited by Volker Rachold and Georgy Cherkashov Volker Rachold, Alfred Wegener Institute, Research Unit Potsdam, Telegrafenberg A43, 14473 Potsdam, Germany Georgy Cherkashov, VNIIOkeangeologia (Institute for Geology and Mineral Resources of the Ocean), Angliysky prospect 1, 190121 St. Petersburg, Russia Preface Arctic Coastal Dynamics (ACD) is a joint project of the International Arctic Sciences Committee (IASC) and the International Permafrost Association (IPA) and a regional project of IGBP-LOICZ (International Geosphere-Biosphere Programme – Land- Ocean Interactions in the Coastal Zone). Its overall objective is to improve our understanding of circum-Arctic coastal dynamics as a function of environmental forcing, coastal geology and cryology and morphodynamic behavior. The fourth IASC-sponsored ACD workshop was held in St. Petersburg, Russia, on November 10-13, 2003. Participants from Canada (7), Germany (7), Great Britain (2), the Netherlands (1), Norway (1), Russia (32), Ukraine (1) and the United States (8) attended. During the first part of the workshop, 63 papers dealing with regional and/or circum-Arctic coastal dynamics were presented. Based on the material presented, five thematic working groups were identified: (1) GIS working group to develop of a circum-Arctic coastal GIS system, (2) coastal permafrost working group to discuss processes involved in the transition of onshore to offshore permafrost, (3) biogeochemistry working group with the focus on transport and fate of eroded material (4) biodiversity working group to initiate planning of an Arctic Coastal Biodiversity research agenda, (5) environmental data working group to discuss coastal dynamics as a function of environmental forcing. -
Eunaseis: a Seismic Model for Moho and Crustal Structure in Europe, Greenland, and the North Atlantic Region
EUNAseis a seismic model for Moho and crustal structure in Europe, Greenland, and the North Atlantic region Artemieva, Irina; Thybo, Hans Published in: Tectonophysics DOI: 10.1016/j.tecto.2013.08.004 Publication date: 2013 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Artemieva, I., & Thybo, H. (2013). EUNAseis: a seismic model for Moho and crustal structure in Europe, Greenland, and the North Atlantic region. Tectonophysics, 609, 97-153. https://doi.org/10.1016/j.tecto.2013.08.004 Download date: 04. Oct. 2021 Tectonophysics 609 (2013) 97–153 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Review Article EUNAseis: A seismic model for Moho and crustal structure in Europe, Greenland, and the North Atlantic region☆ Irina M. Artemieva ⁎, Hans Thybo IGN, University of Copenhagen, Denmark article info abstract Article history: We present a new digital crustal model for Moho depth and crustal structure in Europe, Greenland, Iceland, Received 27 November 2012 Svalbard, European Arctic shelf, and the North Atlantic Ocean (72W–62E, 30N–84N). Our compilation is based Received in revised form 18 July 2013 on digitization of original seismic profiles and Receiver Functions from ca. 650 publications which provides a Accepted 4 August 2013 dense regional data coverage. Exclusion of non-seismic data allows application of the database to potential Available online 15 August 2013 field modeling. EUNAseis model includes Vp velocity and thickness of five crustal layers, including the sedimen- tary cover, and Pn velocity. For each parameter we discuss uncertainties associated with theoretical limitations, Keywords: Moho regional data quality, and interpolation. -
Geoberlin 2015 4—7 October 2015 | Annual Meeting of DGGV · DMG DYNAMIC EARTH · from Alfred Wegener to Today and Beyond
GeoBerlin 2015 4—7 October 2015 | Annual Meeting of DGGV · DMG DYNAMIC EARTH · from Alfred Wegener to today and beyond Abstracts Recommended Citation Wagner, J.; Elger, K. [Eds.] (2015) GeoBerlin2015 - Dynamic Earth from Alfred Wegener to today and beyond - Abstracts. Annual Meeting of DGGV and DMG, 4-7 October 2015, Berlin: GFZ German Research Centre for Geosciences. DOI: http://doi.org/10.2312/GFZ.LIS.2015.003 Disclaimer and Copyright Each author is responsible for the content of his or her abstract and has the copyright for his or her figures. Imprint Publisher Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Telegrafenberg 14473 Potsdam Published in Potsdam, Germany Editors Johannes Wagner Kirsten Elger DOI: http://doi.org/10.2312/GFZ.LIS.2015.003 Contents Welcome 1 Scientific Committee . 3 Plenary Lectures4 Dan McKenzie . The Lithospheric Structure of Pangea and Central Asia: The rules of craton assembly . 4 Maureen Raymo . Sea Level During Past Warm Periods - Rethinking the Bathtub Model 4 Barbara Romanowicz . Global mantle imaging in the age of high speed wavefield computations 5 Trond H. Torsvik . Paleomagnetism and Plate Tectonics . 5 Faszination Alfred Wegener: Leben, Aktivitäten und wissenschaftliche Leistungen7 A. M. Celâl Şengör . Das Weltbild der Geowissenschaften – von Alfred Wegener bis heute . 7 Kurt Stuewe . The Wegener Memorial Expedition to the Greenland Caledonides . 8 Wolfgang Jacoby . Wie dachte Alfred Wegener über die Ursachen der Kontinentalver- schiebung? . 8 Günther Schönharting . Die Wahrnehmung der Ideen von Alfred Wegener und Wladimir Köppen in der Öffentlichkeit – ein Stück Wissenschaftsgeschichte . 9 I Jörn Thiede . Waldimir Köppen, Alfred Wegener and Milutin Milankovitch, Early Pioneers and Partners in Paleoclimate Researchs . -
Crustal Structure and Evolution of the Arctic Caledonides
Crustal Structure and Evolution of the Arctic Caledonides: Results from Controlled-Source Seismology Iselin Aarsetha*, Rolf Mjeldea, Asbjørn Johan Breivikb, Alexander Minakovb, Jan Inge Faleideb, Ernst Fluehc, Ritske S. Huismansa, a Department of Earth Science, University of Bergen, Allégaten 41, N-5007 Bergen, Norway b Department of Geosciences, University of Oslo, P.O. box 1047, Blindern, N-0316 Oslo Norway c GEOMAR, Wischhofstrasse 1-3, 24148 Kiel, Germany * Corresponding author: E-mail address: [email protected], Tel.: +47 45214608 1 Abstract The continuation of the Caledonides into the Barents Sea has long been a subject of discussion, and two major orientations of the Caledonian deformation fronts have been suggested: NNW- SSE striking and NE-SW striking, respectively. A regional NW-SE oriented ocean bottom seismic profile across the western Barents Sea was acquired in 2014. In this paper we map the crust and upper mantle structure along this profile in order to discriminate between different interpretations of Caledonian structural trends and orientation of rift basins in the western Barents Sea. Modeling of P-wave travel times has been done using a ray-tracing method, and combined with gravity modeling. The results show high P-wave velocities (4 km/s) close to the seafloor, as well as localized sub-horizontal high velocity zones (6.0 km/s and 6.9 km/s) at shallow depths which are interpreted as magmatic sills. Refractions from the top of the crystalline basement together with reflections from the Moho give basement velocities from 6.0 km/s at the top to 6.7 km/s at the base of the crust. -
A Seismic Model for Moho and Crustal Structure in Europe, Greenland, and the North Atlantic Region☆
Tectonophysics 609 (2013) 97–153 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Review Article EUNAseis: A seismic model for Moho and crustal structure in Europe, Greenland, and the North Atlantic region☆ Irina M. Artemieva ⁎, Hans Thybo IGN, University of Copenhagen, Denmark article info abstract Article history: We present a new digital crustal model for Moho depth and crustal structure in Europe, Greenland, Iceland, Received 27 November 2012 Svalbard, European Arctic shelf, and the North Atlantic Ocean (72W–62E, 30N–84N). Our compilation is based Received in revised form 18 July 2013 on digitization of original seismic profiles and Receiver Functions from ca. 650 publications which provides a Accepted 4 August 2013 dense regional data coverage. Exclusion of non-seismic data allows application of the database to potential Available online 15 August 2013 field modeling. EUNAseis model includes Vp velocity and thickness of five crustal layers, including the sedimen- tary cover, and Pn velocity. For each parameter we discuss uncertainties associated with theoretical limitations, Keywords: Moho regional data quality, and interpolation. Crustal thickness By analyzing regional trends in crustal structure and links to tectonic evolution illustrated by a new tectonic map, Crystalline crust we conclude that: (1) Each tectonic setting shows significant variation in depth to Moho and crustal structure, Sedimentary cover essentially controlled by the age of latest tectono-thermal processes; (2) Published global averages of crustal pa- Pn velocity rameters are outside of observed ranges for any tectonic setting in Europe; (3) Variation of Vp with depth in the Crustal evolution sedimentary cover does not follow commonly accepted trends; (4) The thickness ratio between upper-middle (Vp b 6.8 km/s) and lower (Vp N 6.8 km/s) crystalline crust is indicative of crustal origin: oceanic, transitional, platform, or extended crust; (5) Continental rifting generally thins the upper-middle crust significantly without changing Vp. -
A Review of Postglacial Emergence on Svalbard, Franz Josef Land and Novaya Zemlya, Northern Eurasia S.L
ARTICLE IN PRESS Quaternary Science Reviews 23 (2004) 1391–1434 A review of postglacial emergence on Svalbard, Franz Josef Land and Novaya Zemlya, northern Eurasia S.L. Formana,*, D.J. Lubinskib, O.! Ingolfsson! c, J.J. Zeebergd, J.A. Snydere, M.J. Siegertf, G.G. Matishovg a Department of Earth and Environmental Sciences, University of Illinois, Chicago, IL 60607, USA b Institute of Arctic and Alpine Research, The University of Colorado, Boulder, CO 80309-0450, USA c Department of Geology and Geography, University of Iceland, Is-101 Reykjav!ık, Iceland d Netherlands Institute for Fisheries Research, Haringkade 1, P.O. Box 68 1970 AB IJmuiden, The Netherlands e Department of Geology, Bowling Green State University, Bowling Green, OH 43403, USA f Bristol Glaciology Centre, School of Geographical Sciences University of Bristol, University Road, Bristol BSS 1SS, UK g Murmansk Marine Biological Institute, 17 Vladimirskaya Street, Murmansk 183010, Russia Abstract The pattern of postglacial emergence in the Barents Sea is pivotal to constraining the timing of deglaciation and extent and thickness of the last ice sheet in northern Eurasia. This review unites records of Holocene relative sea level from Svalbard, Franz Josef Land, and Novaya Zemlya to better understand the geometries of past ice sheet loads. Emergence data from northern Eurasia confine the maximum area of glacier loading to the northwestern Barents Sea, where >100 m of emergence is measured on Kongs^ya. Deglacial unloading commenced on western and northern Spitsbergen c. 13–12 14C ka ago, and by c. 10.5 14Cka on eastern Svalbard and more distal sites on Franz Josef Land and Novaya Zemlya. -
Geoberlin 2015 4—7 October 2015 | Annual Meeting of DGGV · DMG DYNAMIC EARTH · from Alfred Wegener to Today and Beyond
GeoBerlin 2015 4—7 October 2015 | Annual Meeting of DGGV · DMG DYNAMIC EARTH · from Alfred Wegener to today and beyond Abstracts Recommended Citation Wagner, J.; Elger, K. [Eds.] (2015) GeoBerlin2015 - Dynamic Earth from Alfred Wegener to today and beyond - Abstracts. Annual Meeting of DGGV and DMG, 4-7 October 2015, Berlin: GFZ German Research Centre for Geosciences. DOI: http://doi.org/10.2312/GFZ.LIS.2015.003 Disclaimer and Copyright Each author is responsible for the content of his or her abstract and has the copyright for his or her figures. Imprint Publisher Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Telegrafenberg 14473 Potsdam Published in Potsdam, Germany Editors Johannes Wagner Kirsten Elger DOI: http://doi.org/10.2312/GFZ.LIS.2015.003 Contents Welcome 1 Scientific Committee . 3 Plenary Lectures4 Dan McKenzie . The Lithospheric Structure of Pangea and Central Asia: The rules of craton assembly . 4 Maureen Raymo . Sea Level During Past Warm Periods - Rethinking the Bathtub Model 4 Barbara Romanowicz . Global mantle imaging in the age of high speed wavefield computations 5 Trond H. Torsvik . Paleomagnetism and Plate Tectonics . 5 Faszination Alfred Wegener: Leben, Aktivitäten und wissenschaftliche Leistungen7 A. M. Celâl Şengör . Das Weltbild der Geowissenschaften – von Alfred Wegener bis heute . 7 Kurt Stuewe . The Wegener Memorial Expedition to the Greenland Caledonides . 8 Wolfgang Jacoby . Wie dachte Alfred Wegener über die Ursachen der Kontinentalver- schiebung? . 8 Günther Schönharting . Die Wahrnehmung der Ideen von Alfred Wegener und Wladimir Köppen in der Öffentlichkeit – ein Stück Wissenschaftsgeschichte . 9 I Jörn Thiede . Waldimir Köppen, Alfred Wegener and Milutin Milankovitch, Early Pioneers and Partners in Paleoclimate Researchs .