Reproductive Biology and Population Ecology of Senegalia Senegal (L.) Britton Within Lake Baringo Woodland Ecosystem, Kenya

Total Page:16

File Type:pdf, Size:1020Kb

Reproductive Biology and Population Ecology of Senegalia Senegal (L.) Britton Within Lake Baringo Woodland Ecosystem, Kenya REPRODUCTIVE BIOLOGY AND POPULATION ECOLOGY OF Senegalia senegal (L.) BRITTON WITHIN LAKE BARINGO WOODLAND ECOSYSTEM, KENYA By STEPHEN FREDRICK OMONDI (MPHIL.) REG. I80/92661/2013 A thesis submitted in fulfillment of the requirement for award of the degree of Doctor of Philosophy (PhD) in Plant Ecology of the University of Nairobi 2016 DECLARATION CANDIDATE I hereby declare that this thesis is entirely my original work and has not been submitted for a degree award in any other University. Signature: ……………………………………… Date: ……………………………… STEPHEN FREDRICK OMONDI SUPERVISORS We confirm that the work reported in this thesis was carried out by the candidate under our supervision and has been submitted for examination with our approval. 1) Dr. George O. Ongamo, School of Biological Sciences, University of Nairobi, P. O. Box 30197, 00100, Nairobi. Signature: ………………………………...... Date: ………………………………. 2) Dr. James I. Kanya, School of Biological Sciences, University of Nairobi, P. O. Box 30197, 00100, Nairobi. Signature : ………………………….............. Date: ………………………………. 3) Dr. David W. Odee, Kenya Forestry Research Institute, P.O. Box 20412, 00200, Nairobi. Signature: Date: 03/08/2016 4) Prof. Damase P. Khasa, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Sainte-Foy, Québec, Canada G1V 0A6 Signature: Date: 03/08/2016 ii DEDICATION I dedicate this work to my wife Eunice and children Adrian, Xavier and Victoria in appreciation of their sacrifices, patience and support during the study. Their support gave me the much needed strength and encouragement to accomplish this study. iii ACKNOWLEDGEMENT I wish to sincerely express my gratitude to my supervisors (Dr. George Ongamo, Dr. James Kanya both of the School of Biological Sciences, University of Nairobi, Dr. David Odee of Kenya Forestry Research Institute and Professor Damase P. Khasa of Univaseté Laval, Canada), for spending their valuable time shaping my research activities in the field and laboratory, preparing manuscripts and finally, this thesis. Without their support I would have not managed to finish this study on time. My special regards go to Professor Damase for having spared his valuable time and resources to regularly visit me in Nairobi from Canada for discussions that shaped this study. I thank him also for having seen the value of my research and secured funding from Natural Sciences and Engineering Research Council of Canada (NSERC) for purchasing portable weather stations that were used to gather weather data for this study. I also thank Kenya Forestry Research Institute (KEFRI) and International Foundation for Science (IFS) for providing research funds. I appreciate the work of KEFRI staff like Mr. Peter Koech who braved the harsh weather conditions of the study area to assist in various ways during the study including establishment of sampling plots, field sampling and assessments. Special thanks to the headmaster of Mesori primary school, Lake Bogoria National Reserve authorities, specifically Mr. Raphael Kimosop and Ms Sophia for allowing me to use their premises for installing weather stations. Equally, I am also grateful to KEFRI biotechnology laboratory and biostatistics staff whose involvements were valuable during samples preparation, data analysis and storage. Special thanks go to my wife and children who continually gave me moral support that kept me going during the study period. I also can’t forget the deserved prayers and support from my parents that kept me strong during this study. My revered appreciation to the Almighty God for giving me good health and sufficient strength to finish the study. To all, I say thank you and God bless. iv TABLE OF CONTENTS DECLARATION ............................................................................................................................ I DEDICATION ............................................................................................................................. III ACKNOWLEDGEMENT .......................................................................................................... IV TABLE OF CONTENTS .............................................................................................................. V LIST OF TABLES ....................................................................................................................... XI LIST OF FIGURES .................................................................................................................. XIII LIST OF ABBREVIATIONS AND ACRONAMES ............................................................. XIV ABSTRACT .............................................................................................................................. XVI CHAPTER ONE ............................................................................................................................. 1 1.0 GENERAL INTRODUCTION ............................................................................................... 1 1.1 Background information ............................................................................................................. 1 1.2 Problem statement and justification ........................................................................................... 3 1.3 Research hypothesis ................................................................................................................... 4 1.4 Main objective ............................................................................................................................ 4 1.4.1 Specific objectives .................................................................................................................. 4 1.5 Relevance of the study ................................................................................................................ 5 1.6 Thesis structure ........................................................................................................................... 5 CHAPTER TWO ............................................................................................................................ 6 2.0 LITERATURE REVIEW ........................................................................................................ 6 2.1 Taxonomy of Senegalia senegal (L.) Britton (Syn. Acacia Senegal (L.) Willd.) ...................... 6 2.2 Ecological distribution of S. senegal in arid and semi-arid lands (ASALs) ............................... 7 2.3 Socio-economic importance of S. senegal .................................................................................. 9 v 2.4 Breeding systems in S. senegal ................................................................................................ 11 2.5 Natural regeneration ................................................................................................................. 13 2.5.1 Plant regeneration dynamics ................................................................................................. 14 2.6 Plant demographic studies ........................................................................................................ 15 2.7 Plant genetic diversity .............................................................................................................. 15 2.7.1 Effects of anthropogenic disturbances on plant genetic diversity ........................................ 17 2.8 Genetic markers ........................................................................................................................ 19 CHAPTER THREE ...................................................................................................................... 23 3.0 GENERAL MATERIALS AND METHODS ...................................................................... 23 3.1 Description of the study area .................................................................................................... 23 3.2 Degradation and fragmentation history of the study area......................................................... 25 3.3 Development of population disturbance index (PDI) ............................................................... 26 3.4 DNA isolation and Polymerase Chain Reaction (PCR) analyses ............................................. 27 CHAPTER FOUR ........................................................................................................................ 30 4.0 GENETIC DIVERSITY AND POPULATION STRUCTURE OF Senegalia senegal WITHIN LAKE BARINGO WOODLAND ECOSYSTEM ............................................. 30 4.1 Introduction .............................................................................................................................. 30 4.2 Materials and methods .............................................................................................................. 31 4 .2.1 Samples collection ............................................................................................................... 31 4.2.2 DNA analysis ........................................................................................................................ 32 4.3 Results ...................................................................................................................................... 35 4.3.1 Population disturbance index (PDI) ..................................................................................... 35 vi 4.3.2 Population genetic diversity measures ................................................................................
Recommended publications
  • Trans-Boundary Forest Resources in West and Central Africa ______
    Trans-boundary forest resources in West and Central Africa __________________________________________________________________________________ _ AFF / hamane Ma wanou r La Nigeria© of part southern the Sahelian in the in orest f rest o lands©AFF f k r y r a D P 2008 Secondary Trans-boundary forest resources in West and Central Africa Report (2018) i Trans-boundary forest resources in West and Central Africa __________________________________________________________________________________ _ TRANS-BOUNDARY FOREST RESOURCES IN WEST AND CENTRAL AFRICA Report (2018) Martin Nganje, PhD © African Forest Forum 2018. All rights reserved. African Forest Forum United Nations Avenue, Gigiri P.O. Box 30677-00100 Nairobi, Kenya Tel: +254 20 722 4203 Fax: +254 20 722 4001 E-mail: [email protected] Website: www.afforum.org ii Trans-boundary forest resources in West and Central Africa __________________________________________________________________________________ _ TABLE OF CONTENTS LIST OF FIGURES ................................................................................................................. v LIST OF TABLES .................................................................................................................. vi ACRONYMS AND ABBREVIATIONS ................................................................................... vii EXECUTIVE SUMMARY ....................................................................................................... ix 1. INTRODUCTION ..............................................................................................................
    [Show full text]
  • Evolução Cromossômica Em Plantas De Inselbergues Com Ênfase Na Família Apocynaceae Juss. Angeline Maria Da Silva Santos
    UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS PÓS-GRADUAÇÃO EM AGRONOMIA CAMPUS II – AREIA-PB Evolução cromossômica em plantas de inselbergues com ênfase na família Apocynaceae Juss. Angeline Maria Da Silva Santos AREIA - PB AGOSTO 2017 UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS PÓS-GRADUAÇÃO EM AGRONOMIA CAMPUS II – AREIA-PB Evolução cromossômica em plantas de inselbergues com ênfase na família Apocynaceae Juss. Angeline Maria Da Silva Santos Orientador: Prof. Dr. Leonardo Pessoa Felix Tese apresentada ao Programa de Pós-Graduação em Agronomia, Universidade Federal da Paraíba, Centro de Ciências Agrárias, Campus II Areia-PB, como parte integrante dos requisitos para obtenção do título de Doutor em Agronomia. AREIA - PB AGOSTO 2017 Catalogação na publicação Seção de Catalogação e Classificação S237e Santos, Angeline Maria da Silva. Evolução cromossômica em plantas de inselbergues com ênfase na família Apocynaceae Juss. / Angeline Maria da Silva Santos. - Areia, 2017. 137 f. : il. Orientação: Leonardo Pessoa Felix. Tese (Doutorado) - UFPB/CCA. 1. Afloramentos. 2. Angiospermas. 3. Citogenética. 4. CMA/DAPI. 5. Ploidia. I. Felix, Leonardo Pessoa. II. Título. UFPB/CCA-AREIA A Deus, pela presença em todos os momentos da minha vida, guiando-me a cada passo dado. À minha família Dedico esta conquista aos meus pais Maria Geovânia da Silva Santos e Antonio Belarmino dos Santos (In Memoriam), irmãos Aline Santos e Risomar Nascimento, tios Josimar e Evania Oliveira, primos Mayara Oliveira e Francisco Favaro, namorado José Lourivaldo pelo amor a mim concedido e por me proporcionarem paz na alma e felicidade na vida. Em especial à minha mãe e irmãos por terem me ensinado a descobrir o valor da disciplina, da persistência e da responsabilidade, indispensáveis para a construção e conquista do meu projeto de vida.
    [Show full text]
  • Genetic Connectivity and Diversity in Inselberg Populations of Acacia Woodmaniorum, a Rare Endemic of the Yilgarn Craton Banded Iron Formations
    Heredity (2013) 111, 437–444 & 2013 Macmillan Publishers Limited All rights reserved 0018-067X/13 www.nature.com/hdy ORIGINAL ARTICLE Genetic connectivity and diversity in inselberg populations of Acacia woodmaniorum, a rare endemic of the Yilgarn Craton banded iron formations MA Millar, DJ Coates and M Byrne Historically rare plant species with disjunct population distributions and small population sizes might be expected to show significant genetic structure and low levels of genetic diversity because of the effects of inbreeding and genetic drift. Across the globe, terrestrial inselbergs are habitat for rich, often rare and endemic flora and are valuable systems for investigating evolutionary processes that shape patterns of genetic structure and levels of genetic diversity at the landscape scale. We assessed genetic structure and levels of genetic diversity across the range of the historically rare inselberg endemic Acacia woodmaniorum. Phylogeographic and genetic structure indicates that connectivity is not sufficient to produce a panmictic population across the limited geographic range of the species. However, historical levels of gene flow are sufficient to maintain a high degree of adaptive connectivity across the landscape. Genetic diversity indicates gene flow is sufficient to largely counteract any negative genetic effects of inbreeding and random genetic drift in even the most disjunct or smallest populations. Phylogeographic and genetic structure, a signal of isolation by distance and a lack of evidence of recent genetic bottlenecks suggest long-term stability of contemporary population distributions and population sizes. There is some evidence that genetic connectivity among disjunct outcrops may be facilitated by the occasional long distance dispersal of Acacia polyads carried by insect pollinators moved by prevailing winds.
    [Show full text]
  • Phytologia (June 2006) 88(1) the GENUS SENEGALIA
    .. Phytologia (June 2006) 88(1) 38 THE GENUS SENEGALIA (FABACEAE: MIMOSOIDEAE) FROM THE NEW WORLD 1 2 3 David S. Seigler , John E. Ebinger , and Joseph T. Miller 1 Department of Plant Biology, University of Illinois, Urbana, Illinois 61801, U.S.A. E-mail: [email protected] 2 Emeritus Professor of Botany, Eastern Illinois University, Charleston, Illinois 61920, U.S.A. E-mail: [email protected] 3 Joseph T. Miller, Roy J. Carver Center for Comparative Genomics, Department of Biological Sciences, 232 BB, University of Iowa, Iowa City, IA 52242, U.S.A. E-mail: [email protected] ABSTRACT Morphological and genetic differences separating the subgenera of Acacia s.l. and molecular evidence that the genus Acacia s.l. is polyphyletic necessitate transfer of the following New World taxa from Acacia subgenus Aculeiferum Vassal to Senegalia, resulting in fifty-one new combinations in the genus Senegalia: Senegalia alemquerensis (Huber) Seigler & Ebinger, Senegalia altiscandens (Ducke) Seigler & Ebinger, Senegalia amazonica (Benth.) Seigler & Ebinger, Senegalia bahiensis (Benth.) Seigler & Ebinger, Senegalia bonariensis (Gillies ex Hook. & Arn.) Seigler & Ebinger, Senegalia catharinensis (Burkart) Seigler & Ebinger, Senegalia emilioana (Fortunato & Cialdella) Seigler & Ebinger, Senegalia etilis (Speg.) Seigler & Ebinger, Senegalia feddeana (Harms) Seigler & Ebinger, Senegalia fiebrigii (Hassl.) Seigler & Ebinger, Senegalia gilliesii (Steud.) Seigler & Ebinger, Senegalia grandistipula (Benth.) Seigler & Ebinger, Senegalia huberi (Ducke) Seigler & Ebinger, Senegalia kallunkiae (Grimes & Barneby) Seigler & Ebinger, Senegalia klugii (Standl. ex J. F. Macbr.) Seigler & Ebinger, Senegalia kuhlmannii (Ducke) Seigler & Ebinger, Senegalia lacerans (Benth.) Seigler & Ebinger, Senegalia langsdorfii (Benth.) Seigler & Ebinger, Senegalia lasophylla (Benth.) Seigler & Ebinger, Senegalia loretensis (J. F. Macbr.) Seigler & Ebinger, Senegalia macbridei (Britton & Rose ex J.
    [Show full text]
  • ISTA List of Stabilized Plant Names 7Th Edition
    ISTA List of Stabilized Plant Names th 7 Edition ISTA Nomenclature Committee Chair: Dr. M. Schori Published by All rights reserved. No part of this publication may be The Internation Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted Zürichstr. 50, CH-8303 Bassersdorf, Switzerland in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2020 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 2 7th Edition ISTA List of Stabilized Plant Names Content Preface .......................................................................................................................................................... 4 Acknowledgements ....................................................................................................................................... 6 Symbols and Abbreviations ..........................................................................................................................
    [Show full text]
  • 2013–142.05 Mb
    Department of Parks and Wildlife Science and Conservation Division annual research report 2013–14 DIRECTOR'S MESSAGE There has been much change since we became the Department of Parks and Wildlife in July 2013, with renewed focus on conservation of Western Australia's unique plants and animals and our world- class network of parks, reserves and natural areas. Our Strategic Directions for 2013-14 recognised that science and research play a critical role in effective management of species and ecosystems. In October 2013 the Science Division was amalgamated with the Nature Conservation Division providing new opportunities for science to more directly inform conservation policy and management, and for management requirements and knowledge gaps to set research priorities. While much of our work supports the conservation priorities of the Wildlife corporate goal, we also provide scientific research and information to support delivery of the Parks, Fire, Managed Use and People corporate goals. The combined responsibilities of the divisions are focused around two main areas of Species conservation and Landscape conservation. Our work in species conservation involves activities, such as species and community recovery, wildlife protection and licensing, understanding species biology and taxonomy, while our landscape conservation work is focused on landscape and seascape management, development advice and liaison, understanding ecosystem processes and biological survey. Information systems and monitoring and evaluation link across both species and landscape conservation activities. Across all areas, effective exchange of knowledge and information to support legislation and policy is fundamental to effective delivery of wildlife management outcomes. Partnerships have always been an important means of achieving our outcomes.
    [Show full text]
  • Human Usage in the Native Range May Determine Future Genetic Structure of an Invasion
    Le Roux et al. BMC Ecology 2013, 13:37 http://www.biomedcentral.com/1472-6785/13/37 RESEARCH ARTICLE Open Access Human usage in the native range may determine future genetic structure of an invasion: insights from Acacia pycnantha Johannes J Le Roux1*, David M Richardson1, John RU Wilson1,2 and Joice Ndlovu1 Abstract Background: The influence of introduction history and post-introduction dynamics on genetic diversity and structure has been a major research focus in invasion biology. However, genetic diversity and structure in the invasive range can also be affected by human-mediated processes in the native range prior to species introductions, an aspect often neglected in invasion biology. Here we aim to trace the native provenance of the invasive tree Acacia pycnantha by comparing the genetic diversity and structure between populations in the native Australian range and the invasive range in South Africa. This approach also allowed us to explore how human actions altered genetic structure before and after the introduction of A. pycnantha into South Africa. We hypothesized that extensive movement and replanting in A. pycnantha’s Australian range prior to its introduction to South Africa might result in highly admixed genotypes in the introduced range, comparable genetic diversity in both ranges, and therefore preclude an accurate determination of native provenance(s) of invasive populations. Results: In the native range Bayesian assignment tests identified three genetic clusters with substantial admixture and could not clearly differentiate previously identified genetic entities, corroborating admixture as a result of replantings within Australia. Assignment tests that included invasive populations from South Africa indicated similar levels of admixture compared to Australian populations and a lack of genetic structure.
    [Show full text]
  • Synoptic Overview of Exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) in Egypt
    plants Article Synoptic Overview of Exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) in Egypt Rania A. Hassan * and Rim S. Hamdy Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; [email protected] * Correspondence: [email protected] Abstract: For the first time, an updated checklist of Acacia, Senegalia and Vachellia species in Egypt is provided, focusing on the exotic species. Taking into consideration the retypification of genus Acacia ratified at the Melbourne International Botanical Congress (IBC, 2011), a process of reclassification has taken place worldwide in recent years. The review of Acacia and its segregates in Egypt became necessary in light of the available information cited in classical works during the last century. In Egypt, various taxa formerly placed in Acacia s.l., have been transferred to Acacia s.s., Acaciella, Senegalia, Parasenegalia and Vachellia. The present study is a contribution towards clarifying the nomenclatural status of all recorded species of Acacia and its segregate genera. This study recorded 144 taxa (125 species and 19 infraspecific taxa). Only 14 taxa (four species and 10 infraspecific taxa) are indigenous to Egypt (included now under Senegalia and Vachellia). The other 130 taxa had been introduced to Egypt during the last century. Out of the 130 taxa, 79 taxa have been recorded in literature. The focus of this study is the remaining 51 exotic taxa that have been traced as living species in Egyptian gardens or as herbarium specimens in Egyptian herbaria. The studied exotic taxa are accommodated under Acacia s.s. (24 taxa), Senegalia (14 taxa) and Vachellia (13 taxa).
    [Show full text]
  • Sesbania Sesban) from the Republic of Chad: a Review
    Ecology, Morphology, Distribution, and Use of Sesbania tchadica (Sesbania Sesban) from the Republic of Chad: A Review Ousman Brahim Mahamat ( [email protected] ) Abdelmalek Essaâdi University Saoud Younes Abdelmalek Essaâdi University Boy Brahim Otchom N฀Djamena University Steve Franzel International Centre for Research in Agroforestry: World Agroforestry Centre Al-Djazouli Ouchar Mahamat Abdelmalek Essaâdi University Asraoui Fadoua Abdelmalek Essaâdi University El ismaili Soumaya Abdelmalek Essaâdi University Systematic Review Keywords: Sesbania tchadica (Sesbania sesban), leguminosae, morphology, distribution, ora of Chad, fertilizer soil plant, medicinal plants Posted Date: May 20th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-543115/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Ecology, Morphology, Distribution, and Use of Sesbania tchadica (Sesbania Sesban) 1 from the Republic of Chad: A Review. 2 Ousman Brahim Mahamat1, Saoud Younes1 , Boy Brahim Otchom2 Steve Franzel3, Al-Djazouli Ouchar Mahamat4, Asraoui 3 Fadoua1, El ismaili Soumaya5 4 1Laboratory of Applied Biology and Pathology, Faculty of Sciences, Abdelmalek Essaâdi University, Tetouan, Morocco. 5 2Natural Substances Research Laboratory, Faculty of Exact and Applied Sciences, N‟Djamena University, Republic of Chad. 6 3International Centre for Research in Agroforestry: World Agroforestry Centre, Consultative Group on International Agricultural 7 Research, Nairobi, Kenya. 8 4Laboratory of Geology and Oceanology, Department of Geology, Faculty of Sciences, Abdelmalek Essaâdi University. 9 5Innovating Technologies Laboratory, civil engineering department, National School of Applied Sciences ENSA-Tangier, 10 Abdelmalek Essaâdi University. 11 Key message: A review of literature of potential uses and a survey study about the tree Sesbania tchadica (Sesbania Sesban) 12 leguminous native from the Republic of Chad are described in this paper.
    [Show full text]
  • Western Australia's Journal of Systematic Botany Issn 0085–4417
    WESTERN AUSTRALIA'S JOURNAL OF SYSTEMATIC BOTANY ISSN 0085–4417 Maslin, B.R. & Buscumb, C. Two new Acacia species (Leguminosae: Mimosoideae) from banded ironstone ranges in the Midwest region of south-west Western Australia Nuytsia 17: 263–272 (2007) A special edition funded by the Western Australian Government’s ‘Saving our Species’ biodiversity conservation initiative. All enquiries and manuscripts should be directed to: The Editor – NUYTSIA Western Australian Herbarium Telephone: +61 8 9334 0500 Dept of Environment and Conservation Facsimile: +61 8 9334 0515 Locked Bag 104 Bentley Delivery Centre Email: [email protected] Western Australia 6983 Web: science.dec.wa.gov.au/nuytsia/ AUSTRALIA All material in this journal is copyright and may not be reproduced except with the written permission of the publishers. © Copyright Department of Environment and Conservation . B.R.Nuytsia Maslin 17: 263–272 & C. Buscumb, (2007) Two new Acacia species from banded ironstone ranges 263 Two new Acacia species (Leguminosae: Mimosoideae) from banded ironstone ranges in the Midwest region of south-west Western Australia Bruce R. Maslin1 and Carrie Buscumb Western Australian Herbarium, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983 1Corresponding author Abstract Maslin, B.R. & Buscumb, C. Two new Acacia species (Leguminosae: Mimosoideae) from banded ironstone ranges in the Midwest region of south-west Western Australia. Nuytsia 17: 263–272 (2007). The following two new species of Acacia Mill. from an area of banded ironstone in the Midwest region of south-west Western Australia (between Morawa and Paynes Find) area are described: Acacia karina Maslin & Buscumb and A.
    [Show full text]
  • Conservation Advice and Included This Species in the Endangered Category, Effective from 04/07/2019 Conservation Advice Acacia Woodmaniorum
    THREATENED SPECIES SCIENTIFIC COMMITTEE Established under the Environment Protection and Biodiversity Conservation Act 1999 The Minister approved this conservation advice and included this species in the Endangered category, effective from 04/07/2019 Conservation Advice Acacia woodmaniorum Woodman’s Wattle Summary of assessment Conservation status Acacia woodmaniorum has been found to be eligible for listing in the Endangered category, as outlined in the attached assessment. Reason for conservation assessment by the Threatened Species Scientific Committee This advice follows assessment of information provided by Western Australia as part of the Common Assessment Method process, to systematically review species that are inconsistently listed under the EPBC Act and relevant Western Australian legislation or lists. More information on the Common Assessment Method is available at: http://www.environment.gov.au/biodiversity/threatened/cam The information in this assessment has been compiled by the relevant state/territory government. In adopting this assessment under the EPBC Act, this document forms the Approved Conservation Advice for this species as required under s266B of the EPBC Act. Public consultation Notice of the proposed amendment and a consultation document was made available for public comment for at least 30 business days between 14 August 2018 and 25 September 2018. Any comments received that were relevant to the survival of the species were considered by the Committee as part of the assessment process. Recovery plan A recovery plan for this species under the EPBC Act is not recommended, because the Approved Conservation Advice provides sufficient direction to implement priority actions and mitigate against key threats. The relevant state/territory may decide to develop a plan under its equivalent legislation.
    [Show full text]
  • Charles Darwin, Kadji Kadji, Karara, Lochada Reserves WA
    BUSH BLITZ SPECIES DISCOVERY PROGRAM Charles Darwin Reserve WA 3–9 May · 14–25 September · 7–18 December 2009 Kadji Kadji, Karara, Lochada Reserves WA 14–25 September · 7–18 December 2009 What is Contents Bush Blitz? Bush Blitz is a four-year, What is Bush Blitz 2 multi-million dollar Summary 3 partnership between the Abbreviations 3 Australian Government, Introduction 4 BHP Billiton, and Earthwatch Reserves Overview 5 Australia to document plants Methods 8 and animals in selected properties across Australia’s Results 10 National Reserve System. Discussion 12 Appendix A: Species Lists 15 Fauna 16 This innovative partnership Vertebrates 16 harnesses the expertise of many Invertebrates 25 of Australia’s top scientists from Flora 48 museums, herbaria, universities, Appendix B: Rare and Threatened Species 79 and other institutions and Fauna 80 organisations across the country. Flora 81 Appendix C: Exotic and Pest Species 83 Fauna 84 Flora 85 2 Bush Blitz survey report Summary Bush Blitz fieldwork was conducted at four National Reserve System properties in the Western Australian Avon Wheatbelt and Yalgoo Bioregions during 2009. This included a pilot study Abbreviations at Charles Darwin Reserve and a longer study of Charles Darwin, Kadji Kadji, Lochada and Karara reserves. Results include 651 species added to those known across the reserves and the discovery of 35 putative species new to science. The majority of ANHAT these new species occur within the heteroptera (plant bugs) and Australian Natural Heritage Assessment lepidoptera (butterflies and moths) taxonomic groups. Tool Malleefowl (Leipoa ocellata), listed as vulnerable under the EPBC Act federal Environmental Protection and Biodiversity Conservation Environment Protection and Biodiversity Act 1999 (EPBC Act), were observed on Charles Darwin Reserve.
    [Show full text]