The Rank of the Jacobian of Modular Curves: Analytic Methods

Total Page:16

File Type:pdf, Size:1020Kb

The Rank of the Jacobian of Modular Curves: Analytic Methods THE RANK OF THE JACOBIAN OF MODULAR CURVES: ANALYTIC METHODS BY EMMANUEL KOWALSKI ii Preface The interaction of analytic and algebraic methods in number theory is as old as Euler, and assumes many guises. Of course, the basic algebraic structures are ever present in any modern mathematical theory, and analytic number theory is no exception, but to algebraic geometry in particular it is indebted for the tremendous advances in under- standing of exponential sums over finite fields, since Andr´eWeil’s proof of the Riemann hypothesis for curves and subsequent deduction of the optimal bound for Kloosterman sums to prime moduli. On the other hand, algebraic number theory has often used input from L-functions; not only as a source of results, although few deep theorems in this area are proved with- out some appeal to Tchebotarev’s density theorem, but also as a source of inspiration, ideas and problems. One particular subject in arithmetic algebraic geometry which is now expected to benefit from analytic methods is the study of the rank of the Mordell-Weil group of an elliptic curve, or more generally of an abelian variety, over a number field. The beautiful conjecture of Birch and Swinnerton-Dyer asserts that this deep arithmetic invariant can be recovered from the order of vanishing of the L-function of the abelian variety at the center of the critical strip. This conjecture naturally opens two lines of investigation: to try to prove it, but here one is, in general, hampered by the necessary prerequisite of proving analytic continuation of the L-function up to this critical point, before any attempt can be made; or to take it for granted and use the information and insight it gives into the nature of the rank as a means of exploring further its behavior. This is justified by the trust put into the truth of the conjecture. Indeed, the first approach has been quite successful: in some cases, most notably large classes of elliptic curves over Q, analytic continuation is known, and partial results towards the conjecture have been obtained when the rank is 0 or 1. On the other hand, even when this is so, the second approach has had the aesthetic disadvantage that most studies of the rank, whether based on the assumption of the full statement of the conjecture or on known cases of it, have also assumed other analytic facts about the L-function, most notably that it satisfies the Generalized Riemann Hypothesis. This is somewhat unsatisfactory, inasmuch as this appears to be a much harder problem than even the Birch and Swinnerton-Dyer conjecture, although zeros of the L-function are of course very relevant to the problem. The contribution of this thesis is to show that analytic methods and techniques can indeed provide sharp, unconditional answers to some of the questions thus raised. This demonstrates that the implicit promise of the conjecture of Birch and Swinnerton-Dyer, of furnishing an effective way of answering questions about the rank through its analytic interpretation, can be kept without additional assumptions. The main results have been obtained in collaboration with Philippe Michel, and some auxiliary propositions had been proved earlier in the course of other work with ii iii William D. Duke. This volume is organized in six chapters. The first contains an introduction to the theory of abelian varieties and the Birch and Swinnerton-Dyer conjecture which is the motivating problem, and ends with the precise statements of the two principal theorems. The second chapter takes up the analytic side of the story. It recalls the results of Eichler-Shimura and Gross-Zagier which make the link between the algebraic geometry and modular forms, and provides an informal, but quite detailed, sketch of the proofs of the theorems. The extent of this first part, which is not original, stems from the fact that whereas the motivating problem lies in arithmetic algebraic geometry, an almost complete translation to a problem of analytic number theory is made, and this problem has intrinsic interest. Perchance, readers of both backgrounds will want to look at this document, and a goal of the text is to give to all an understanding of the other side of the story. The preliminaries over, at last, the process of proving is engaged with a stiff upper- lip. The third chapter contains a result about the “almost-orthogonality” of the sym- metric squares of modular forms which is crucial later for both results, and the fourth deals with another aspect of this kind of orthogonality principle. Then the last two chapters take each theorem in turn. There are a number of similarities in the prin- ciples and in some of the steps of both proofs, but since they seem to hold the same virtues of attraction and worth, the ordering is rather arbitrary and to accommodate the random-minded reader whose interest would lie in only one of the two, a certain amount of redundancy has been introduced, or cross-references sometimes inserted. A conclusion comes, not surprisingly, to conclude all this with some reflections about the meaning of the results and possible developments. iii iv Table of Contents Preface ......................................... ii Notations ....................................... v 1. Context and statements ............................ 1 1.1. Abelian varieties . 1 1.2. The Jacobian of an algebraic curve . 11 1.3. The modular curves and their Jacobians . 18 2. The analytic side ................................ 27 2.1. Reducing to modular forms . 27 2.1.1. Hecke theory, primitive forms . 27 2.1.2. Eichler-Shimura theory and corollaries . 30 2.1.3. The Gross-Zagier formula and consequences . 32 2.2. Sketch: the upper bound . 37 2.3. Sketch: the lower bound . 40 3. Mean-value and symmetric square ..................... 46 3.1. The symmetric square of modular forms . 46 3.2. The mean-value estimate . 48 3.3. Proof of the mean-value estimate . 51 3.4. Notational matters . 59 3.5. Removing the harmonic weight: the tail . 60 3.5.1. Sketch of the idea . 62 3.5.2. The tail of the series . 63 4. The Delta symbol ................................ 68 4.1. The Delta symbol for primitive forms . 68 4.2. The Delta symbol for odd primitive forms . 70 4.3. The Delta-symbol without weight . 71 Appendix: Multiplicativity . 72 5. The upper bound ................................ 75 5.1. The explicit formula: reduction to a density theorem . 75 5.2. The density theorem . 82 5.3. The harmonic second moment . 86 5.3.1. The square of the L-function . 87 5.3.2. Computation of the harmonic second moment . 90 5.3.3. Diagonalization . 91 5.3.4. Estimation of the harmonic second moment . 92 iv v 5.4. Removing the harmonic weight: the head, I . 96 6. The lower bound ................................. 105 6.1. Non-vanishing in harmonic average . 105 6.1.1. Preliminary: a refined statement . 105 6.1.2. Computation of the first moment . 107 6.1.3. Computation of the second moment . 110 6.1.4. The preferred quadratic form, I . 126 6.1.5. Harmonic non-vanishing . 134 6.2. Removing the harmonic weight: the head, II . 136 6.2.1. Computation of the first moment . 138 6.2.2. Computation of the second moment . 139 6.2.3. Mutations of the second moment . 139 6.2.4. The preferred quadratic form, II . 143 6.2.5. Optimization of the preferred form . 144 6.2.6. The second part of the main term . 148 6.2.7. The residual quadratic forms . 149 6.2.8. Conclusion . 150 Appendix: Extending the mollifier . 152 Conclusion ...................................... 156 References ....................................... 160 v vi Notations We introduce here some basic notations. • For any set X, |X| denotes its cardinality, a natural number if X is finite, and +∞ if it is infinite. • If A is an algebraic variety defined over a field k and K is an extension of k, A(K) is the set of points of A with coordinates in K, also called K-rational points. n • Fq denotes a field with q elements (q = p is the power of a prime number p), with Fp = Z/pZ for a prime p. • If k/Q is a number field, Ok will denote its ring of integers. The norm of an ideal a ⊂ Ok is written Na. • In any group G, the subgroup generated by a subset H ⊂ G is denoted by <H>; if H = {h} is a singleton, we also write simply <h>. • For any ring A, A× is the group of units of A. • For any two objects X and Y of any category, X ' Y means that X and Y are isomorphic. • The notation χD designates the Kronecker symbol of a quadratic field with dis- criminant D. • If σ is an automorphism of a field K, the action of σ on x ∈ K is denoted by σ(x) as well as by xσ. The following pertain to analytic number theory. • The notation n ∼ N, for real numbers n and N, means N < n 6 2N. • For any integer q > 1, εq is the trivial Dirichlet character modulo q, and ζq(s) = L(s, εq) is the corresponding L-function, the Riemann Zeta function with the Euler factors for p | q removed. • We denote by τ, ϕ, µ, Λ the classical arithmetic functions, namely (respectively) the divisor function, the Euler function, the M¨obiusfunction and the Van Man- goldt function, so X X ζ(s − 1) τ(n)n−s = ζ(s)2, ϕ(n)n−s = ζ(s) n>1 n>1 X X ζ0(s) µ(n)n−s = ζ(s)−1, Λ(n)n−s = − .
Recommended publications
  • Automorphisms of a Symmetric Product of a Curve (With an Appendix by Najmuddin Fakhruddin)
    Documenta Math. 1181 Automorphisms of a Symmetric Product of a Curve (with an Appendix by Najmuddin Fakhruddin) Indranil Biswas and Tomas´ L. Gomez´ Received: February 27, 2016 Revised: April 26, 2017 Communicated by Ulf Rehmann Abstract. Let X be an irreducible smooth projective curve of genus g > 2 defined over an algebraically closed field of characteristic dif- ferent from two. We prove that the natural homomorphism from the automorphisms of X to the automorphisms of the symmetric product Symd(X) is an isomorphism if d > 2g − 2. In an appendix, Fakhrud- din proves that the isomorphism class of the symmetric product of a curve determines the isomorphism class of the curve. 2000 Mathematics Subject Classification: 14H40, 14J50 Keywords and Phrases: Symmetric product; automorphism; Torelli theorem. 1. Introduction Automorphisms of varieties is currently a very active topic in algebraic geom- etry; see [Og], [HT], [Zh] and references therein. Hurwitz’s automorphisms theorem, [Hu], says that the order of the automorphism group Aut(X) of a compact Riemann surface X of genus g ≥ 2 is bounded by 84(g − 1). The group of automorphisms of the Jacobian J(X) preserving the theta polariza- tion is generated by Aut(X), translations and inversion [We], [La]. There is a universal constant c such that the order of the group of all automorphisms of any smooth minimal complex projective surface S of general type is bounded 2 above by c · KS [Xi]. Let X be a smooth projective curve of genus g, with g > 2, over an al- gebraically closed field of characteristic different from two.
    [Show full text]
  • Associating Abelian Varieties to Weight-2 Modular Forms: the Eichler-Shimura Construction
    Ecole´ Polytechnique Fed´ erale´ de Lausanne Master’s Thesis in Mathematics Associating abelian varieties to weight-2 modular forms: the Eichler-Shimura construction Author: Corentin Perret-Gentil Supervisors: Prof. Akshay Venkatesh Stanford University Prof. Philippe Michel EPF Lausanne Spring 2014 Abstract This document is the final report for the author’s Master’s project, whose goal was to study the Eichler-Shimura construction associating abelian va- rieties to weight-2 modular forms for Γ0(N). The starting points and main resources were the survey article by Fred Diamond and John Im [DI95], the book by Goro Shimura [Shi71], and the book by Fred Diamond and Jerry Shurman [DS06]. The latter is a very good first reference about this sub- ject, but interesting points are sometimes eluded. In particular, although most statements are given in the general setting, the book mainly deals with the particular case of elliptic curves (i.e. with forms having rational Fourier coefficients), with little details about abelian varieties. On the other hand, Chapter 7 of Shimura’s book is difficult, according to the author himself, and the article by Diamond and Im skims rapidly through the subject, be- ing a survey. The goal of this document is therefore to give an account of the theory with intermediate difficulty, accessible to someone having read a first text on modular forms – such as [Zag08] – and with basic knowledge in the theory of compact Riemann surfaces (see e.g. [Mir95]) and algebraic geometry (see e.g. [Har77]). This report begins with an account of the theory of abelian varieties needed for what follows.
    [Show full text]
  • AN EXPLORATION of COMPLEX JACOBIAN VARIETIES Contents 1
    AN EXPLORATION OF COMPLEX JACOBIAN VARIETIES MATTHEW WOOLF Abstract. In this paper, I will describe my thought process as I read in [1] about Abelian varieties in general, and the Jacobian variety associated to any compact Riemann surface in particular. I will also describe the way I currently think about the material, and any additional questions I have. I will not include material I personally knew before the beginning of the summer, which included the basics of algebraic and differential topology, real analysis, one complex variable, and some elementary material about complex algebraic curves. Contents 1. Abelian Sums (I) 1 2. Complex Manifolds 2 3. Hodge Theory and the Hodge Decomposition 3 4. Abelian Sums (II) 6 5. Jacobian Varieties 6 6. Line Bundles 8 7. Abelian Varieties 11 8. Intermediate Jacobians 15 9. Curves and their Jacobians 16 References 17 1. Abelian Sums (I) The first thing I read about were Abelian sums, which are sums of the form 3 X Z pi (1.1) (L) = !; i=1 p0 where ! is the meromorphic one-form dx=y, L is a line in P2 (the complex projective 2 3 2 plane), p0 is a fixed point of the cubic curve C = (y = x + ax + bx + c), and p1, p2, and p3 are the three intersections of the line L with C. The fact that C and L intersect in three points counting multiplicity is just Bezout's theorem. Since C is not simply connected, the integrals in the Abelian sum depend on the path, but there's no natural choice of path from p0 to pi, so this function depends on an arbitrary choice of path, and will not necessarily be holomorphic, or even Date: August 22, 2008.
    [Show full text]
  • Singularities of Integrable Systems and Nodal Curves
    Singularities of integrable systems and nodal curves Anton Izosimov∗ Abstract The relation between integrable systems and algebraic geometry is known since the XIXth century. The modern approach is to represent an integrable system as a Lax equation with spectral parameter. In this approach, the integrals of the system turn out to be the coefficients of the characteristic polynomial χ of the Lax matrix, and the solutions are expressed in terms of theta functions related to the curve χ = 0. The aim of the present paper is to show that the possibility to write an integrable system in the Lax form, as well as the algebro-geometric technique related to this possibility, may also be applied to study qualitative features of the system, in particular its singularities. Introduction It is well known that the majority of finite dimensional integrable systems can be written in the form d L(λ) = [L(λ),A(λ)] (1) dt where L and A are matrices depending on the time t and additional parameter λ. The parameter λ is called a spectral parameter, and equation (1) is called a Lax equation with spectral parameter1. The possibility to write a system in the Lax form allows us to solve it explicitly by means of algebro-geometric technique. The algebro-geometric scheme of solving Lax equations can be briefly described as follows. Let us assume that the dependence on λ is polynomial. Then, with each matrix polynomial L, there is an associated algebraic curve C(L)= {(λ, µ) ∈ C2 | det(L(λ) − µE) = 0} (2) called the spectral curve.
    [Show full text]
  • Deligne Pairings and Families of Rank One Local Systems on Algebraic Curves
    DELIGNE PAIRINGS AND FAMILIES OF RANK ONE LOCAL SYSTEMS ON ALGEBRAIC CURVES GERARD FREIXAS I MONTPLET AND RICHARD A. WENTWORTH Abstract. For smooth families of projective algebraic curves, we extend the notion of intersection pairing of metrized line bundles to a pairing on line bundles with flat relative connections. In this setting, we prove the existence of a canonical and functorial “intersection” connection on the Deligne pairing. A relationship is found with the holomorphic extension of analytic torsion, and in the case of trivial fibrations we show that the Deligne isomorphism is flat with respect to the connections we construct. Finally, we give an application to the construction of a meromorphic connection on the hyperholomorphic line bundle over the twistor space of rank one flat connections on a Riemann surface. Contents 1. Introduction2 2. Relative Connections and Deligne Pairings5 2.1. Preliminary definitions5 2.2. Gauss-Manin invariant7 2.3. Deligne pairings, norm and trace9 2.4. Metrics and connections 10 3. Trace Connections and Intersection Connections 12 3.1. Weil reciprocity and trace connections 12 3.2. Reformulation in terms of Poincaré bundles 17 3.3. Intersection connections 20 4. Proof of the Main Theorems 23 4.1. The canonical extension: local description and properties 23 4.2. The canonical extension: uniqueness 29 4.3. Variant in the absence of rigidification 31 4.4. Relation between trace and intersection connections 32 arXiv:1507.02920v1 [math.DG] 10 Jul 2015 4.5. Curvatures 34 5. Examples and Applications 37 5.1. Reciprocity for trivial fibrations 37 5.2. Holomorphic extension of analytic torsion 40 5.3.
    [Show full text]
  • Elliptic Factors in Jacobians of Hyperelliptic Curves with Certain Automorphism Groups Jennifer Paulhus
    THE OPEN BOOK SERIES 1 ANTS X Proceedings of the Tenth Algorithmic Number Theory Symposium Elliptic factors in Jacobians of hyperelliptic curves with certain automorphism groups Jennifer Paulhus msp THE OPEN BOOK SERIES 1 (2013) Tenth Algorithmic Number Theory Symposium msp dx.doi.org/10.2140/obs.2013.1.487 Elliptic factors in Jacobians of hyperelliptic curves with certain automorphism groups Jennifer Paulhus We decompose the Jacobian varieties of hyperelliptic curves up to genus 20, defined over an algebraically closed field of characteristic zero, with reduced automorphism group A4, S4, or A5. Among these curves is a genus-4 curve 2 2 with Jacobian variety isogenous to E1 E2 and a genus-5 curve with Jacobian 5 variety isogenous to E , for E and Ei elliptic curves. These types of results have some interesting consequences for questions of ranks of elliptic curves and ranks of their twists. 1. Introduction Curves with Jacobian varieties that have many elliptic curve factors in their de- compositions up to isogeny have been studied in many different contexts. Ekedahl and Serre found examples of curves whose Jacobians split completely into elliptic curves (not necessarily isogenous to one another)[13] (see also[27],[14, §5]). In genus 2, Cardona showed connections between curves whose Jacobians have two isogenous elliptic curve factors and Q-curves of degree 2 and 3 [5]. There are applications of such curves to ranks of twists of elliptic curves[24], results on torsion[19], and cryptography[12]. Let JX denote the Jacobian variety of a curve X and let represent an isogeny between abelian varieties.
    [Show full text]
  • Intersection Theory
    APPENDIX A Intersection Theory In this appendix we will outline the generalization of intersection theory and the Riemann-Roch theorem to nonsingular projective varieties of any dimension. To motivate the discussion, let us look at the case of curves and surfaces, and then see what needs to be generalized. For a divisor D on a curve X, leaving out the contribution of Serre duality, we can write the Riemann-Roch theorem (IV, 1.3) as x(.!Z'(D)) = deg D + 1 - g, where xis the Euler characteristic (III, Ex. 5.1). On a surface, we can write the Riemann-Roch theorem (V, 1.6) as 1 x(!l'(D)) = 2 D.(D - K) + 1 + Pa· In each case, on the left-hand side we have something involving cohomol­ ogy groups of the sheaf !l'(D), while on the right-hand side we have some numerical data involving the divisor D, the canonical divisor K, and some invariants of the variety X. Of course the ultimate aim of a Riemann-Roch type theorem is to compute the dimension of the linear system IDI or of lnDI for large n (II, Ex. 7.6). This is achieved by combining a formula for x(!l'(D)) with some vanishing theorems for Hi(X,!l'(D)) fori > 0, such as the theorems of Serre (III, 5.2) or Kodaira (III, 7.15). We will now generalize these results so as to give an expression for x(!l'(D)) on a nonsingular projective variety X of any dimension. And while we are at it, with no extra effort we get a formula for x(t&"), where @" is any coherent locally free sheaf.
    [Show full text]
  • 1.5.4 Every Abelian Variety Is a Quotient of a Jacobian Over an Infinite field, Every Abelin Variety Can Be Obtained As a Quotient of a Jacobian Variety
    16 1. Abelian Varieties: 10/10/03 notes by W. Stein 1.5.4 Every abelian variety is a quotient of a Jacobian Over an infinite field, every abelin variety can be obtained as a quotient of a Jacobian variety. The modular abelian varieties that we will encounter later are, by definition, exactly the quotients of the Jacobian J1(N) of X1(N) for some N. In this section we see that merely being a quotient of a Jacobian does not endow an abelian variety with any special properties. Theorem 1.5.4 (Matsusaka). Let A be an abelian variety over an algebraically closed field. Then there is a Jacobian J and a surjective map J → A. This was originally proved in On a generating curve of an abelian variety, Nat. Sc. Rep. Ochanomizu Univ. 3 (1952), 1–4. Here is the Math Review by P. Samuel: An abelian variety A is said to be generated by a variety V (and a mapping f of V into A) if A is the group generated by f(V ). It is proved that every abelian variety A may be generated by a curve defined over the algebraic closure of def(A). A first lemma shows that, if a variety V is the carrier of an algebraic system (X(M))M∈U of curves (X(M) being defined, non-singular and disjoint from the singular bunch of V for almost all M in the parametrizing variety U) if this system has a simple base point on V , and if a mapping f of V into an abelian variety is constant on some X(M0), then f is a constant; this is proved by specializing on M0 a generic point M of U and by using specializations of cycles [Matsusaka, Mem.
    [Show full text]
  • On Riemann Surfaces of Genus $ G $ with $4 G-4$ Automorphisms
    ON RIEMANN SURFACES OF GENUS g WITH 4g − 4 AUTOMORPHISMS SEBASTIAN´ REYES-CAROCCA Abstract. In this article we study compact Riemann surfaces with a non- large group of automorphisms of maximal order; namely, compact Riemann surfaces of genus g with a group of automorphisms of order 4g − 4. Under the assumption that g − 1 is prime, we provide a complete classification of them and determine isogeny decompositions of the corresponding Jacobian varieties. 1. Introduction and statement of the results The classification of finite groups of automorphisms of compact Riemann surfaces is a classical and interesting problem which has attracted a considerable interest, going back to contributions of Wiman, Klein, Schwartz and Hurwitz, among others. It is classically known that the full automorphism group of a compact Riemann surface of genus g > 2 is finite, and that its order is bounded by 84g − 84. This bound is sharp for infinitely many values of g, and a Riemann surface with this maximal number of automorphisms is characterized as a branched regular cover of the projective line with three branch values, marked with 2, 3 and 7. A result due to Wiman asserts that the largest cyclic group of automorphisms of a Riemann surface of genus g > 2 has order at most 4g +2. Moreover, the curve y2 = x2g+1 − 1 (1.1) shows that this upper bound is sharp for each genus; see [46] and [18]. Besides, Accola and Maclachlan independently proved that for fixed g > 2 the maximum among the orders of the full automorphism group of Riemann surfaces of genus g is at least 8g +8.
    [Show full text]
  • Modular Forms, Hecke Operators, and Modular Abelian Varieties
    Modular Forms, Hecke Operators, and Modular Abelian Varieties Kenneth A. Ribet William A. Stein December 9, 2003 ii Contents Preface . 1 1 The Main objects 3 1.1 Torsion points . 3 1.1.1 The Tate module . 3 1.2 Galois representations . 4 1.3 Modular forms . 5 1.4 Hecke operators . 5 2 Modular representations and algebraic curves 7 2.1 Arithmetic of modular forms . 7 2.2 Characters . 8 2.3 Parity Conditions . 9 2.4 Conjectures of Serre (mod ` version) . 9 2.5 General remarks on mod p Galois representations . 9 2.6 Serre's Conjecture . 10 2.7 Wiles's Perspective . 10 3 Modular Forms of Level 1 13 3.1 The De¯nition . 13 3.2 Some Examples and Conjectures . 14 3.3 Modular Forms as Functions on Lattices . 15 3.4 Hecke Operators . 17 3.5 Hecke Operators Directly on q-expansions . 17 3.5.1 Explicit Description of Sublattices . 18 3.5.2 Hecke operators on q-expansions . 19 3.5.3 The Hecke Algebra and Eigenforms . 20 3.5.4 Examples . 20 3.6 Two Conjectures about Hecke Operators on Level 1 Modular Forms 21 iv Contents 3.6.1 Maeda's Conjecture . 21 3.6.2 The Gouvea-Mazur Conjecture . 22 3.7 A Modular Algorithm for Computing Characteristic Polynomials of Hecke Operators . 23 3.7.1 Review of Basic Facts About Modular Forms . 23 3.7.2 The Naive Approach . 24 3.7.3 The Eigenform Method . 24 3.7.4 How to Write Down an Eigenvector over an Extension Field 26 3.7.5 Simple Example: Weight 36, p = 3 .
    [Show full text]
  • Hyperelliptic Curves
    Chapter 10 Hyperelliptic Curves This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography” by Steven Galbraith, available from http://www.math.auckland.ac.nz/˜sgal018/crypto- book/crypto-book.html The copyright for this chapter is held by Steven Galbraith. This book was published by Cambridge University Press in early 2012. This is the extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be different in the published version. Please send an email to [email protected] if youfind any mistakes. Hyperelliptic curves are a natural generalisation of elliptic curves, and it was suggested by Koblitz [346] that they might be useful for public key cryptography. Note that there is not a group law on the points of a hyperelliptic curve; instead we use the divisor class group of the curve. The main goals of this chapter are to explain the geometry of hyperelliptic curves, to describe Cantor’s algorithm [118] (and variants) to compute in the divisor class group of hyperelliptic curves, and then to state some basic properties of the divisor class group. Definition 10.0.1. Letk be a perfectfield. LetH(x),F(x) k[x] (we stress that H(x) andF(x) are not assumed to be monic). An affine algebraic∈ set of the formC: y2 +H(x)y=F(x) is called a hyperelliptic equation. The hyperelliptic involution ι:C C is defined byι(x, y)=(x, y H(x)). → − − Exercise 10.0.2. LetC be a hyperelliptic equation overk. Show that ifP C(k) then ι(P) C(k).
    [Show full text]
  • Twisted Spin Curves
    Universit`aLa Sapienza di Roma A.A. 2004{2005 TWISTED SPIN CURVES TESI DI DOTTORATO Marco Pacini Dipartimento di Matematica G. Castelnuovo Universit`aLa Sapienza, Roma Dottorato in Matematica Contents Introduction 3 Acknowledgments 7 Chapter 1. Preliminary tools and basic results 9 1.1. Background in the theory of algebraic curves 9 1.2. Canonical desingularization of double covers 13 Chapter 2. Square roots of line bundles on curves 17 2.1. The spin gluing data 18 2.2. Moduli of roots of line bundles of curves 20 2.3. The universal Picard variety 26 2.4. The equivalence class of a line bundle 28 Chapter 3. Spin curves over non stable curves 35 3.1. The case of a local complete intersection 37 3.2. Enumerative results 39 3.3. The multiplicity of a theta hyperplane 41 3.4. Twisted spin curves and the compactification 52 Chapter 4. Theta hyperplanes and stable reduction of curves 57 4.1. Theta hyperplanes of stable curves 57 4.2. Etale´ completions of curves of theta characteristics 62 4.3. The stable reduction of curves 64 4.4. A GIT-computational approach to the stable reduction 65 Bibliography 73 1 Introduction The problem of constructing a compactification for the Picard scheme (or generalized Jacobian) of a singular algebraic curve has been studied by several authors. More generally, the same problem can be considered for families of curves. Several constructions have been carried out since Igusa's pioneering work [I], which gave a con- struction for nodal and irreducible curves. Constructions are known for families of geometrically integral curves, by Altman and Kleiman [AK], and geometrically connected, possibly reducible, nodal curves, by Oda and Seshadri [OS].
    [Show full text]