Download Paper

Total Page:16

File Type:pdf, Size:1020Kb

Download Paper Drug Delivery to the Lungs (DDL2017), 2017 – Myrna Dolovich Looking Back and Looking Ahead: Developments in Aerosol Medicine over the last 50 Years – Devices, Drug and Detection of Disease Myrna B Dolovich, B.Eng., P.Eng Faculty of Health Sciences, McMaster University/St Joseph`s Healthcare Hamilton, 50 Charlton Ave E, Hamilton, Ontario/ L8N 4A6, Canada Introduction Over the years, advances in technology, coupled with discovery in physiology, physics and pharmaceutics have been applied extensively to the delivery of aerosol therapy and respiratory medicine. Innovations in the design of all categories of aerosol drug delivery devices (ADDD) and also pharmaceutical formulations have resulted in highly efficient delivery systems as well as tailored aerosols. Dual and triple combination therapies are now widely prescribed in portable inhalers for patients with asthma and COPD. By manipulating particle size and inhalation variables, the possibilities of providing targeted treatments to specific regions of the lung may also be feasible, enhancing treatment for patients with various respiratory and non-respiratory diseases. Devices, Drugs and Detection of Disease Changes in delivery device design and performance over the years have been extensive for all categories of devices1,2. A major change in pMDIs occurred with the acceptance of the 1987 Montreal Protocol mandating transitioning propellant-based formulations from CFCs to HFAs. Reformulation was not a simple process for many drugs and some pMDIs could not be converted as an HFA propellant formulation. The addition of ethanol to co- solve corticosteroids in HFA134a produced one of the most significant developments, namely, the production of HFA solution steroids. These extra-fine 1µm steroid aerosols resulted in lower prescribed ICS doses for patients and, in addition, due to their aerodynamic size, were expected to target the distal lung. Recently, treatment protocols combining inhalation of coarse and extra-fine corticosteroid aerosols from different inhalers have met with some success in providing better outcomes in patients with hard-to-treat asthma. The introduction of spacers and holding chambers to be used with pMDIs was a major advance in helping adult and pediatric asthmatic patients inhale their pressurized aerosols;. ensuring that the dose was delivered through the chamber contributed to controlling their symptoms3. Chambers with mouthpiece and also facemasks were designed not only for ambulatory patients but also to interface with ventilator circuits in the ICU. In the last 20 years, advances in nebulizer design resulted in the portable Soft Mist Inhaler (SMI)™ and the battery-operated Vibrating Mesh (VM) nebulizer4. These ADDDs are high efficiency delivery devices, used to dispense multiple therapies and in various clinical settings. VM nebulizers have also been used in diagnostic challenge inhalation tests to assess airway hyper-reactivity (AHR) in asthma and Sputum Cytology in asthma and COPD5,6. Developments in DPI design have produced several capsule – based inhalers, medium resistance devices and single use/disposable, inexpensive DPIs for administering unit doses of, for example, vaccine powders7.8. Another design improvement was the incorporation of a dose counter in all reservoir and multi-unit dose DPIs and pMDIs, making it easier for patients to know that they had taken their dose and also when to refill their prescriptions. The correct use of inhalers by patients and their adherence to therapy have become areas of active research as misuse and non-use continue to be major causes of treatment failures. Human Factors (HF) studies demonstrating how patients actually use their inhalers, with or without benefit of instruction, should help the industry design `patient-friendly` inhalers9. These types of studies are now required by regulatory agencies in North America and Europe. Specific Guidances from the FDA and EMA are available to guide the various pharma and device companies in designing and implementing HF trials. Imaging the Lungs to Assess Lung Dose and Regional Deposition Research studies to determine where aerosols deposit in the lung have provided data on total and regional deposition for a number of inhaled pharmaceutics and delivery devices. These studies if coupled with routine clinical response measurements, for example, spirometry and PK, can provide a correlation between where the drug is deposited in the lung and clinical efficacy. Methods for indirect and direct radiolabelling of drugs have been used with success9. Imaging technology and data analysis are extremely sophisticated today compared to early studies where single scintillation counters were positioned behind the subject at specific geometric locations10. Data from each counter were then analyzed individually. With SPECT/CT or PET/CT hybrid scanners, the lung is viewed in 3D and combined with protocols to segment the airways, these tomographic modalities provide regional deposition data from many lung slices and defined regions within the lung. The quantity of data grows exponentially with increased resolution of these scanners and also the number of outcome measures that can be determined from the datasets. MRI with inhalation of HHe3, and now 129Xe, to locate ventilation defects in the lung is also being used to study patients with lung disease and may be used to monitor changes in the lung over time11. Drug Delivery to the Lungs (DDL2017), 2017 - Looking Back and Looking Ahead: Developments in Aerosol Medicine over the last 50 Years - Devices, Drug and Detection of Disease Methods to alter API particle size, the use of different excipients in formulations, modifying particle density and other innovative measures, have produced pharmaceutics that can target distal airways in the lung12. Ultra-fine particles of Technegas, a gas-like aerosol consisting of solid nanoparticles of carbon, <1µm in size and labelled with 99mTc, are used daily in Nuclear Medicine departments worldwide to assess ventilation, a clinical test that requires inhaling a gas-like aerosol. The technique that produces these particles, essentially a burning or vaporizing of a solid at high temperature, is food for thought as to whether this concept can be adapted to reliably produce viable therapeutic particles that could target and treat the distal lung. Possibilities for new devices used to administer therapeutic aerosols are evident at this meeting. Using the lung and nasal surfaces as part of the aerosol delivery system to reach the systemic circulation has created opportunities, not pursued in the past, for treating non-pulmonary diseases such as diabetes and Parkinson`s among others. Drugs, drug delivery systems and methods to detect and measure responses have played major roles and continue to do so, in these areas of research. It is also recognized that barriers to absorption of drug through the airway epithelium may have to be overcome for effective treatment to occur. And the possibility of side effects must always be considered when new treatment avenues are explored. 1 Dolovich MB, Dhand R. Aerosol drug delivery: developments in device design and clinical use. The Lancet 2011 Mar 19;377(9770):1032-45. 2 Pirozynski M, Sosnowski TR. Inhalation devices: from basic science to practical use, innovative vs generic products. Expert Opin Drug Deliv 2016;13(11):1559-71 3 Nikander K, Nicholls C, Denyer J, Pritchard J. The Evolution of Spacers and Valved Holding Chambers. J Aerosol Med 2014; 27(S1):S-4. 4 Dhand R. Nebulizers that use a vibrating mesh or plate with multiple apertures to generate aerosol. Respir Care 2002 Dec;47(12):1406-16. 5 Nair P, Martin JG, Cockcroft DC, Dolovich M, Lemiere C, Boulet LP, et al. Airway Hyperresponsiveness in Asthma: Measurement and Clinical Relevance. J Allergy Clin Immunol Pract 2017 May;5(3):649-59. 6 Nair P, Dasgupta A, Brightling CE, Chung KF. How to Diagnose and Phenotype Asthma. Clinics in Chest Medicine 2012 Sep;33(3):445-57. 7 Islam N, Gladki E. Dry powder inhalers (DPIs)--A review of device reliability and innovation. Int`l J Pharmaceutics 2008 ;360(1-2):1-11. 8 Roche N, Scheuch G, Pritchard JN, Nopitsch-Mai C, Lakhani DA, Saluja B, et al. Patient Focus and Regulatory Considerations for Inhalation Device Design: Report from the 2015 IPAC-RS/ISAM Workshop. J Aerosol Med 2016; 30(1):1-13. 9 Dolovich MB. 18F-Fluorodeoxyglucose Positron Emission Tomographic Imaging of Pulmonary Functions, Pathology, and Drug Delivery. Proc Am Thorac Soc 2009 Aug 15;6(5):477-85 10 Milic-Emili, J., J. A. M. Henderson, M. B. Dolovich, D. Trop and K. Kaneko. Regional distribution of inspired gas in the lung. J. Appl. Physiol. 2 I (3) : 749-759. 1966. 11 Svenningsen S, Kirby M, Starr D, Coxson HO, Paterson NA, McCormack DG, et al. What are ventilation defects in asthma? Thorax 2014 Jan;69(1):63-71. 12 Hoppentocht M, Hagedoorn P, Frijlink HW, de Boer AH. Technological and practical challenges of dry powder inhalers and formulations. Adv Drug Deliv Rev 2014;75:18-31 .
Recommended publications
  • An Introduction to Fast Dissolving Oral Thin Film Drug Delivery Systems: a Review
    Muthadi Radhika Reddy /J. Pharm. Sci. & Res. Vol. 12(7), 2020, 925-940 An Introduction to Fast Dissolving Oral Thin Film Drug Delivery Systems: A Review Muthadi Radhika Reddy1* 1School of pharmacy, Gurunanak Institute of Technical Campus, Hyderabad, Telangana, India and Department of Pharmacy, Gandhi Institute of Technology and Management University, Vizag, Andhra Pradesh, India INTRODUCTION 2. Useful in situations where rapid onset of action Fast dissolving drug delivery systems were first developed required such as in motion sickness, allergic attack, in the late 1970s as an alternative to conventional dosage coughing or asthma forms. These systems consist of solid dosage forms that 3. Has wide range of applications in pharmaceuticals, Rx disintegrate and dissolve quickly in the oral cavity without Prescriptions and OTC medications for treating pain, the need of water [1]. Fast dissolving drug delivery cough/cold, gastro-esophageal reflux disease,erectile systems include orally disintegrating tablets (ODTs) and dysfunction, sleep disorders, dietary supplements, etc oral thin films (OTFs). The Centre for Drug Evaluation [4] and Research (CDER) defines ODTs as,“a solid dosage 4. No water is required for the administration and hence form containing medicinal substances which disintegrates suitable during travelling rapidly, usually within a matter of seconds, when placed 5. Some drugs are absorbed from the mouth, pharynx upon the tongue” [2]. USFDA defines OTFs as, “a thin, and esophagus as the saliva passes down into the flexible, non-friable polymeric film strip containing one or stomach, enhancing bioavailability of drugs more dispersed active pharmaceutical ingredients which is 6. May offer improved bioavailability for poorly water intended to be placed on the tongue for rapid soluble drugs by offering large surface area as it disintegration or dissolution in the saliva prior to disintegrates and dissolves rapidly swallowing for delivery into the gastrointestinal tract” [3].
    [Show full text]
  • An Overview On: Sublingual Route for Systemic Drug Delivery
    International Journal of Research in Pharmaceutical and Biomedical Sciences ISSN: 2229-3701 __________________________________________Review Article An Overview on: Sublingual Route for Systemic Drug Delivery K. Patel Nibha1 and SS. Pancholi2* 1Department of Pharmaceutics, BITS Institute of Pharmacy, Gujarat Technological university, Varnama, Vadodara, Gujarat, India 2BITS Institute of Pharmacy, Gujarat Technological University, Varnama, Vadodara, Gujarat, India. __________________________________________________________________________________ ABSTRACT Oral mucosal drug delivery is an alternative and promising method of systemic drug delivery which offers several advantages. Sublingual literally meaning is ''under the tongue'', administrating substance via mouth in such a way that the substance is rapidly absorbed via blood vessels under tongue. Sublingual route offers advantages such as bypasses hepatic first pass metabolic process which gives better bioavailability, rapid onset of action, patient compliance , self-medicated. Dysphagia (difficulty in swallowing) is common among in all ages of people and more in pediatric, geriatric, psychiatric patients. In terms of permeability, sublingual area of oral cavity is more permeable than buccal area which is in turn is more permeable than palatal area. Different techniques are used to formulate the sublingual dosage forms. Sublingual drug administration is applied in field of cardiovascular drugs, steroids, enzymes and some barbiturates. This review highlights advantages, disadvantages, different sublingual formulation such as tablets and films, evaluation. Key Words: Sublingual delivery, techniques, improved bioavailability, evaluation. INTRODUCTION and direct access to systemic circulation, the oral Drugs have been applied to the mucosa for topical mucosal route is suitable for drugs, which are application for many years. However, recently susceptible to acid hydrolysis in the stomach or there has been interest in exploiting the oral cavity which are extensively metabolized in the liver.
    [Show full text]
  • Liposome-Based Drug Delivery Systems in Cancer Immunotherapy
    pharmaceutics Review Liposome-Based Drug Delivery Systems in Cancer Immunotherapy Zili Gu 1 , Candido G. Da Silva 1 , Koen van der Maaden 2,3, Ferry Ossendorp 2 and Luis J. Cruz 1,* 1 Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands 2 Tumor Immunology Group, Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands 3 TECOdevelopment GmbH, 53359 Rheinbach, Germany Received: 1 October 2020; Accepted: 2 November 2020; Published: 4 November 2020 Abstract: Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes can offer solutions to common problems faced by several cancer immunotherapies, including the following: (1) Vaccination: Liposomes can improve the delivery of antigens and other stimulatory molecules to antigen-presenting cells or T cells; (2) Tumor normalization: Liposomes can deliver drugs selectively to the tumor microenvironment to overcome the immune-suppressive state; (3) Rewiring of tumor signaling: Liposomes can be used for the delivery of specific drugs to specific cell types to correct or modulate pathways to facilitate better anti-tumor immune responses; (4) Combinational therapy: Liposomes are ideal vehicles for the simultaneous delivery of drugs to be combined with other therapies, including chemotherapy, radiotherapy, and phototherapy. In this review, different liposomal systems specifically developed for immunomodulation in cancer are summarized and discussed. Keywords: liposome; drug delivery; cancer immunotherapy; immunomodulation 1. The Potential of Immunotherapy for the Treatment of Cancer Cancer immunotherapy has been widely explored because of its durable and robust effects [1].
    [Show full text]
  • Intra-Luminal Focused Ultrasound for Augmentation of Gastrointestinal Drug Delivery
    Editorial Page 1 of 2 Intra-luminal focused ultrasound for augmentation of gastrointestinal drug delivery Ezekiel Maloney1, Joo Ha Hwang2 1Department of Radiology, 2Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA Correspondence to: Joo Ha Hwang, MD, PhD. Division of Gastroenterology, Department of Medicine, University of Washington, Box 359773, 325 Ninth Avenue, Seattle, WA 98104, USA. Email: [email protected]. Provenance: This is a Guest Editorial commissioned by Section Editor Hui Kong, MD, PhD (Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China). Comment on: Schoellhammer CM, Schroeder A, Maa R, et al. Ultrasound-mediated gastrointestinal drug delivery. Sci Transl Med 2015;7:310ra168. Submitted Feb 01, 2017. Accepted for publication Feb 06, 2017. doi: 10.21037/atm.2017.03.42 View this article at: http://dx.doi.org/10.21037/atm.2017.03.42 The recent article by Schoellhammer et al., “Ultrasound- intensity ultrasound frequencies followed by quantification mediated gastrointestinal drug delivery” primarily of delivery of permeants (e.g., glucose, dextran, insulin). addresses practical limitations in drug delivery for medical Treated tissues showed enhanced transport. Similar management of inflammatory bowel disease (IBD), and findings were demonstrated in small and large bowel tissue presents pre-clinical data demonstrating that intra- for radiolabeled mesalamine and hydrocortisone. With 1 luminal, sub-ablative focused ultrasound (FUS), delivered minute of ultrasound treatment time, 3–5-fold improved via a trans-rectal transducer, can overcome some of these drug delivery was observed versus control. Additional limitations (1). The clinical application and benefit of such a ex vivo experiments utilizing variable FUS protocols to device is clear.
    [Show full text]
  • Chapter 1 Controlling Drug Delivery
    chapter 1 Controlling drug delivery Overview In this chapter we will: & differentiate drug delivery systems according to their physical state & differentiate drug delivery systems according to their route of administration & differentiate drug delivery systems according to their type of drug release & discuss drug transport across epithelial barriers. Introduction KeyPoints & Continued developments in Pharmacotherapy can be defined as the treatment chemistry, molecular biology and prevention of illness and disease by means of and genomics support the drugs of chemical or biological origin. It ranks discovery and developments among the most important methods of medical of new drugs and new drug treatment, together with surgery, physical targets. & treatment, radiation and psychotherapy. There The drug delivery system are many success stories concerning the use of employed can control the pharmacological action of a drugs and vaccines in the treatment, prevention drug, influencing its and in some cases even eradication of diseases pharmacokinetic and (e.g. smallpox, which is currently the only subsequent therapeutic human infectious disease completely profile. eradicated). Although it is almost impossible to estimate the exact extent of the impact of pharmacotherapy on human health, there can be no doubt that pharmacotherapy, together with improved sanitation, better diet and better housing, has improved people’s health, life expectancy and quality of life. Tip Unprecedented developments in genomics Combinatorial chemistry is a way to and molecular biology today offer a plethora of build a variety of structurally related new drug targets. The use of modern chemical drug compounds rapidly and synthetic methods (such as combinatorial systematically. These are assembled chemistry) enables the syntheses of a large from a range of molecular entities number of new drug candidates in shorter times which are put together in different ‘ ’ than ever before.
    [Show full text]
  • Review On: Sublingual Route for Systemic Drug Delivery
    IAJPS 2018, 05 (01), 453-462 Himanshi Rathaur and G.Gnanarajan ISSN 2349-7750 CODEN [USA]: IAJPBB ISSN: 2349-7750 INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES http://doi.org/10.5281/zenodo.1161209 Available online at: http://www.iajps.com Review Article REVIEW ON: SUBLINGUAL ROUTE FOR SYSTEMIC DRUG DELIVERY Himanshi Rathaur*1and G.Gnanarajan2 *1Shri Guru Ram Rai Institute of Technology and Sciences, Department of Pharmaceutics, Uttarakhand Technical University, Dehradun,248001, Uttarakhand, India 2Shri Guru Ram Rai Institute of Technology and Sciences, Department of Pharmaceutics, Faculty of Pharmacy, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India. Abstract: Delivery of drug in the oral cavity through the oral mucosa is examined to be a promising alternative to the oral route. Sublingual means “under the tongue” which rapidly absorb the drug through the oral mucosa and enter into the systemic circulation. This route provides various advantages such as quick onset of action, patient compliance, hepatic first pass metabolism and increase bioavailability. Dysphagia is a common problem in pediatric, geriatric and psychiatric patients. In terms of permeability sublingual area of oral cavity is more permeable than buccal area which is in turn is more permeable than palatal area. Now a days most of the population need effective, faster and better relief within a short period of time. So, this route is the most appropriate route of administration and it rapidly dissolves in saliva. Many drugs like cardiovascular drugs, steroids,
    [Show full text]
  • A Guide to Aerosol Delivery Devices for Respiratory Therapists 4Th Edition
    A Guide To Aerosol Delivery Devices for Respiratory Therapists 4th Edition Douglas S. Gardenhire, EdD, RRT-NPS, FAARC Dave Burnett, PhD, RRT, AE-C Shawna Strickland, PhD, RRT-NPS, RRT-ACCS, AE-C, FAARC Timothy R. Myers, MBA, RRT-NPS, FAARC Platinum Sponsor Copyright ©2017 by the American Association for Respiratory Care A Guide to Aerosol Delivery Devices for Respiratory Therapists, 4th Edition Douglas S. Gardenhire, EdD, RRT-NPS, FAARC Dave Burnett, PhD, RRT, AE-C Shawna Strickland, PhD, RRT-NPS, RRT-ACCS, AE-C, FAARC Timothy R. Myers, MBA, RRT-NPS, FAARC With a Foreword by Timothy R. Myers, MBA, RRT-NPS, FAARC Chief Business Officer American Association for Respiratory Care DISCLOSURE Douglas S. Gardenhire, EdD, RRT-NPS, FAARC has served as a consultant for the following companies: Westmed, Inc. and Boehringer Ingelheim. Produced by the American Association for Respiratory Care 2 A Guide to Aerosol Delivery Devices for Respiratory Therapists, 4th Edition American Association for Respiratory Care, © 2017 Foreward Aerosol therapy is considered to be one of the corner- any) benefit from their prescribed metered-dose inhalers, stones of respiratory therapy that exemplifies the nuances dry-powder inhalers, and nebulizers simply because they are of both the art and science of 21st century medicine. As not adequately trained or evaluated on their proper use. respiratory therapists are the only health care providers The combination of the right medication and the most who receive extensive formal education and who are tested optimal delivery device with the patient’s cognitive and for competency in aerosol therapy, the ability to manage physical abilities is the critical juncture where science inter- patients with both acute and chronic respiratory disease as sects with art.
    [Show full text]
  • Sublingual and Nasal Transmucosal Drug Delivery for Breakthrough Pain
    alenc uiv e & eq B io io B a f v o a i l l a Journal of a b n r i Al-Ghananaeem, J Bioequiv Availab 2013, 5:3 l i u t y o J DOI: 10.4172/jbb.10000e29 ISSN: 0975-0851 Bioequivalence & Bioavailability EditorialResearch Article OpenOpen Access Access Sublingual and Nasal Transmucosal Drug Delivery for Breakthrough Pain: A Frontier in Cancer Therapy Abeer Al-Ghananaeem* Research and Graduate Program, Sullivan University College of Pharmacy, 2100 Gardiner Lane West Campus, Louisville, KY 40205, USA Editorial and marketed as a solid intra-oral formulation in the shape of a lollipop. This formulation was intended for oral transmucosal administration Breakthrough pain (BTP) is an unpredictable transitory provocation in children, to permit fast absorption of fentanyl from the oral cavity. of pain experienced for a short period of time by patients who have However, it was found that a large percentage of the drug is swallowed chronic pain problem [1]. BTP is highly prevalent in certain patient from the lollipop [13]. Taking into consideration the inadequacies populations, occurring in 40-80% of patients with advanced cancer [2] of the approaches currently available for fentanyl administration, and around 70% of patients with chronic noncancer pain [3]. A typical it was shown in rabbits that a sublingual spray provides a quick and BTP episode could reach its peak intensity in three to five minutes and reproducible onset of action that may be expedient for use by patients usually last about 30 minutes in total [2]. BTP is frequently detrimental [14].
    [Show full text]
  • Thin Films As an Emerging Platform for Drug Delivery
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector asian journal of pharmaceutical sciences 11 (2016) 559–574 HOSTED BY Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/ajps Review Thin films as an emerging platform for drug delivery Sandeep Karki a,1, Hyeongmin Kim a,b,c,1, Seon-Jeong Na a, Dohyun Shin a,c, Kanghee Jo a,c, Jaehwi Lee a,b,c,* a Pharmaceutical Formulation Design Laboratory, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea b Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul 06974, Republic of Korea c Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea ARTICLE INFO ABSTRACT Article history: Pharmaceutical scientists throughout the world are trying to explore thin films as a novel Received 21 April 2016 drug delivery tool. Thin films have been identified as an alternative approach to conven- Accepted 12 May 2016 tional dosage forms. The thin films are considered to be convenient to swallow, self- Available online 6 June 2016 administrable, and fast dissolving dosage form, all of which make it as a versatile platform for drug delivery. This delivery system has been used for both systemic and local action via Keywords: several routes such as oral, buccal, sublingual, ocular, and transdermal routes. The design Thin film of efficient thin films requires a comprehensive knowledge of the pharmacological and phar- Film-forming polymer maceutical properties of drugs and polymers along with an appropriate selection of Mechanical properties manufacturing processes.
    [Show full text]
  • Hypotonic Delivery of Drugs and Drug-Loaded Nanoparticles to the Gastrointestinal Tract
    HYPOTONIC DELIVERY OF DRUGS AND DRUG-LOADED NANOPARTICLES TO THE GASTROINTESTINAL TRACT By Katharina Maisel A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland December, 2014 © 2014 Katharina Maisel All Rights Reserved ABSTRACT Innovative gastrointestinal (GI) drug delivery vehicles such as mucus penetrating nanoparticles (MPP) and fluid-absorption inducing (hypotonic) delivery vehicles have potential to improve therapeutic outcomes over conventional methods such as mucoadhesive particles (MAP) for GI diseases, including ulcerative colitis (UC) and HIV pre-exposure prophylaxis (PrEP). More than 80% of all drugs are absorbed via the GI tract for either systemic or local treatment. MAP delivered to the GI tract are thought to improve oral absorption or local targeting of difficult-to-deliver drug classes. Mucus is a continuously secreted barrier that effectively traps foreign particulates to protect the underlying epithelium. Rapid clearance of the most superficial luminal mucus layers in the GI tract may limit the effectiveness of MAP. Here, I test the current dogma of mucoadhesion by comparing MAP and MPP GI drug delivery via the oral and rectal routes. In addition I investigate the development of several vehicles including rectal enemas and gels for more effective delivery of nanocarriers or free drugs. First, I illustrate that MPP uniformly coat all surfaces of the GI epithelium, while MAP aggregated in mucus in the center of the lumen, far away from the absorptive epithelium, both in healthy mice and mice with UC. In the mouse colorectum, MPP penetrated into mucus in the deeply in-folded surfaces to evenly coat the entire epithelial surface.
    [Show full text]
  • Intranasal Drug Delivery - General Principles
    Intranasal drug delivery - General principles The nasal cavity's easily accessible, rich vascular plexus permits topically administered drugs to rapidly achieve effective blood levels while avoiding intravenous catheters. This is most effectively accomplished by distributing drug solutions as a mist rather than as larger droplets which may aggregate and run off instead of being absorbed. Because of this easily accessed vascular bed, nasal administration of medications is emerging as a promising method of delivering medications directly to the blood stream. This method of delivery can eliminate the need for intravenous catheters while still achieving rapid, effective blood levels of the medication administered. Administering medications via the nasal mucosa offers several advantages: 1. The rich vascular plexus of the nasal cavity provides a direct route into the blood stream for medications that easily cross mucous membranes. 2. This direct absorption into the blood stream avoids gastrointestinal destruction and hepatic first pass metabolism (destruction of drugs by liver enzymes) allowing more drug to be cost-effectively, rapidly, and predictably bioavailable than if it were administered orally. 3. For many IN medications the rates of absorption and plasma concentrations are comparable to intravenous administration, and are typically better than subcutaneous or intramuscular routes. 4. Ease, convenience and safety: IN drug administration is essentially painless, and does not require sterile technique, intravenous catheters or other invasive devices, and it is immediately and readily available for all patients. 5. Because the nasal mucosa is nearby the brain, cerebrospinal fluid (CSF) drug concentrations can exceed plasma concentrations. IN administration may rapidly achieve therapeutic brain and spinal cord (CNS) drug concentrations.
    [Show full text]
  • Modified Release Dosage Forms
    ISSN: 0974-2115 www.jchps.com Journal of Chemical and Pharmaceutical Sciences MODIFIED RELEASE DOSAGE FORMS 1Nalla Chandana, 1Harish Gopinath, 1Debjit Bhowmik, 2I Williamkeri, 2Thirupathi Reddy A Nimra Pharmacy College,Vijayawada,Andhra Pradesh Bellammkonda College of Pharmacy, Podili, Prakasam District, A.P, India Corresponding author: E.Mail:[email protected] ABSTRACT Modified-release dosage forms have been developed to deliver drug to the part of the body where it will be absorbed, to simplify dosing schedules, and to assure that concentration of drug is maintained over an appropriate time interval. Drugs that are not inherently long lasting require multiple daily dosing to achieve the desired therapeutic effects. Multiple daily dosing is often inconvenient and can result in missed doses, made-up doses and patient non-compliant with therapeutic regimen. Blood levels of drugs from conventional immediate-release dosage forms taken more than once daily following definite schedule usually demonstrate sequential peaks and troughs (valleys) associated with each dose. Designed to release their medication in controlled manner, at pre-determined rate, duration and location in the body to achieve and maintain optimum therapeutic blood levels of drug. KEY WORDS: Modified-release, therapeutic regimen, Multiple daily dosing, bioavailability. 1. INTRODUCTION The Oral Solid Dosage forms are the preferred route of administration for many drugs and most widely used formulations for new and existing modified release products. As they provides several advantages compared to single- unit dosage forms (e.g.: Pellets, capsules or tablets ) and have risks such as spontaneous drug release from a single-unit tablet due to damage coating or its attachment in the stomach or intestine causing an irritation of the gastric or intestinal mucosa, are reduced by the use of multiunit forms.
    [Show full text]