2013 Apr 30 FINAL PROGRAM, AAS TCS3, Giants of Eclipse, Monterey

Total Page:16

File Type:pdf, Size:1020Kb

2013 Apr 30 FINAL PROGRAM, AAS TCS3, Giants of Eclipse, Monterey 2013 Apr 30 FINAL PROGRAM, AAS TCS-3, Giants of Eclipse, Monterey CA, 28 July ± 2 August, 2013 Sunday 28 July 6-8pm Opening reception Monday 29 July Session 1A ± Overview 0900-0910 Griffin & Stencel Introduction and welcome 0910-0945 Edward Guinan Villanova University Atmospheric Eclipses Now and Then: Probes of Stellar and Planetary Atmospheres 0945-1020 Andrea Dupree Harvard-Smithsonian Center for Astrophysics Spectroscopy of Binaries and Friends 1020-1030 Griffin & Stencel Meeting logistics 1030-1100 Break Session 1B - VV Cep stars 1100-1135 Wendy Bauer, Wellesley College The Ultraviolet Spectrum of VV Cephei from Eclipse Through Quadrature 1135-1210 Philip Bennett, Saint Mary©s University The Fundamental Parameters and Chromospheric Structure of the M Supergiant VV Cephei 1210-1230 Bernard Yuhas, Kutztown University First CCD Photometry of the Interacting Binary AF Geminorum 1230-1400 Lunch Session 1C ± Theory 1 1400-1435 Peter Eggleton, LLNL Former Triples among Combined-Spectrum Binaries 1435-1455 Roger Griffin, University of Cambridge Radial-velocity Measurements of Eclipsing and Other Composite-spectrum Binary Systems 1455-1530 Thomas Ayres, University of Colorado Red Giant Atmospheres, through the Lens of UV Spectroscopy 1530-1600 Break 1600-1630 Poster highlights ** (5 min summaries) **Posters: Frank J Melillo The Challenge of Observing the Zeta Aurigae Binary Stars Frank J Melillo The Challenge of Observing the Recent Eclipse of Epsilon Aurigae Wendy Bauer A Far-Ultraviolet Spectral Atlas of 31 Cygni Katelyn Ciccozzi Photometric Properties of RW Gem: An Update on the Evolutionary Status Vladimir Airapetian Tracing Magnetic ©Active Regions© in Non-Coronal and Hybrid Cool Giants Joseph Rodriguez Occultation of the T Tauri Star RW Aurigae A by its Tidally Disrupted Disk Philip Bennett Looking on the Dark Side: A Search for the Secondary Spectrum of ε Aurigae Tuesday 30 July Session 2A - epsilon Aurigae 1 0900-0935 Brian Kloppenborg* Max Planck Institute for Radio Astronomy Interferometric results from the epsilon Aurigae eclipse: Its more than just images! 0935-1010 Philip Bennett, Saint Mary©s University What Do We Really Know about ε Aurigae? A Summary of Observational Constraints 1010-1030: Alaina Bradley Apache Point Observatory, NMSU Epsilon Aurigae--Up Close and Personal 1030-1100 Break Session 2B - epsilon Aurigae 2 1100-1135 Robert Stencel, Univ. of Denver Selected results from the epsilon Aurigae eclipse campaign, and what lies ahead 1135-1155 Gary Billings Rockyford Observatory, Alberta Rapid-cadence optical monitoring for short-period variability of ε Aurigae 1155-1230 Richard Pearson, University of Denver Three-dimensional Models of the Epsilon Aurigae Disk System 1230-1400 Lunch Session 2C - epsilon Aurigae 3: Polarimetry 1400-1435 Kathleen Geise, University of Denver Spectrally-Polarized Features in Epsilon Aurigae In and Out of Eclipse 1435-1455 Sloane Wiktorowicz University of California, Santa Cruz High Precision Polarimetry of the Epsilon Aurigae Eclipse 1455-1515 Gary Cole Starphysics Observatory Long Term Broadband Polarimetry of Epsilon Aurigae and Field Stars 1515-1550 John Landstreet University of Western Ontario & Armagh Observatory Measuring the magnetic fields of cool giant and supergiant stars 1550-1620 Break Session 2D ± epsilon Aurigae 4 and Citizen Science 1620-1730 Workshop ± Arne Henden, Citizen Science Wednesday 31 July Session 3A - Chromospheres 0900-0935 Joel Eaton Emeritus ζ Aurigae Binaries as a Probe of Chromospheric Physics 0935-0955 Teznie Pugh Western Ontario University The Spectroscopic Variations of Antares A - Two Timescales of Variation 0955-1030 Graham Harper Trinity College Dublin Periodic Photoexcited Si I Emission in Composite Binaries 1030-1100 Break Session 3B - zeta Aur stars 1100-1135 Elizabeth Griffin Dominion Astrophysical Observatory Observing Stellar Chromospheres 1135-1155 Vladimir Airapetian Sigma Space Corporation The Role of Alfvén Waves in Atmospheric Dynamics of Non-Coronal, Hybrid and Coronal Giants 1155-1230 Daniel Huber NASA Ames Research Center Asteroseismology of Eclipsing Binary Stars using the Kepler Space Telescope 1230-1400 Lunch Session 3C - Theory 2 1400-1435 Manfred Cuntz Univ. of Texas at Arlington Nonmagnetic Heating in Evolved Stars 1435-1455 Milena Ratajczak NCAC Polish Academy of Sciences Detailed Studies of Red Giants in Eclipsing Binaries 1455-1530 Klaus-Peter Schroeder University of Guanajuato Acoustic Heating Versus Magnetic Phenomena: Which Clues Does Observation Give Us? 1530-1600 Lynn Matthews MIT Haystack Observatory Insights into Mass Loss from Evolved Stars from HI 21-cm Line Observations 1600 Evening free OR special outreach reception with representatives from MIRA (Monterey Institute for Research in Astronomy) Thursday 01 August Session 4A - Interferometry 0900-0935 Harold McAlister Georgia State Univ. Long-Baseline Interferometry of Binary and Multiple Star Systems 0935-0955 Neal Ó Riain Trinity College Dublin Spectro-Interferometry and Radiative Transfer: New Insights into the Chromosphere 0955-1030 Gerard van Belle Lowell Observatory Directly Determined Linear Radii & Effective Temperatures of Giants with Long-Baseline Optical Interferometry 1030-1100 Break Session 4B - Theory 4 1100-1135 Michele Montgomery U Central Florida Gas and dust in disks around CVs and Algols 1135-1205 Andrej Prsa Villanova University Eclipsing Binary Science through the Monocle of Kepler 1205-1230 Panel discussion: Binaries and Big Data 1230-1400 Lunch Session 4C - Algols, CVs and relatives thereof 1400-1435 Mercedes Richards Penn State Univ. Mass Transfer Through the Eyes of Tomography 1435-1455 Geraldine Peters Univ. of Southern California Hot Accretion Spots and Nitrogen Enhancement in Algol-Type Interacting Binary Systems 1455-1530 Steve Howell* NASA ARC Cataclysmic Variables in the Kepler Era 1530-1600 Break Session 4D ± Asteroseismology 1600-1625 Kelly Hambleton Villanova University & UCL Panoramix: The Red Giant Heartbeat Star 1625-1650 Meredith Rawls New Mexico State University Red Giants in Eclipsing Binaries: Kepler Light Curves, Radial Velocities, and Asteroseismology Friday 02 August Session 5A ± Looking ahead 0900-0935 Arne Henden AAVSO APASS and All Sky surveys 0935-0955 Sumin Tang UC Santa Barbara, Caltech A Mysterious Twin of Epsilon Aurigae 0955-1020 Phillip Reed Kutztown University Using the Third Light Parameter of Eclipsing Binary Star Models to Find Triple Star System Candidates 1020-1100 Break 1100-1130 Tom Ake, STSCI Concluding Remarks End of meeting..
Recommended publications
  • An Atlas of Far-Ultraviolet Spectra of the Zeta Aurigae Binary 31 Cygni with Line Identifications
    The Astrophysical Journal Supplement Series, 211:27 (14pp), 2014 April doi:10.1088/0067-0049/211/2/27 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. AN ATLAS OF FAR-ULTRAVIOLET SPECTRA OF THE ZETA AURIGAE BINARY 31 CYGNI WITH LINE IDENTIFICATIONS Wendy Hagen Bauer1 and Philip D. Bennett2,3 1 Whitin Observatory, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA; [email protected] 2 Department of Astronomy & Physics, Saint Mary’s University, Halifax, NS B3H 3C3, Canada 3 Eureka Scientific, Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017, USA Received 2013 March 29; accepted 2013 October 26; published 2014 April 2 ABSTRACT The ζ Aurigae system 31 Cygni (K4 Ib + B4 V) was observed by the FUSE satellite during total eclipse and at three phases during chromospheric eclipse. We present the coadded, calibrated spectra and atlases with line identifications. During total eclipse, emission from high ionization states (e.g., Fe iii and Cr iii) shows asymmetric profiles redshifted from the systemic velocity, while emission from lower ionization states (e.g., Fe ii and O i) appears more symmetric and is centered closer to the systemic velocity. Absorption from neutral and singly ionized elements is detected during chromospheric eclipse. Late in chromospheric eclipse, absorption from the K star wind is detected at a terminal velocity of ∼80 km s−1. These atlases will be useful for interpreting the far-UV spectra of other ζ Aur systems, as the observed FUSE spectra of 32 Cyg, KQ Pup, and VV Cep during chromospheric eclipse resemble that of 31 Cyg.
    [Show full text]
  • THE 1979 ECLIPSE of ZETA AURIGAE Robert D. Chapman
    THE 1979 ECLIPSE OF ZETA AURIGAE Robert D. Chapman Laboratory forAstronomy and Solar Physics Goddard Space Flight Center Greenbelt, ND 20771 ABSTRACT Observations of the system ; Aurigae made around primary eclipse are described, and their significance is discussed in a preliminary fashion. THE OBSERVATIONS High-dispersion, long- and short-wavelength spectra of the atmospheric eclipsing binary star system ; Aurigae (K2II + B8V) have been obtained during a total of ten observing sessions between September 15, 1979 and March 31, 1980. Dates of observations, corresponding to numbered positions in Figure I are: (I) Sept. 15, (2) Nov. i, (3) Nov. 13, (4) Nov. 15, (S) Nov. 18, (6) Nov. 22, (7) Dec. 16, [8) Jan. 29, (9) Feb. 29, (10) Mar. 31. The spectrum obtained on Sept. 15 resembles the spectrum of a single late B-star [e.g. the B6V star o Eri). Atmospheric effects are present and increasing in strength between Nov. i and Nov. 18. To a first approximation, the spectrum changes appear to be an increase in strength and number of absorption lines with changes in the undisturbed continuum being small. This point requires further study, however. On Nov. 22, the B star had passed second contact, and the spectrum of the system was a pure emission line spectrum. At mid-eclipse, on Dec. 16 the spectrum had changed but little from its appearance on Nov. 22. The egress spectra obtained in 1980 are not significantly different in appearance from the ingress spectra. A study of differences in detail is being undertaken now. Figure 2 shows the behavior of the Fe II resonance lines in three spectra.
    [Show full text]
  • The Very Long Mystery of Epsilon Aurigae
    A Unique Eclipsing Variable TheThe VeryVery LongLong MMysteryystery ofof EpsilonEpsilon AAurigaeurigae robertrobert e. sstenceltencel one of the great scientifi c advances of the 20th A remarkable naked-eye star century was the theory of stellar evolution, as physicists worked out not just how stars shine, but how they origi- will soon start dimming for nate, live, change, and die. To test theory against reality, however, astronomers had to determine accurate masses the eighth time since 1821. for many diff erent kinds of stars — and this meant analyz- What’s going on is still ing the motions of binary pairs. Theorists also needed the stars’ exact diameters, and this meant analyzing the light not exactly clear. curves of eclipsing binaries in particular. A century ago, S&T ILLUSTRATION BY CASEY REED giants of early astrophysics worked intensely on the prob- lem of eclipsing-binary analysis. Henry Norris Russell’s paper “On the Determination of the Orbital Elements of Eclipsing Variable Stars,” published in 1912, set the stage for what followed. BIG WHITE STAR, BIGGER BLACK PARTNER Epsilon Aurigae, hotter than the Sun and larger than Earth’s entire orbit, pours forth some 130,000 times the Sun’s light — which is why it shines as brightly as 3rd magnitude even from 2,000 light-years away. According to the currently favored model, a long, dark object will start sliding across its middle this summer. The object seems to be an opaque warped disk 10 a.u. wide and appearing roughly 1 a.u. tall. Whatever lies at its center seems to be hidden — though there’s also evidence that we see right through the center.
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • Infrared Studies of Epsilon Aurigae in Eclipse
    The Astronomical Journal, 142:174 (9pp), 2011 November doi:10.1088/0004-6256/142/5/174 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. INFRARED STUDIES OF EPSILON AURIGAE IN ECLIPSE Robert E. Stencel1, Brian K. Kloppenborg1, Randall E. Wall, Jr.1, Jeffrey L. Hopkins2, Steve B. Howell3, D. W. Hoard4, John Rayner5, Schelte Bus5, Alan Tokunaga5, Michael L. Sitko6,7, Suellen Bradford6,7, Ray W. Russell8, David K. Lynch8, Heidi Hammel9, Barbara Whitney9, Glenn Orton10, Padma Yanamandra-Fisher10, Joseph L. Hora11,PhilipHinz12, William Hoffmann12, and Andrew Skemer12 1 Department of Physics & Astronomy, University of Denver, Denver, CO 80208 USA; [email protected] 2 Hopkins Phoenix Observatory, Phoenix, AZ 85033 USA 3 National Optical Astronomy Observatories, Tucson, AZ 85719, USA 4 Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125, USA 5 Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA 6 Department of Physics, Cincinnati University, Cincinnati, OH, USA 7 Space Science Institute, Boulder, CO, USA 8 The Aerospace Corporation, Los Angeles, CA 90009, USA 9 Space Science Institute, Boulder, CO 80301, USA 10 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 11 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA 12 Steward Observatory, Department of Astronomy, University of Arizona, Tucson, AZ 85721, USA Received 2011 July 7; accepted 2011 September 16; published 2011 October 17 ABSTRACT We report here on a series of medium resolution spectro-photometric observations of the enigmatic long period eclipsing binary epsilon Aurigae, during its eclipse interval of 2009–2011, using near-infrared spectra obtained with SpeX on the Infrared Telescope Facility (IRTF), mid-infrared spectra obtained with BASS on AOES and IRTF, MIRSI on IRTF, and MIRAC4 on the MMT, along with mid-infrared photometry using MIRSI on IRTF and MIRAC4 on the MMT, plus 1995–2000 timeframe published photometry and data obtained with Denver’s TNTCAM2 at WIRO.
    [Show full text]
  • Arxiv:2006.10868V2 [Astro-Ph.SR] 9 Apr 2021 Spain and Institut D’Estudis Espacials De Catalunya (IEEC), C/Gran Capit`A2-4, E-08034 2 Serenelli, Weiss, Aerts Et Al
    Noname manuscript No. (will be inserted by the editor) Weighing stars from birth to death: mass determination methods across the HRD Aldo Serenelli · Achim Weiss · Conny Aerts · George C. Angelou · David Baroch · Nate Bastian · Paul G. Beck · Maria Bergemann · Joachim M. Bestenlehner · Ian Czekala · Nancy Elias-Rosa · Ana Escorza · Vincent Van Eylen · Diane K. Feuillet · Davide Gandolfi · Mark Gieles · L´eoGirardi · Yveline Lebreton · Nicolas Lodieu · Marie Martig · Marcelo M. Miller Bertolami · Joey S.G. Mombarg · Juan Carlos Morales · Andr´esMoya · Benard Nsamba · KreˇsimirPavlovski · May G. Pedersen · Ignasi Ribas · Fabian R.N. Schneider · Victor Silva Aguirre · Keivan G. Stassun · Eline Tolstoy · Pier-Emmanuel Tremblay · Konstanze Zwintz Received: date / Accepted: date A. Serenelli Institute of Space Sciences (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E- 08193, Spain and Institut d'Estudis Espacials de Catalunya (IEEC), Carrer Gran Capita 2, Barcelona, E-08034, Spain E-mail: [email protected] A. Weiss Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany C. Aerts Institute of Astronomy, Department of Physics & Astronomy, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium and Department of Astrophysics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands G.C. Angelou Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei M¨unchen, D-85741, Germany D. Baroch J. C. Morales I. Ribas Institute of· Space Sciences· (ICE, CSIC), Carrer de Can Magrans S/N, Bellaterra, E-08193, arXiv:2006.10868v2 [astro-ph.SR] 9 Apr 2021 Spain and Institut d'Estudis Espacials de Catalunya (IEEC), C/Gran Capit`a2-4, E-08034 2 Serenelli, Weiss, Aerts et al.
    [Show full text]
  • Observation and Interpretation of Zeta Aurigae Stars
    OBSERVATION AND INTERPRETATION OF ZETA AURIGAE STARS Robert D. Chapman Sciences Directorate Goddard Space Flight Center Greenbelt, Maryland 20771 ABSTRACT. The ultraviolet observations of four Zeta Aurigau stars are reviewed. A, probably oversimplified, interpretation of the observa­ tions points to a straight forward connection between the spectral type of the B star and the amount of high temperature plasma in the systems. 1. INTRODUCTION There are six stars that are considered to be Zeta Aurigae stars by various authors. Table 1 Zeta Aurigae Stars Star Spectral Stars Period (days) Zeta Aur K3II + B7V 972.2 31 Cyg K4Ib + B4V 3784. 32 Cyg K5Iab + B8V 1148. 22 Vul G3Ib-II + B9V 249.1 Epsilon Aur FOIap + ?? 9885. W Cephei M2la + Be 7430 Of these stars, the last two will not be treated here because they are discussed elsewhere in the proceedings and because they differ somewhat from the first four stars on the list. The most obvious feature of the Zeta Aurigae stars is the atmospheric eclipse. The orbital inclination of all the pairs is near 90°, and when the B star goes into eclipse behind the late-type primary, its light passes through the atmosphere of the primary giving a depth dependent probe of the atmospheric structure. The atmospheric eclipse of 22 Vul was discovered recently by Parsons and Ake (1983 a, b) using spectra taken by the International Ultraviolet Explorer (IUE). The atmospheric eclipses of Zeta Aur, 31 and 32 Cyg were discovered much earlier and have been studied at length using ground based spectra (cf, for instance, Wright 1970).
    [Show full text]
  • Symposium on Telescope Science
    Proceedings for the 26th Annual Conference of the Society for Astronomical Sciences Symposium on Telescope Science Editors: Brian D. Warner Jerry Foote David A. Kenyon Dale Mais May 22-24, 2007 Northwoods Resort, Big Bear Lake, CA Reprints of Papers Distribution of reprints of papers by any author of a given paper, either before or after the publication of the proceedings is allowed under the following guidelines. 1. The copyright remains with the author(s). 2. Under no circumstances may anyone other than the author(s) of a paper distribute a reprint without the express written permission of all author(s) of the paper. 3. Limited excerpts may be used in a review of the reprint as long as the inclusion of the excerpts is NOT used to make or imply an endorsement by the Society for Astronomical Sciences of any product or service. Notice The preceding “Reprint of Papers” supersedes the one that appeared in the original print version Disclaimer The acceptance of a paper for the SAS proceedings can not be used to imply or infer an endorsement by the Society for Astronomical Sciences of any product, service, or method mentioned in the paper. Published by the Society for Astronomical Sciences, Inc. First printed: May 2007 ISBN: 0-9714693-6-9 Table of Contents Table of Contents PREFACE 7 CONFERENCE SPONSORS 9 Submitted Papers THE OLIN EGGEN PROJECT ARNE HENDEN 13 AMATEUR AND PROFESSIONAL ASTRONOMER COLLABORATION EXOPLANET RESEARCH PROGRAMS AND TECHNIQUES RON BISSINGER 17 EXOPLANET OBSERVING TIPS BRUCE L. GARY 23 STUDY OF CEPHEID VARIABLES AS A JOINT SPECTROSCOPY PROJECT THOMAS C.
    [Show full text]
  • Vanderbilt University, Department of Physics & Astronomy VU Station B 1807, Nashville, TN 37235 Phone: 615-322-2828, FAX: 61
    CURRICULUM VITAE: KEIVAN GUADALUPE STASSUN SENIOR ASSOCIATE DEAN FOR GRADUATE EDUCATION & RESEARCH, COLLEGE OF ARTS & SCIENCE Vanderbilt University, Department of Physics & Astronomy VU Station B 1807, Nashville, TN 37235 Phone: 615-322-2828, FAX: 615-343-7263 [email protected] DEGREES EARNED University of Wisconsin—Madison Degree: Ph.D. in Astronomy, 2000 Thesis: Rotation, Accretion, and Circumstellar Disks among Low-Mass Pre-Main-Sequence Stars Advisor: Robert D. Mathieu University of California at Berkeley Degree: A.B. in Physics/Astronomy (double major) with Honors, 1994 Thesis: A Simultaneous Photometric and Spectroscopic Variability Study of Classical T Tauri Stars Advisor: Gibor Basri EMPLOYMENT HISTORY Vanderbilt University Director, Vanderbilt Center for Autism & Innovation, 2017-present Stevenson Endowed Professor of Physics & Astronomy, 2016-present Senior Associate Dean for Graduate Education & Research, College of Arts & Science, 2015-18 Harvie Branscomb Distinguished Professor, 2015-16 Professor of Physics and Astronomy, 2011-present Director, Vanderbilt Initiative in Data-intensive Astrophysics (VIDA), 2007-present Co-Director, Fisk-Vanderbilt Masters-to-PhD Bridge Program, 2004-15 Associate Professor of Physics and Astronomy, 2008-11 Assistant Professor of Physics and Astronomy, 2003-08 Fisk University Adjunct Professor of Physics, 2006-present University of Wisconsin—Madison NASA Hubble Postdoctoral Research Fellow, Astronomy, 2001-03 Area: Observational Studies of Low-Mass Star Formation Mentor: Robert D. Mathieu University of Wisconsin—Madison Assistant Director and Postdoctoral Fellow, NSF Graduate K-12 Teaching Fellows Program, 2000-01 Duties: Development of fellowship program, instructor for graduate course in science education research Mentor: Terrence Millar HONORS AND AWARDS Presidential Award for Excellence in Science, Math, and Engineering Mentoring—2018 AAAS Mentor of the Year—2018 HHMI Professor—2018- Research Corporation for Science Advancement SEED Award—2017 1/29 Keivan G.
    [Show full text]
  • News from the Society for Astronomical Sciences
    News from the Society for Astronomical Sciences Vol. 9 No. 4 (October, 2011) SAS at PATS-2011 The Society for Astronomical Sciences had a productive presence at this year’s Pacific Astronomy and Tele- scope Show. Our booth display, designed to en- courage curiosity and interest in small- telescope science, seemed to gener- ate a nice response. Quite a few visi- tors engaged us in long conversations about projects, equipment, and the research contributions that are made by backyard scientists. We didn’t keep count, but at least a hundred people picked up SAS brochures. Also at PATS, Brian Warner presented a lecture on “Measuring the Universe”, which focused specifically on finding variable stars, and determining their lightcurves. About 40 people attended the lecture, and at least half of them accepted free copies of MPO Canopus, to facilitate their own entry into “backyard science”. If you are giving a lecture or participat- ing in a conference, and would like some SAS brochures to hand out, or the 3-poster SAS display, contact Bob Buchheim. Gene Lucas (left) explains the value of small-telescope science to a visitor at the SAS booth during PATS-2011. Photo by Bob Buchheim. Call for Observations of Zeta Aurigae Eclipse making these eclipses 10 times less during, and after the Octo- rare than the 9890 day cycle for Epsi- ber/November 2011 primary eclipse Here is a project that will build on your are needed – most particularly during experience with Epsilon Aurigae, and lon Aur. Primary eclipses occur when the B-star is eclipsed by the (much the ingress and egress stages, where enable you to contribute to the study of the hot star acts as a probe for the a stellar atmosphere.
    [Show full text]
  • The International Epsilon Aurigae Campaign 2009-2011. a Description of the Campaign and Early Results to May 2010
    The International Epsilon Aurigae Campaign 2009-2011. A description of the campaign and early results to May 2010 Robin Leadbeater Three Hills Observatory, UK [email protected] Published in proceedings of ”Stellar Winds in Interaction”, editors T. Eversberg and J.H. Knapen. Full proceedings volume is available on http://www.stsci.de/pdf/arrabida.pdf 1 Background In early 2009, immediately following the end of the WR140 periastron campaign (see these proceed- ings), I turned my telescope back to Aurigae in time for the start of the eclipse. As well as being an interesting object in its own right, the Pro-Am campaign being run on Aurigae during the current eclipse is a good example of how amateur spectroscopists can make a useful contribution. Aurigae is a naked eye magnitude 3 star and was first noted to be variable by Johan Frisch in 1821. It was subsequently found to be an eclipsing binary with a period of 27.1 years which undergoes an approx- imately 2 year long flat-bottomed eclipse with approximately 0.8 magnitude drop in V (Fig. 1, note also an apparent brightening around mid eclipse in this light curve from the last eclipse.) All the visible light from the system appears to come from one component (an F-type star) with no visible light from the eclipsing object, which clearly cannot be a normal star given the large size and very low luminosity in the visible part of the spectrum. Since we see only one component, there is arXiv:1101.1435v1 [astro-ph.SR] 7 Jan 2011 not enough data for a complete orbital solution so there has been plenty of room for speculation over the years as to the size, mass and nature of the components and the scale of the system.
    [Show full text]
  • Astronomy 2009 Index
    Astronomy Magazine 2009 Index Subject Index 1RXS J160929.1-210524 (star), 1:24 4C 60.07 (galaxy pair), 2:24 6dFGS (Six Degree Field Galaxy Survey), 8:18 21-centimeter (neutral hydrogen) tomography, 12:10 93 Minerva (asteroid), 12:18 2008 TC3 (asteroid), 1:24 2009 FH (asteroid), 7:19 A Abell 21 (Medusa Nebula), 3:70 Abell 1656 (Coma galaxy cluster), 3:8–9, 6:16 Allen Telescope Array (ATA) radio telescope, 12:10 ALMA (Atacama Large Millimeter/sub-millimeter Array), 4:21, 9:19 Alpha (α) Canis Majoris (Sirius) (star), 2:68, 10:77 Alpha (α) Orionis (star). See Betelgeuse (Alpha [α] Orionis) (star) Alpha Centauri (star), 2:78 amateur astronomy, 10:18, 11:48–53, 12:19, 56 Andromeda Galaxy (M31) merging with Milky Way, 3:51 midpoint between Milky Way Galaxy and, 1:62–63 ultraviolet images of, 12:22 Antarctic Neumayer Station III, 6:19 Anthe (moon of Saturn), 1:21 Aperture Spherical Telescope (FAST), 4:24 APEX (Atacama Pathfinder Experiment) radio telescope, 3:19 Apollo missions, 8:19 AR11005 (sunspot group), 11:79 Arches Cluster, 10:22 Ares launch system, 1:37, 3:19, 9:19 Ariane 5 rocket, 4:21 Arianespace SA, 4:21 Armstrong, Neil A., 2:20 Arp 147 (galaxy pair), 2:20 Arp 194 (galaxy group), 8:21 art, cosmology-inspired, 5:10 ASPERA (Astroparticle European Research Area), 1:26 asteroids. See also names of specific asteroids binary, 1:32–33 close approach to Earth, 6:22, 7:19 collision with Jupiter, 11:20 collisions with Earth, 1:24 composition of, 10:55 discovery of, 5:21 effect of environment on surface of, 8:22 measuring distant, 6:23 moons orbiting,
    [Show full text]