Regulation of Erythropoiesis in the Fetus and Newborn
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mechanisms of Erythrocyte Development and Regeneration: Implications for Regenerative Medicine and Beyond Emery H
© 2018. Published by The Company of Biologists Ltd | Development (2018) 145, dev151423. http://dx.doi.org/10.1242/dev.151423 REVIEW Mechanisms of erythrocyte development and regeneration: implications for regenerative medicine and beyond Emery H. Bresnick1,*, Kyle J. Hewitt1, Charu Mehta1, Sunduz Keles2, Robert F. Paulson3 and Kirby D. Johnson1 ABSTRACT better understanding of how stress can influence erythropoiesis, Hemoglobin-expressing erythrocytes (red blood cells) act as both during development and in a regenerative context. In this fundamental metabolic regulators by providing oxygen to cells and Review, we focus on cell-autonomous and non-cell-autonomous tissues throughout the body. Whereas the vital requirement for mechanisms governing erythrocyte development, the applicability oxygen to support metabolically active cells and tissues is well of these mechanisms to stress-instigated erythropoiesis (erythrocyte established, almost nothing is known regarding how erythrocyte regeneration) and their implications for other regenerative development and function impact regeneration. Furthermore, many processes. We begin by considering the principles that govern the questions remain unanswered relating to how insults to hematopoietic cell fate transitions that produce the diverse complement of blood stem/progenitor cells and erythrocytes can trigger a massive cells, including erythrocytes. It is not our intent, however, to regenerative process termed ‘stress erythropoiesis’ to produce comprehensively address this topic, as it has been heavily reviewed billions of erythrocytes. Here, we review the cellular and molecular elsewhere (Crisan and Dzierzak, 2016; Dzierzak and de Pater, 2016; mechanisms governing erythrocyte development and regeneration, Orkin and Zon, 2008; Tober et al., 2016). and discuss the potential links between these events and other regenerative processes. -
Fetal-Like Erythropoiesis During Recovery from Transient Erythroblastopenia of Childhood (TEC)
Pediatr. Res. 15: 1036-1039 (198 1) erythrocyte, aplasia transient erythroblastopenia of childhood fetal-like erythropoiesis Fetal-Like Erythropoiesis during Recovery from Transient Erythroblastopenia of Childhood (TEC) Division of Hematolog). and Oncology, Children's Hospital Medical Center and the Sidney Farber Cancer It~stitule, and the Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA Summary bone marrow failure (7.%. 16)' or in states of ra~idbone marrow recovery from aplasia after bone marrow transplantation (1, 3, Fetal-like erythropoiesis frequently accompanies marrow stress 17). The term "fetal-like" is used because the erythrocytes may conditions such as Diamond-Blackfan syndrome and aplastic ane- express only one and not all of the characteristics of fetal red mia. In contrast, patients with transient erythroblastopenia of blood cells. childhood have erythrocytes which lack fetal characteristics at the To if fetal-like erythropoiesis accompanies bone mar- time of diagnosis. This report describes nine children with transient row recovery from other hypoplastic states, we studied children erythroblastopenia of childhood in whom transient, fetal-like eryth- with transient erythroblastopenia of childhood (TEC) from the was observed during the period These pa- tirne of presentation to full recovery, TEC is an unusual disease of tients initially presented with anemia, reticulocytopenia, erythro- infants and young children, characterized by the insidious onset cytes of normal size for age, low levels of fetal hemoglobin, and of hypoproliferative anemia without decreases in leukocyte and i-antigen. During the recovery period, however, erythrocytes man- platelet production. Although the anemia may be quite severe at ifested one or more fetal characteristics. These included an in- presentation, rapid and complete recovery is the rule with per- creased fetal hemoglobin (in three of five patients), the presence manent restoration of normal hematopoiesis (2, 11, 19, 23, 25, 26). -
Asphyxia Neonatorum
CLINICAL REVIEW Asphyxia Neonatorum Raul C. Banagale, MD, and Steven M. Donn, MD Ann Arbor, Michigan Various biochemical and structural changes affecting the newborn’s well being develop as a result of perinatal asphyxia. Central nervous system ab normalities are frequent complications with high mortality and morbidity. Cardiac compromise may lead to dysrhythmias and cardiogenic shock. Coagulopathy in the form of disseminated intravascular coagulation or mas sive pulmonary hemorrhage are potentially lethal complications. Necrotizing enterocolitis, acute renal failure, and endocrine problems affecting fluid elec trolyte balance are likely to occur. Even the adrenal glands and pancreas are vulnerable to perinatal oxygen deprivation. The best form of management appears to be anticipation, early identification, and prevention of potential obstetrical-neonatal problems. Every effort should be made to carry out ef fective resuscitation measures on the depressed infant at the time of delivery. erinatal asphyxia produces a wide diversity of in molecules brought into the alveoli inadequately com Pjury in the newborn. Severe birth asphyxia, evi pensate for the uptake by the blood, causing decreases denced by Apgar scores of three or less at one minute, in alveolar oxygen pressure (P02), arterial P02 (Pa02) develops not only in the preterm but also in the term and arterial oxygen saturation. Correspondingly, arte and post-term infant. The knowledge encompassing rial carbon dioxide pressure (PaC02) rises because the the causes, detection, diagnosis, and management of insufficient ventilation cannot expel the volume of the clinical entities resulting from perinatal oxygen carbon dioxide that is added to the alveoli by the pul deprivation has been further enriched by investigators monary capillary blood. -
Postnatal Complications of Intrauterine Growth Restriction
Neonat f al l o B Sharma et al., J Neonatal Biol 2016, 5:4 a io n l r o u g y DOI: 10.4172/2167-0897.1000232 o J Journal of Neonatal Biology ISSN: 2167-0897 Mini Review Open Access Postnatal Complications of Intrauterine Growth Restriction Deepak Sharma1*, Pradeep Sharma2 and Sweta Shastri3 1Neoclinic, Opposite Krishna Heart Hospital, Nirman Nagar, Jaipur, Rajasthan, India 2Department of Medicine, Mahatma Gandhi Medical College, Jaipur, Rajasthan, India 3Department of Pathology, N.K.P Salve Medical College, Nagpur, Maharashtra, India Abstract Intrauterine growth restriction (IUGR) is defined as a velocity of fetal growth less than the normal fetus growth potential because of maternal, placental, fetal or genetic cause. This is an important cause of fetal and neonatal morbidity and mortality. Small for gestational age (SGA) is defined when birth weight is less than two standard deviations below the mean or less than 10th percentile for a specific population and gestational age. Usually IUGR and SGA are used interchangeably, but there exists subtle difference between the two terms. IUGR infants have both acute and long term complications and need regular follow up. This review will cover various postnatal aspects of IUGR. Keywords: Intrauterine growth restriction; Small for gestational age; Postnatal Diagnosis of IUGR Placental genes; Maternal genes; Fetal genes; Developmental origin of health and disease; Barker hypothesis The diagnosis of IUGR infant postnatally can be done by clinical examination (Figure 2), anthropometry [13-15], Ponderal Index Introduction (PI=[weight (in gram) × 100] ÷ [length (in cm) 3]) [2,16], Clinical assessment of nutrition (CAN) score [17], Cephalization index [18], Intrauterine growth restriction (IUGR) is defined as a velocity of mid-arm circumference and mid-arm/head circumference ratios fetal growth less than the normal fetus growth potential for a specific (Kanawati and McLaren’s Index) [19]. -
The Role of Macrophages in Erythropoiesis and Erythrophagocytosis
CORE Metadata, citation and similar papers at core.ac.uk Provided by Frontiers - Publisher Connector REVIEW published: 02 February 2017 doi: 10.3389/fimmu.2017.00073 From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis Thomas R. L. Klei†, Sanne M. Meinderts†, Timo K. van den Berg and Robin van Bruggen* Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands Erythropoiesis is a highly regulated process where sequential events ensure the proper differentiation of hematopoietic stem cells into, ultimately, red blood cells (RBCs). Macrophages in the bone marrow play an important role in hematopoiesis by providing signals that induce differentiation and proliferation of the earliest committed erythroid progenitors. Subsequent differentiation toward the erythroblast stage is accompanied by the formation of so-called erythroblastic islands where a central macrophage provides further cues to induce erythroblast differentiation, expansion, and hemoglobinization. Edited by: Robert F. Paulson, Finally, erythroblasts extrude their nuclei that are phagocytosed by macrophages Pennsylvania State University, USA whereas the reticulocytes are released into the circulation. While in circulation, RBCs Reviewed by: slowly accumulate damage that is repaired by macrophages of the spleen. Finally, after Xinjian Chen, 120 days of circulation, senescent RBCs are removed from the circulation by splenic and University of Utah, USA Reinhard Obst, liver macrophages. Macrophages are thus important for RBCs throughout their lifespan. Ludwig Maximilian University of Finally, in a range of diseases, the delicate interplay between macrophages and both Munich, Germany developing and mature RBCs is disturbed. Here, we review the current knowledge on *Correspondence: Robin van Bruggen the contribution of macrophages to erythropoiesis and erythrophagocytosis in health [email protected] and disease. -
Lecture 2 Haemopoiesis, Erythropoiesis and Leucopoiesis Haemopoiesis Haemopoiesis Or Haematopoiesis Is the of Process Formation of New Blood Cellular Components
NPTEL – Biotechnology – Cell Biology Lecture 2 Haemopoiesis, erythropoiesis and leucopoiesis Haemopoiesis Haemopoiesis or haematopoiesis is the of process formation of new blood cellular components. It has been estimated that in an adult human, approximately 1011–1012 new blood cells are produced daily in order to maintain steady state levels in the peripheral circulation. The mother cells from which the progeny daughter blood cells are generated are known as haematopoietic stem cells. In an embryo yolk sac is the main site of haemopoiesis whereas in human the basic sites where haemopoiesis occurs are the bone marrow (femur and tibia in infants; pelvis, cranium, vertebrae, and sternum of adults), liver, spleen and lymph nodes (Table 1). In other vertebrates haemapoiesis occurs in loose stroma of connective tissue of the gut, spleen, kidney or ovaries. Table 1: Sites of Haemopoiesis in humans Stage Sites Fetus 0–2 months (yolk sac) 2–7 months (liver, spleen) 5–9 months (bone marrow) Infants Bone marrow Adults Vertebrae, ribs, sternum, skull, sacrum and pelvis, proximal ends of femur The process of haemopoiesis Pluripotent stem cells with the capability of self renewal, in the bone marrow known as the haemopoiesis mother cell give rise to the separate blood cell lineages. This haemopoietic stem cell is rare, perhaps 1 in every 20 million nucleated cells in bone marrow. Figure 1 illustrates the bone marrow pluripotent stem cell and the cell lines that arise from it. Cell differentiation occurs from a committed progenitor haemopoietic stem cell and one stem cell is capable of producing about 106 mature blood cells after 20 cell divisions. -
National Vital Statistics Reports Volume 65, Number 7 October 31, 2016
National Vital Statistics Reports Volume 65, Number 7 October 31, 2016 Cause of Fetal Death: Data From the Fetal Death Report, 2014 by Donna L. Hoyert, Ph.D., and Elizabeth C.W. Gregory, M.P.H., Division of Vital Statistics Abstract cause of fetal death is the first ever released from the National Vital Statistics System (NVSS) and accompanies the release of Objectives—This report presents, for the first time, data on cause-of-fetal-death data. cause of fetal death by selected characteristics such as maternal A cause-of-fetal-death item was included on the fetal death age, Hispanic origin and race, fetal sex, period of gestation, and report, the form used to obtain details on fetal deaths since birthweight. 1939, because this addition was considered critical information. Methods—Descriptive tabulations of data collected on However, the data have never been released on public-use files the 2003 U.S. Standard Report of Fetal Death are presented or published, partly due to resource constraints and quality for fetal deaths occurring at 20 weeks of gestation or more in concerns. For example, there has been uncertainty about whether a reporting area of 35 states, New York City, and the District coding was being done in a standardized fashion and concern of Columbia. This area represents 66% of fetal deaths in the with how much of the unknown cause might reflect lack of care United States. Causes of death are processed in accordance in completing the fetal death report rather than appropriate with the International Statistical Classification of Diseases and reporting that the cause was unknown. -
Chronic Hypoxia Increases Peroxynitrite, MMP9 Expression, and Collagen Accumulation in Fetal Guinea Pig Hearts
nature publishing group Basic Science Investigation Articles Chronic hypoxia increases peroxynitrite, MMP9 expression, and collagen accumulation in fetal guinea pig hearts LaShauna C. Evans1, Hongshan Liu2, Gerard A. Pinkas2 and Loren P. Thompson2 INTRODUCTION: Chronic hypoxia increases the expression of in heart ventricles, identifying iNOS-derived NO synthesis as an inducible nitric oxide synthase (iNOS) mRNA and protein levels important mechanism contributing to HPX stress. In addition, in fetal guinea pig heart ventricles. Excessive generation of nitric fetal hypoxia increases the generation of reactive oxygen species oxide (NO) can induce nitrosative stress leading to the formation (15), and the interaction of NO and reactive oxygen species can of peroxynitrite, which can upregulate the expression of matrix lead to the formation of peroxynitrite (16), a potent cytotoxic metalloproteinases (MMPs). This study tested the hypothesis molecule in cardiac tissue (16). that maternal hypoxia increases fetal cardiac MMP9 and colla- Chronic hypoxia can contribute to disruption of both cardiac gen through peroxynitrite generation in fetal hearts. structure and function (6). In adult hearts, peroxynitrite plays RESULTS: In heart ventricles, levels of malondialdehyde, 3-nitro- a key role in cardiac pathologies associated with ischemia– tyrosine (3-NT), MMP9, and collagen were increased in hypoxic reperfusion injury (16), myocardial contractile dysfunction (17), (HPX) vs. normoxic (NMX) fetal guinea pigs. and heart failure (18). The role of peroxynitrite in HPX fetal DISCUSSION: Thus, maternal hypoxia induces oxidative–nit- hearts has not been investigated, but it is likely a key oxidant rosative stress and alters protein expression of the extracellular contributing to cardiac injury. Fetal cardiac pathology associ- matrix (ECM) through upregulation of the iNOS pathway in fetal ated with peroxynitrite may have lasting consequences in the heart ventricles. -
A Drowning Fetus Sends a Distress Signal, Which Is an Indication for a Caesarean Section
Indian Journal of Obstetrics and Gynecology Research 2020;7(4):461–466 Content available at: https://www.ipinnovative.com/open-access-journals Indian Journal of Obstetrics and Gynecology Research Journal homepage: www.ijogr.org Review Article A drowning fetus sends a distress signal, which is an indication for a Caesarean section Aleksandr Urakov1,2,*, Natalia Urakova3 1Dept. of General and Clinical Pharmacology, Izhevsk State Medical Academy, Izhevsk, Russia 2Dept. of Modeling and Synthesis of Technological Structures, Udmurt Federal Research Center of Ural Branch of RAS, Izhevsk, Russia 3Dep. of Obstetrics and Gynecology, Izhevsk State Medical Academy, Izhevsk, Russia ARTICLEINFO ABSTRACT Article history: The review is devoted to the prevention of neonatal asphyxia by assessing the reserves of adaptation of the Received 10-07-2020 fetus to intrauterine hypoxia in the second half of pregnancy and then choosing a safe type of delivery. The Accepted 24-07-2020 history of development of a new functional test that provides a non-invasive assessment of fetal adaptation Available online 07-12-2020 reserves to intrauterine hypoxia using sonography is shown. It is proposed to use ultrasound to determine the duration from the beginning of apnea in a pregnant woman to the appearance of a distress signal, the fetus inside the uterus when its reserves of adaptation to hypoxia are exhausted. If a distress signal appears Keywords: earlier than 10 seconds from the start of breath retention of pregnant woman is recommended to refuse of Apgar score physiology birth and is offered delivery by Cesarean section. Neonatal asphyxia Intrauterine hypoxia © This is an open access article distributed under the terms of the Creative Commons Attribution Apnea License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and Adaptation reproduction in any medium, provided the original author and source are credited. -
Perinatal Factors Affecting Human Development
PERINATAL FACTORS AFFECTING HUMAN DEVELOPMENT PAN AMERICAN HEALTH ORGANIZATION Pan American Sanitary Bureau, Regional Office of the WORLD HEALTH ORGANIZATION 1969 PERINATAL FACTORS AFFECTING HUMAN DEVELOPMENT Proceedings of the Special Session held during the Eighth Meeting of the PAHO Advisory Committee on Medical Research 10 June 1969 Scientific Publication No. 185 October 1969 PAN AMERICAN HEALTH ORGANIZATION Pan American Sanitary Bureau, Regional Office of the WORLD HEALTH ORGANIZATION 525 Twenty-third Street, N.W. Washington, D.C. 20037, U.S.A. NOTE At each meeting of the Pan American Health Organization Advisory Committee on Medical Research, a special session is held on a topic chosen by the Committee as being of particular interest. At the Eighth Meeting, which convened in June 1969 in Washington, D.C., the session surveyed some of the factors which may act on the fetus during pregnancy and labor interfering with its normal development or causing irreversible damage. Their influence on perinatal morbidity and mortality as well as their, long-term consequences on the surviving child received special attention. The basis for early diagnosis, prevention and trcatment was carefully reviewed. This volume records the papers presented and the ensuing discussions. PAHO ADVISORY COMMITTEE ON MEDICAL RESEARCH Dr. Hernán Alessandri Dr. Robert Q. Marston Ex-Decano, Facultad de Medicina Director, National Institutes of Health Universidad de Chile Bethesda, Maryland, U.S.A. Santiago, Chile Dr. Walsh McDermott Dr. Otto G. Bier Chairman, Department of Public Health Director, PAHO/WHO Immunology Cornell University Medical College Research and Training Center New York, New York, U.S.A. Instituto Butantan Sao Paulo, Brazil Dr. -
Resolving the Distinct Stages in Erythroid Differentiation Based on Dynamic Changes in Membrane Protein Expression During Erythropoiesis
Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis Ke Chena,1, Jing Liua,1, Susanne Heckb, Joel A. Chasisc, Xiuli Ana,d,2, and Narla Mohandasa aRed Cell Physiology Laboratory, bFlow Cytometry Core, New York Blood Center, New York, NY 10065; cLife Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and dDepartment of Biophysics, Peking University Health Science Center, Beijing 100191, China Communicated by Joseph F. Hoffman, Yale University School of Medicine, New Haven, CT, August 18, 2009 (received for review June 25, 2009) Erythropoiesis is the process by which nucleated erythroid progeni- results in loss of cohesion between the bilayer and the skeletal tors proliferate and differentiate to generate, every second, millions network, leading to membrane loss by vesiculation. This diminution of nonnucleated red cells with their unique discoid shape and mem- in surface area reduces red cell life span with consequent anemia. brane material properties. Here we examined the time course of A number of additional transmembrane proteins, including CD44 appearance of individual membrane protein components during and Lu, have been characterized, although their structural organi- murine erythropoiesis to throw new light on our understanding of zation in the membrane has not been fully defined. the evolution of the unique features of the red cell membrane. We Some transmembrane proteins exhibit multiple functions. Band found that the accumulation of all of the major transmembrane and 3 serves as an anion exchanger, while Rh/RhAG are probably gas all skeletal proteins of the mature red blood cell, except actin, accrued transporters (8, 9), and Duffy functions as a chemokine receptor progressively during terminal erythroid differentiation. -
Effect of Hypoxia on Spontaneous Neural Activity in the Cortex of Neonate Mouse Pups Krithikka Ravi Ms
City University of New York (CUNY) CUNY Academic Works Dissertations and Theses City College of New York 2019 Effect of hypoxia on spontaneous neural activity in the cortex of neonate mouse pups Krithikka Ravi Ms How does access to this work benefit ou?y Let us know! Follow this and additional works at: https://academicworks.cuny.edu/cc_etds_theses Part of the Bioimaging and Biomedical Optics Commons, and the Biological Engineering Commons Effect of hypoxia on spontaneous neural activity in the cortex of neonate mouse pups Thesis Submitted in partial fulfillment of the requirement for the degree Master of Science (Biomedical Engineering) at The City College of the City University of New York By Krithikka Ravi May 2019 Approved by: Professor Adrian Rodriguez-Contreras, Thesis Advisor (Department of Biology, Center for Discovery and Innovation) Professor Mitchell Schaffler, Chairman Department of Biomedical Engineering Effect of hypoxia on spontaneous neural activity in the cortex of neonate mouse pups Krithikka Ravi Department of Biomedical Engineering Dr. Adrian Rodriguez-Contreras (Department of Biology, Center for Discovery and Innovation) ABSTRACT Hypoxia caused by inadequate oxygenation has profound effects on the normal functioning of the brain in mammals. Acute or chronic hypoxic insults occur in the brain depending on the duration of hypoxic exposure. Hypoxia is known to occur in the human womb and exerts adverse effects on the developing fetus. Most of the ongoing research on hypoxia is performed on rodent brain slice taken from various brain regions using intracellular recording. Extensive work has been carried out to understand the effects of chronic hypoxia on the developing nervous system, specifically during intrauterine development.