E,Stuarinc Areas,Tex'asguifcpasl' Liter At'

Total Page:16

File Type:pdf, Size:1020Kb

E,Stuarinc Areas,Tex'asguifcpasl' Liter At' I I ,'SedimentationinFluv,ial~Oeltaic \}1. E~tlands ',:'~nd~ E,stuarinc Areas,Tex'asGuIfCpasl' Liter at' . e [ynthesis I Cover illustration depicts the decline of marshes in the Neches River alluvial valley between 1956 and 1978. Loss of emergent vegetation is apparently due to several interactive factors including a reduction of fluvial sediments delivered to the marsh, as well as faulting and subsidence, channelization, and spoil disposal. (From White and others, 1987). SEDIMENTATION IN FLUVIAL-DELTAIC WETLANDS AND ESTUARINE AREAS, TEXAS GULF COAST Uterature Synthesis by William A. White and Thomas R. Calnan Prepared for Texas Parks and Wildlife Department Resource Protection Division in accordance with Interagency Contracts (88-89) 0820 and 1423 Bureau of Economic Geology W. L. Fisher, Director The University of Texas at Austin Austin, Texas 78713 1990 CONTENTS Introduction . Background and Scope of Study . Texas Bay-Estuary-lagoon Systems................................................................................................. 2 Origin of Texas Estuaries........................................................................................................ 4 General Setting.............................................................................. 6 Climate 10 Salinity 20 Bathymetry..................................... 22 Tides 22 Relative Sea-level Rise.......................................................................................................... 23 Eustatic Sea-level Rise..................................................................................................... 24 Subsidence................................... 24 Subsidence in the Houston-Galveston Area 27 Faulting and Subsidence...................................................................... 30 Effects of Subsidence and Faulting on Texas Coastal Wetlands............ 34 Characteristics of Major River Systems Discharging into Coastal Basins 39 Historical Discharge and load 44 Effect of Reservoir Development on River Sediment load 46 Sediment Trapping 56 Effects Downstream from Reservoirs 60 Classification of Rivers by Sediment load....................................................................... 63 Fluvial-Deltaic-Wetland Sedimentation 66 Delta Development.............. 66 Development of Deltaic Marshes.................... 74 Marsh Sediments.............................................................................................................. 76 iii Marsh Degradation........................................................................................................... 77 Life Cycle of a Subdelta in a Delta System............................................................................. 77 Marsh Maturation and Aggradation ....................................................................................... 82 Biodeposition ....................................................................................................................... 95 Texas Deltaic Marshes-Development and Current State......................................................... 99 Colorado River Delta ....................................................................................................... 101 Recent Changes in State of the Colorado River Delta.... ......... ......... .......... ................ 1 09 Guadalupe River Delta... ..................... .............. ............................. .................................. 11 2 Recent Changes in State of the Guadalupe River Delta............................................... 115 Trinity River Delta ........................................................................................................... 119 Recent Changes in State of the Trinity River Delta .................................................... 123 Recent Changes in State of Wetlands in Other Texas Fluvial-Deltaic Areas ........................... 1 26 San Jacinto River .............................................................................................. ............... 126 Neches River ........... .......... .............. ................. ............ ........ ...................... ...................... 1 30 Lavaca River .................................................................................................................... 133 Nueces River... ................ ...... ................ ......................... ........ .............. ........ .................... 1 35 Bay-Estuary-Lagoon Sedimentation .................................................................... : .......................... 136 Sediment Composition ................................. ............ ....................................... .... ..... .... ......... 1 36 Sources of Sediment............................ .......... ............... ............ .................... ........ .................. 144 Turbidity ............................................................................................................................... 148 Effects of Marine Grasses on Sedimentation.. ...................... ................................. ........ .......... 153 Trap Efficiencies of Bays... ............. ..... ................ ............................. ......... ..... ......... ..... .......... 158 Importance of Episodic Events to Fluvial-Estuarine Sedimentation ........................................ 162 Sedimentation in Texas Bays .................................................................................................. 167 Contribution of Fluvial Sediments to Bay Sedimentation ................................................ 173 The Filling of Lavaca Bay-An Example ............... ............ ............ ................................... 1 73 Trends in Relative Sea-Level Rise and Fluvial-Estuarine Sedimentation .................................. 177 iv Corpus Christi-Nueces Bay System. 178 San Antonio-Espiritu Santo Bay System........ 180 Lavaca-Matagorda Bay System.............................. 182 Galveston-Trinity Bay System 186 Macrobenthos-Sediment Relationships. 193 Introduction 193 Trophic Structure..................................................... 196 Biomass and Density 199 Benthic Assemblages 207 Marshes 210 Mudflats and Sandflats 213 Species Diversity and Species Richness 214 Summary.. 221 Summary and Conclusions 223 Acknowledgments 226 References.................................................................................................................................... 228 FIGURES 1. Bay-estuary-Iagoon and major fluvial-deltaic systems along the Texas Gulf Coast................ 3 2. Sea-level changes during the past 18,000 yr, as interpreted by various authors..................... 5 3. Fluvial environments and facies deposited along the incised lower Trinity River valley, Galveston-Houston area........................................................................................... 7 4. Fluvial and deltaic systems of the Colorado and Brazos Rivers in the Bay City-Freeport area...................................................................................................................................... 8 5. Development of the Texas shoreline through the late Pleistocene falling sea-level stage.................................................................................................................................... 9 6. Average annual precipitation in Texas 19 v 7. Subsidence and water-level changes at selected sites along the Texas coast based on tide-gauge records................................................................................................................ 26 8. Cumulative area in the Texas Coastal Zone affected by land-surface subsidence in excess of 30 cm (1 ft) between 1943 and 1973 28 9. Land-surface subsidence in the Houston-Galveston area....................................................... 29 10. Subsidence as reflected by differences in mean monthly tide stage relative to the gauge record at a designated base station 31 11. Subsidence over an oil and gas field 33 12. Changes in the distribution of wetlands near Jones Bay and Swan Lake near Galveston....... 35 13. Block diagram of changes in wetlands that can occur along an active surface fault............. 36 14. Changes in the distribution of wetlands affected by surface faults...................................... 37 15. Land subsidence profile based on benchmark-releveJing data along State Highway 87 on Bolivar Peninsula 38 16. River and coastal basins in Texas......................................................................................... 40 17. Structural elements that affect Texas coastal rivers and basins 41 18. Longitudinal channel profiles for major Texas rivers 42 19. Characteristics of some major coastal rivers in Texas ,........................ 43 20. Annual discharge, silt load, and drainage area for some major Texas rivers.......................... 45 21. Annual streamflow and suspended sediment load of the Trinity River................................. 47 22. Suspended-sediment load for the Trinity and San Jacinto Rivers for the period 1936 through 1975 48 23. Annual streamflow and suspended load of the Brazos River................................................. 49 24. Comparison of suspended-sediment loads of the Brazos and Colorado Rivers, and Rio Grande.................................................................................................................... 49 25. Annual streamflow and suspended load of the Colorado River 50 26.
Recommended publications
  • Texas Hurricane History
    Texas Hurricane History David Roth National Weather Service Camp Springs, MD Table of Contents Preface 3 Climatology of Texas Tropical Cyclones 4 List of Texas Hurricanes 8 Tropical Cyclone Records in Texas 11 Hurricanes of the Sixteenth and Seventeenth Centuries 12 Hurricanes of the Eighteenth and Early Nineteenth Centuries 13 Hurricanes of the Late Nineteenth Century 16 The First Indianola Hurricane - 1875 21 Last Indianola Hurricane (1886)- The Storm That Doomed Texas’ Major Port 24 The Great Galveston Hurricane (1900) 29 Hurricanes of the Early Twentieth Century 31 Corpus Christi’s Devastating Hurricane (1919) 38 San Antonio’s Great Flood – 1921 39 Hurricanes of the Late Twentieth Century 48 Hurricanes of the Early Twenty-First Century 68 Acknowledgments 74 Bibliography 75 Preface Every year, about one hundred tropical disturbances roam the open Atlantic Ocean, Caribbean Sea, and Gulf of Mexico. About fifteen of these become tropical depressions, areas of low pressure with closed wind patterns. Of the fifteen, ten become tropical storms, and six become hurricanes. Every five years, one of the hurricanes will become reach category five status, normally in the western Atlantic or western Caribbean. About every fifty years, one of these extremely intense hurricanes will strike the United States, with disastrous consequences. Texas has seen its share of hurricane activity over the many years it has been inhabited. Nearly five hundred years ago, unlucky Spanish explorers learned firsthand what storms along the coast of the Lone Star State were capable of. Despite these setbacks, Spaniards set down roots across Mexico and Texas and started colonies. Galleons filled with gold and other treasures sank to the bottom of the Gulf, off such locations as Padre and Galveston Islands.
    [Show full text]
  • Consumer Plannlng Section Comprehensive Plannlng Branch
    Consumer Plannlng Section Comprehensive Plannlng Branch, Parks Division Texas Parks and Wildlife Department Austin, Texas Texans Outdoors: An Analysis of 1985 Participation in Outdoor Recreation Activities By Kathryn N. Nichols and Andrew P. Goldbloom Under the Direction of James A. Deloney November, 1989 Comprehensive Planning Branch, Parks Division Texas Parks and Wildlife Department 4200 Smith School Road, Austin, Texas 78744 (512) 389-4900 ACKNOWLEDGMENTS Conducting a mail survey requires accuracy and timeliness in every single task. Each individualized survey had to be accounted for, both going out and coming back. Each mailing had to meet a strict deadline. The authors are indebted to all the people who worked on this project. The staff of the Comprehensive Planning Branch, Parks Division, deserve special thanks. This dedicated crew signed letters, mailed, remailed, coded, and entered the data of a twenty-page questionnaire that was sent to over twenty-five thousand Texans with over twelve thousand returned completed. Many other Parks Division staff outside the branch volunteered to assist with stuffing and labeling thousands of envelopes as deadlines drew near. We thank the staff of the Information Services Section for their cooperation in providing individualized letters and labels for survey mailings. We also appreciate the dedication of the staff in the mailroom for processing up­ wards of seventy-five thousand pieces of mail. Lastly, we thank the staff in the print shop for their courteous assistance in reproducing the various documents. Although the above are gratefully acknowledged, they are absolved from any responsibility for any errors or omissions that may have occurred. ii TEXANS OUTDOORS: AN ANALYSIS OF 1985 PARTICIPATION IN OUTDOOR RECREATION ACTIVITIES TABLE OF CONTENTS Introduction ...........................................................................................................
    [Show full text]
  • FISHING Bucks Astir Hunters Keep Anglers After Crappie Have to Change Their Strategy in Winter
    Pheasant season opens * December 8, 2006 Texas’ Premier Outdoor Newspaper Volume 3, Issue 8 * Page 7 www.lonestaroutdoornews.com INSIDE FISHING Bucks astir Hunters keep Anglers after crappie have to change their strategy in winter. The fish often go to deep waters watchful eye to escape the cold and fluctuating temperatures. Crappie also turn more lethargic, on rut activity so pursuing anglers must slow down their actions and try to put By Bill Miller their bait on the money. Page 8 As a fierce arctic front barreled over Texas last week, some deer hunters willing to brave HUNTING frigid temperatures may have hoped the chill would stir bucks into breeding. The fabled rut is the one time hunters can be assured the wily buck of their dreams will abandon caution for the pursuit of a doe in estrus. But it’s a misconception that breeding is spurred by weather. Clayton Wolf, big game director for Texas Parks and Wildlife, said the decreasing length of days is what triggers breeding activity. “When you hear people talking about see- Goose hunters had their share of ing more deer when it’s colder, and that it success as reinforcements correlates with the rut, we find ourselves cor- arrived to bulk up the state’s recting them,’’ Wolf said. Much of the breeding in Texas happens winter goose population. during November, Wolf said, although Page 6 South Texas is famous for its rut in NATIONAL December. Wolf added that some areas experience a A new Coast Guard study IN A RUT: During breeding season, the necks of white-tailed deer swell signaling dominance and readiness to mate.
    [Show full text]
  • The Role of Freshwater Inflows in Sustaining Estuarine Ecosystem Health in the San Antonio Bay Region
    The Role of Freshwater Inflows in Sustaining Estuarine Ecosystem Health in the San Antonio Bay Region Contract Number 05-018 September 15, 2006 1. Introduction Estuaries are vital aquatic habitats for supporting marine life, and they confer a multitude of benefits to humans in numerous ways. These benefits include the provision of natural resources used for a variety of market activities, recreational opportunities, transportation and aesthetics, as well as ecological functions such as storing and cycling nutrients, absorbing and detoxifying pollutants, maintaining the hydrological cycle, and moderating the local climate. The wide array of beneficial processes, functions and resources provided by the ecosystem are referred to collectively as “ecosystem services.” From this perspective, an estuary can be viewed as a valuable natural asset, or natural capital, from which these multiple goods and services flow.1 The quantity, quality and temporal variance of freshwater inflows are essential to the living and non-living components of bays and estuaries. Freshwater inflows to sustain ecosystem functions affect estuaries at all basic physical, chemical, and biological levels of interaction. The functional role of freshwater in the ecology of estuarine environments has been scientifically reviewed and is relatively well understood. This role is summarized in section 3, after a brief overview of the geographical context of the San Antonio Bay Region in the next section. Section 4 follows with discussion of the impacts of reduced freshwater inflow to the San Antonio Bay. Section 5 concludes with some general observations. 2. Geographical Context The San Antonio Bay Region, formed where the Guadalupe River meets the Guadalupe Estuary, teems with life.
    [Show full text]
  • 33 CFR Ch. I (7–1–11 Edition) § 80.840
    § 80.840 33 CFR Ch. I (7–1–11 Edition) Point Au Fer Reef Light 33; thence to Freeport Entrance Light 6; thence Atchafalaya Bay Pipeline Light D lati- Freeport Entrance Light 7; thence the tude 29°25.0′ N. longitude 91°31.7′ W.; seaward extremity of Freeport South thence to Atchafalaya Bay Light 1 lati- Jetty. tude 29°25.3′ N. longitude 91°35.8′ W.; [CGD 77–118a, 42 FR 35784, July 11, 1977. Re- thence to South Point. designated by CGD 81–017, 46 FR 28154, May (b) Lines following the general trend 26, 1981, as amended by CGD 84–091, 51 FR of the highwater shoreline drawn 7787, Mar. 6, 1986] across the bayou and canal inlets from the Gulf of Mexico between South § 80.850 Brazos River, TX to the Rio Point and Calcasieu Pass except as oth- Grande, TX. erwise described in this section. (a) Except as otherwise described in (c) A line drawn on an axis of 140° this section lines drawn continuing the true through Southwest Pass general trend of the seaward, Vermillion Bay Light 4 across South- highwater shorelines across the inlets west Pass. to Brazos River Diversion Channel, San (d) A line drawn across the seaward Bernard River, Cedar Lakes, Brown extremity of the Freshwater Bayou Cedar Cut, Colorado River, Matagorda Canal Entrance Jetties. Bay, Cedar Bayou, Corpus Christi Bay, (e) A line drawn from Mermentau and Laguna Madre. Channel East Jetty Light 6 to (b) A line drawn across the seaward Mermentau Channel West Jetty Light extremity of Matagorda Ship Channel 7.
    [Show full text]
  • Coast Guard, DHS § 80.525
    Coast Guard, DHS Pt. 80 Madagascar Singapore 80.715 Savannah River. Maldives Surinam 80.717 Tybee Island, GA to St. Simons Is- Morocco Tonga land, GA. Oman Trinidad 80.720 St. Simons Island, GA to Amelia Is- land, FL. Pakistan Tobago Paraguay 80.723 Amelia Island, FL to Cape Canaveral, Tunisia Peru FL. Philippines Turkey 80.727 Cape Canaveral, FL to Miami Beach, Portugal United Republic of FL. Republic of Korea Cameroon 80.730 Miami Harbor, FL. 80.735 Miami, FL to Long Key, FL. [CGD 77–075, 42 FR 26976, May 26, 1977. Redes- ignated by CGD 81–017, 46 FR 28153, May 26, PUERTO RICO AND VIRGIN ISLANDS 1981; CGD 95–053, 61 FR 9, Jan. 2, 1996] SEVENTH DISTRICT PART 80—COLREGS 80.738 Puerto Rico and Virgin Islands. DEMARCATION LINES GULF COAST GENERAL SEVENTH DISTRICT Sec. 80.740 Long Key, FL to Cape Sable, FL. 80.01 General basis and purpose of demarca- 80.745 Cape Sable, FL to Cape Romano, FL. tion lines. 80.748 Cape Romano, FL to Sanibel Island, FL. ATLANTIC COAST 80.750 Sanibel Island, FL to St. Petersburg, FL. FIRST DISTRICT 80.753 St. Petersburg, FL to Anclote, FL. 80.105 Calais, ME to Cape Small, ME. 80.755 Anclote, FL to the Suncoast Keys, 80.110 Casco Bay, ME. FL. 80.115 Portland Head, ME to Cape Ann, MA. 80.757 Suncoast Keys, FL to Horseshoe 80.120 Cape Ann, MA to Marblehead Neck, Point, FL. MA. 80.760 Horseshoe Point, FL to Rock Island, 80.125 Marblehead Neck, MA to Nahant, FL.
    [Show full text]
  • Texas Water Resources Institute Annual Technical Report FY 2003 Introduction the Mission of the Texas Water Resources Institute Is To
    Texas Water Resources Institute Annual Technical Report FY 2003 Introduction The Mission of the Texas Water Resources Institute is to: (1) Provide leadership for Experiment Station and Extension research and education water programs statewide, coordinating with scientists, specialists, county agents, administrative personnel and other agencies and water groups. (2) Serve as the designated Water Resources Research Institute for the State of Texas, as part of the National Institutes for Water Research Program and established by the Texas Legislature. (3) Obtain and manage external funds for research, academic programs, outreach, and education projects. (4) Establish TWRI as the focal point for water research and outreach efforts within the Texas A&M University System. (5) Develop relationships with policymakers, elected officials and water resources leaders throughout Texas. (6) Identify emerging water resources issues that may be significant funding sources, and communicate these issues to researchers, stakeholders, and the public. (7) Communicate TWRI projects, research opportunities, research results, resource materials, and water resources news to the public. (8) Support and help faciliatate water related academic programs and administer scholarship programs for students involved in water related studies. Research Program During 2003-04, the Texas Water Resources Institute funded 12 research projects to graduate students at universities throughout Texas. Students were supported at Texas A&M University (9 projects); the University of Texas at Austin (2); and the University of Texas at El Paso (1). These studies covered several broad subjects, including the following: brush control to improve water yields (3 projects); the development and application of computer models (3); hydrology (3); water conservation (1); groundwater (3); surface water (3); water use (3); bays and estuaries (1); aquatic ecosystems (2); water policies (1); the economics of water use (1); water treatment (1); non-point pollution (1); and water quality (5).
    [Show full text]
  • Sedimentary Environments and Processes in a Shallow
    SEDIMENTARY ENVIRONMENTS AND PROCESSES IN A SHALLOW, GULF COAST ESTUARY-LAVACA BAY, TEXAS A Thesis by JASON LEE BRONIKOWSKI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2004 Major Subject: Oceanography SEDIMENTARY ENVIRONMENTS AND PROCESSES IN A SHALLOW, GULF COAST ESTUARY-LAVACA BAY, TEXAS A Thesis by JASON LEE BRONIKOWSKI Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: ___________________________ __________________________ Timothy Dellapenna Jay Rooker (Chair of Committee) (Member) ___________________________ __________________________ William Sager Wilford Gardner (Member) (Head of Department) August 2004 Major Subject: Oceanography iii ABSTRACT Sedimentary Environments and Processes in a Shallow, Gulf Coast Estuary-Lavaca Bay, Texas. (August 2004) Jason Lee Bronikowski, B.S., Lake Superior State University Chair of Advisory Committee: Dr. Timothy Dellapenna Sedimentation rates in sediment cores from Lavaca Bay have been high within the last 1-2 decays within the central portion of the bay, with small fluctuations from river input. Lavaca Bay is a broad, flat, and shallow (<3 m) microtidal estuary within the upper Matagorda Bay system. Marine derived sediment enters the system from Matagorda Bay, while two major rivers (Lavaca & Navidad) supply the majority of terrestrially derived sediment. With continuous sediment supply the bay showed no bathymetric change until the introduction of the shipping channel. Processes that potentially lead to sediment transport and resuspension within the bay include wind driven wave resuspension, storm surges, wind driven blowouts, and river flooding.
    [Show full text]
  • 2018 Lavaca Basin Highlights Clean Rivers Program Report
    2018 Lavaca Basin Highlights Clean Rivers Program Report Bald Eagle at LNRA Volkmer Barn Prepared by the Lavaca-Navidad River Authority (LNRA) PO Box 429, Edna, TX 77957 PREPARED IN COOPERATION WITH THE TEXAS COMMISSION ON ENVIRONMENTAL QUALITY The preparation of this report was financed in part through funding from the Texas Commission on Environmental Quality. PO Box 13087, Austin, TX 78711 1 LAVACA BASIN HIGHLIGHTS REPORT 2018 TABLE OF CONTENTS Page Acronyms 3 2017 Highlights 4 Water Quality Monitoring 14 Water Quality Conditions 19 Stakeholder Participation and Public Outreach 22 LNRA Web Site 25 Figures: Figure 1 – Doppler image of Hurricane Harvey at Landfall 5 Figure 2 – Navidad River Below Spillway 6 Figure 3 – Water Released from Palmetto Bend Dam 6 Figure 4 – Sample Location on Rocky Creek 8 Figure 5 – Texana Cove Before Weevil Release 10 Figure 6 – Texana Cove 2 Years After Weevil Release 11 Figure 7 – Adult Salvinia Weevil 11 Figure 8 - Map of Impaired Streams in the Lavaca River 13 Figure 9 - FY 2017 Lavaca Basin Monitoring Sites 16 Figure 10 - Nature Camp 22 Tables: Table 1 – Monitoring Sites for FY 2017 17 2 Acronyms AU Assessment Unit BMP Best Management Practice(s) CFS Cubic feet per second CFU Colony Forming Unit CRP Clean Rivers Program DO Dissolved Oxygen (in water) EPA Environmental Protection Agency IR Integrated Report LNRA Lavaca Navidad River Authority mg/L Milligrams per Liter PPT Parts Per Thousand RUAA Recreational Use Attainability Analysis SH State Highway SWQM Surface Water Quality Monitoring TCEQ Texas Commission on Environmental Quality TDS Total Dissolved Solids TIAER The Texas Institute for Applied Environmental Research TPWD Texas Parks & Wildlife TWRI Texas Water Resources Institute UAA Use Attainability Analysis USDA United States Agriculture Department USGS United States Geological Survey WQS Water Quality Standards WPP Watershed Protection Plan 3 2017 Basin Highlights • The Lavaca-Navidad River Basin receives an average annual rainfall of approximately 42 inches per year.
    [Show full text]
  • Stormwater Management Program 2013-2018 Appendix A
    Appendix A 2012 Texas Integrated Report - Texas 303(d) List (Category 5) 2012 Texas Integrated Report - Texas 303(d) List (Category 5) As required under Sections 303(d) and 304(a) of the federal Clean Water Act, this list identifies the water bodies in or bordering Texas for which effluent limitations are not stringent enough to implement water quality standards, and for which the associated pollutants are suitable for measurement by maximum daily load. In addition, the TCEQ also develops a schedule identifying Total Maximum Daily Loads (TMDLs) that will be initiated in the next two years for priority impaired waters. Issuance of permits to discharge into 303(d)-listed water bodies is described in the TCEQ regulatory guidance document Procedures to Implement the Texas Surface Water Quality Standards (January 2003, RG-194). Impairments are limited to the geographic area described by the Assessment Unit and identified with a six or seven-digit AU_ID. A TMDL for each impaired parameter will be developed to allocate pollutant loads from contributing sources that affect the parameter of concern in each Assessment Unit. The TMDL will be identified and counted using a six or seven-digit AU_ID. Water Quality permits that are issued before a TMDL is approved will not increase pollutant loading that would contribute to the impairment identified for the Assessment Unit. Explanation of Column Headings SegID and Name: The unique identifier (SegID), segment name, and location of the water body. The SegID may be one of two types of numbers. The first type is a classified segment number (4 digits, e.g., 0218), as defined in Appendix A of the Texas Surface Water Quality Standards (TSWQS).
    [Show full text]
  • Aquifers of the Gulf Coast of Texas
    Texas Water Development Board Report 365 Aquifers of the Gulf Coast of Texas edited by Robert E. Mace, Sarah C. Davidson, Edward S. Angle, and William F. Mullican, III February 2006 This page intentionally blank. ii Texas Water Development Board E. G. Rod Pittman, Chairman, Lufkin Thomas Weir Labatt, III, Member, San Antonio Jack Hunt, Vice Chairman, Houston James E. Herring, Member, Amarillo Dario Vidal Guerra, Jr., Member, Edinburg William W. Meadows, Member, Fort Worth J. Kevin Ward, Executive Administrator Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Board would appreciate acknowledgment. The use of brand names in this publication does not indicate an endorsement by the Texas Water Development Board or the State of Texas. With the exception of papers written by Texas Water Development Board staff, views expressed in this report are of the authors and do not necessarily reflect the views of the Texas Water Development Board. Published and distributed by the Texas Water Development Board P.O. Box 13231, Capitol Station Austin, Texas 78711-3231 February 2006 Report 365 (Printed on recycled paper) iii This page intentionally blank. iv Note from the Editors: The Gulf Coast is prominent in the history of Texas. The first sight of Texas by western explorers was our Gulf Coast. Texans defeated Santa Anna to earn their independence from Mexico amid the swamps at San Jacinto. And the oil that erupted from Spindletop, south of Beaumont, propelled Texas into the oil and gas industry. Groundwater from the Gulf Coast area has also played an important, although perhaps quieter, part of Texas’ history as well.
    [Show full text]
  • National Coastal Condition Assessment 2010
    You may use the information and images contained in this document for non-commercial, personal, or educational purposes only, provided that you (1) do not modify such information and (2) include proper citation. If material is used for other purposes, you must obtain written permission from the author(s) to use the copyrighted material prior to its use. Reviewed: 7/27/2021 Jenny Wrast Environmental Institute of Houston FY07 FY08 FY09 FY10 FY11 FY12 FY13 Lakes Field Lab, Data Report Research Design Field Lab, Data Rivers Design Field Lab, Data Report Research Design Field Streams Research Design Field Lab, Data Report Research Design Coastal Report Research Design Field Lab, Data Report Research Wetlands Research Research Research Design Field Lab, Data Report 11 sites in: • Sabine Lake • Galveston Bay • Trinity Bay • West Bay • East Bay • Christmas Bay 26 sites in: • East Matagorda Bay • Tres Palacios Bay • Lavaca Bay • Matagorda Bay • Carancahua Bay • Espiritu Santu Bay • San Antonio Bay • Ayres Bay • Mesquite Bay • Copano Bay • Aransas Bay 16 sites in: • Corpus Christi Bay • Nueces Bay • Upper Laguna Madre • Baffin Bay • East Bay • Alazan Bay •Lower Laguna Madre Finding Boat Launches Tracking Forms Locating the “X” Site Pathogen Indicator Enterococcus Habitat Assessment Water Field Measurements Light Attenuation Basic Water Chemistry Chlorophyll Nutrients Sediment Chemistry and Composition •Grain Size • TOC • Metals Sediment boat and equipment cleaned • PCBs after every site. • Organics Benthic Macroinvertebrates Sediment Toxicity Minimum of 3-Liters of sediment required at each site. Croaker Spot Catfish Whole Fish Sand Trout Contaminants Pinfish •Metals •PCBs •Organics Upper Laguna Madre Hurricanes Hermine & Igor Wind & Rain Upper Laguna Madre Copano Bay San Antonio Bay—August Trinity Bay—July Copano Bay—September Jenny Kristen UHCL-EIH Lynne TCEQ Misty Art Crowe Robin Cypher Anne Rogers Other UHCL-EIH Michele Blair Staff Dr.
    [Show full text]