Geologic and Physiographic Controls on Bed-Material Yield, Transport, and Channel Morphology for Alluvial and Bedrock Rivers, Western Oregon

Total Page:16

File Type:pdf, Size:1020Kb

Geologic and Physiographic Controls on Bed-Material Yield, Transport, and Channel Morphology for Alluvial and Bedrock Rivers, Western Oregon Geologic and physiographic controls on bed-material yield, transport, and channel morphology for alluvial and bedrock rivers, western Oregon Jim E. O’Connor1,†, Joseph F. Mangano1,2, Scott W. Anderson1,3, J. Rose Wallick1, Krista L. Jones1, and Mackenzie K. Keith1 1U.S. Geological Survey, Oregon Water Science Center, 2130 SW 5th Avenue, Portland, Oregon 97201, USA 2Department of Geosciences, Colorado State University, Fort Collins, Colorado 80523, USA 3Department of Geography, University of Colorado–Boulder, Boulder, Colorado 80309, USA ABSTRACT geometry and sediment supply. At the scale (Stanford and Ward, 1993; Yarnell et al., 2006). of western Oregon, the physiographic and Most fundamentally, the distinction relates to the The rivers of western Oregon have di- lithologic controls on the balance between balance between bed-material supply and river verse forms and characteristics, with channel bed-material supply and transport capacity transport capacity (Gilbert, 1877, 1914; Howard, substrates ranging from continuous alluvial exert far-reaching infl uence on the distribu- 1980; Whipple, 2004). Rivers in which the long- gravel to bare bedrock. Analysis of several tion of alluvial and nonalluvial channels and term channel transport capacity exceeds bed- measurable morphologic attributes of 24 val- their consequently distinctive morphologies material supply (termed supply- or detachment- ley reaches on 17 rivers provides a basis for and behaviors—differences germane for un- limited rivers) will typically fl ow over bedrock comparing nonalluvial and alluvial channels. derstanding river response to tectonics and beds for part or much of their courses. Where Key differences are that alluvial reaches have environmental perturbations, as well as for supply meets or exceeds transport capacity greater bar area, greater migration rates, and implementing effective restoration and moni- (transport-limited rivers), channel beds are typi- show systematic correlation among variables toring strategies. cally formed of a continuous mantle of alluvial- relating grain size to bed-material transport bed material. capacity. We relate these differences between INTRODUCTION This categorization, however, masks sub- channel types to bed-material transport rates stantial complexity. As summarized by Church as derived from a coupled regional analysis of The rivers of western Oregon have channel (2002, 2006) and Lisle (2012), the morphology empirical sediment yield measurements and beds ranging from fully alluvial to bedrock. A and transport conditions of alluvial channels physical experiments of clast attrition dur- local history of in-stream gravel mining in con- involve interrelations among fl ow, channel and ing transport. This sediment supply analy sis junction with an ongoing permitting process valley characteristics, sediment supply, and sedi- shows that overall bed-material transport for continued mining have prompted a series of ment grain size. These interrelations commonly rates for western Oregon are chiefl y con- investigations of bed-material production, trans- create conditions of bed-material fl ux, channel trolled by (1) lithology and basin slope, which port, and channel morphology across this spec- form, bed elevation, and bed-sediment textures are the key factors for bed-material supply trum of channel types in western Oregon (Wal- such that the bed material entering the system is into the stream network, and (2) lithologic lick et al., 2010, 2011; Jones et al., 2011, 2012a, balanced, at decadal to millennial time scales, control of bed-material attrition from in- 2012b, 2012c). These studies, expanded upon by that exiting, i.e., the graded river of Mackin transport abrasion and disintegration. This and synthesized here, show the importance of (1948). This system, classically depicted by the bed-material comminution strongly affects (1) geologic and physiographic controls on bed- Lane-Borland balance between stream energy bed-material transport in the study area, re- material production and in-stream gravel fl ux; and sediment fl ux (Lane, 1955), has been subject ducing transport rates by 50%–90% along and (2) the differences between fully alluvial to more than a century of scrutiny because of the the length of the larger rivers in the study channels and those that locally fl ow on bedrock many pragmatic implications of predicting allu- area. A comparison of the bed-material in terms of predicting transport rates, bed-mate- vial channel behavior and morphology in con- transport estimates with the morphologic rial characteristics, and channel morphology. sequence of changing environmental conditions. analyses shows that alluvial gravel-bed chan- Channels with bedrock beds and margins nels have systematic and bounding relations Alluvial, Bedrock, and have also been studied extensively, but chiefl y between bed-material transport rate and at- Mixed-Bed Channels for their broad role in pacing valley incision and tributes such as bar area and local transport landscape evolution (summarized by Turowski, capacity. By contrast, few such relations are The distinction between alluvial and bedrock 2012). Finer-scale studies have mostly focused evident for nonalluvial rivers with bedrock or channels has broad implications regarding long- on bedrock channel forms (summarized by mixed-bed substrates, which are apparently term channel incision (Howard, 1980; Whipple, Wohl, 1998; Whipple, 2004; Richardson and more infl uenced by local controls on channel 2004; Turowski et al., 2008a, 2008b; Turowski, Carling, 2005), erosional processes (Whipple 2012), channel morphology (Montgomery et al., 2000; Wohl and Merritt, 2001; Johnson and et al., 1996; Montgomery and Buffi ngton, 1997; Whipple, 2007; Goode and Wohl, 2010a), and †E-mail: [email protected] Tinkler and Wohl, 1998), and physical habitat transport conditions (Goode and Wohl, 2010b; GSA Bulletin; March/April 2014; v. 126; no. 3/4; p. 377–397; doi:10.1130/B30831.1; 11 fi gures; 4 tables; Data Repository item 2014049; Published online 7 January 2014. For permission to copy, contact [email protected] 377 © 2014 Geological Society of America O’Connor et al. Hodge et al., 2011). Few “bedrock” channels, The regional geology is important to our ents less than 0.005 and would be considered however, have continuous bedrock beds; most analysis, and we have aggregated existing map- transport or response reaches in the Montgom- have patches, locally extensive, of alluvium in ping into six main lithologic groupings (Fig. 1). ery and Buffi ngton (1997) categorization. Study and fl anking the channel, leading to the terms The Paleozoic and Mesozoic rocks of the tec- reaches were defi ned on the basis of broad-scale “mixed-bed” or “semi-alluvial” channels (How- tonically accreted Klamath terrane underlie geomorphic characteristics, with boundaries ard, 1980, 1998; Lisle, 2012; Turowski, 2012). much of the southwestern part of the study area. typically corresponding to major confl uences, The degree of alluvial cover has been hypoth- Uplifted Tertiary marine sediments constitute changes in valley confi nement, and extent of esized to modulate bedrock erosion (Gilbert, the Coast Range sedimentary province underly- tidal infl uence. The 24 separate reaches summa- 1877; Sklar and Dietrich, 2001; Finnegan et al., ing much of the western part of the study area. rized here do not include the tidal reaches iden- 2007; Turowski et al., 2007). Only recently, Tertiary marine volcanic rocks within the Coast tifi ed in these previous studies. The short fl uvial however, have studies focused on the alluvial Range and the Columbia River Basalt Group reaches of Hunter Creek and the Chetco, Wil- characteristics of channels that locally or con- in the northern part of the study area have been son, and Miami Rivers defi ned in our previous tinuously fl ow on bedrock (Chatanantavet and grouped together into what we term the Coast studies (Wallick et al., 2010; Jones et al., 2011, Parker, 2008; Goode and Wohl, 2010b; Hodge Range volcanics province. The axis of the Cas- 2012c) have been aggregated in this assess- et al., 2011). cade Range is underlain by Quaternary volcanic ment so that each one of these rivers is repre- In this study, we directly compare alluvial rocks of the High Cascades province, and these sented by single valley reaches. The resulting and bedrock channels of western Oregon, and rocks are fl anked to the east and west by Tertiary 24 study reaches range from <5 km to as long we relate their distribution and character to volcanic rocks grouped into the Western Cas- as 115.7 km (Table 1). The Umpqua and Rogue basic controls on bed-material fl ux and trans- cades lithologic province. Basins, broad valleys, River basins have the most reaches, refl ecting port capacity. These differences and distinc- and coastal plains are underlain by Quaternary distinct morphological differences along these tions have implications for understanding river sediment. large and long rivers and their major tributaries, response to tectonics and environmental pertur- Our analysis is based on morphologic obser- while several of the shorter coastal rivers each bations, as well as for implementing effective vations from 24 valley reaches within the 17 consist of a single reach. All of the study reaches restoration and monitoring strategies. rivers . Analyzed reaches span the spectrum of have gravel bed material. fully alluvial to bedrock (Fig. 2). Our measure- Western Oregon Study Area and ments of channel and bar area, channel migration Valley Reach Classifi
Recommended publications
  • Geomorphic and Hydraulic Assessment of the Bear River in and Near Evanston, Wyoming
    GEOMORPHIC AND HYDRAULIC ASSESSMENT OF THE BEAR RIVER IN AND NEAR EVANSTON, WYOMING By M.E. SMITH anc/M.L. MADERAK____________________ U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 93-4032 Prepared in cooperation with the CITY OF EVANSTON and UINTA COUNTY Cheyenne, Wyoming 1993 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY ROBERT M. HIRSCH, Acting Director For additional information Copies of this report may be write to: purchased from: U.S. Geological Survey Earth Science Information Center District Chief Open-File Reports Section U.S. Geological Survey Box 25286, MS 517 2617 E. Lincolnway, Suite B Denver Federal Center Cheyenne, Wyoming 82001 Denver, Colorado 80225 CONTENTS Abstract..................................................................................................................................................................... 1 Introduction................................................................................._^ 2 Purpose and scope....................................................................................................................................... 2 Acknowledgments...................................................................................................................................... 2 Approach................................................................................................................................................................... 4 Methods of analysis...................................................................................................................................
    [Show full text]
  • Synthesis of Knowledge of Extreme Fire Behavior: Volume I for Fire Managers
    United States Department of Agriculture Synthesis of Knowledge of Forest Service Pacific Northwest Extreme Fire Behavior: Research Station General Technical Volume I for Fire Managers Report PNW-GTR-854 November 2011 Paul A. Werth, Brian E. Potter, Craig B. Clements, Mark A. Finney, Scott L. Goodrick, Martin E. Alexander, Miguel G. Cruz, Jason A. Forthofer, and Sara S. McAllister A SUMMARY OF KNOWLEDGE FROM THE The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the national forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD).
    [Show full text]
  • Glacial Geomorphology☆ John Menzies, Brock University, St
    Glacial Geomorphology☆ John Menzies, Brock University, St. Catharines, ON, Canada © 2018 Elsevier Inc. All rights reserved. This is an update of H. French and J. Harbor, 8.1 The Development and History of Glacial and Periglacial Geomorphology, In Treatise on Geomorphology, edited by John F. Shroder, Academic Press, San Diego, 2013. Introduction 1 Glacial Landscapes 3 Advances and Paradigm Shifts 3 Glacial Erosion—Processes 7 Glacial Transport—Processes 10 Glacial Deposition—Processes 10 “Linkages” Within Glacial Geomorphology 10 Future Prospects 11 References 11 Further Reading 16 Introduction The scientific study of glacial processes and landforms formed in front of, beneath and along the margins of valley glaciers, ice sheets and other ice masses on the Earth’s surface, both on land and in ocean basins, constitutes glacial geomorphology. The processes include understanding how ice masses move, erode, transport and deposit sediment. The landforms, developed and shaped by glaciation, supply topographic, morphologic and sedimentologic knowledge regarding these glacial processes. Likewise, glacial geomorphology studies all aspects of the mapped and interpreted effects of glaciation both modern and past on the Earth’s landscapes. The influence of glaciations is only too visible in those landscapes of the world only recently glaciated in the recent past and during the Quaternary. The impact on people living and working in those once glaciated environments is enormous in terms, for example, of groundwater resources, building materials and agriculture. The cities of Glasgow and Boston, their distinctive street patterns and numerable small hills (drumlins) attest to the effect of Quaternary glaciations on urban development and planning. It is problematic to precisely determine when the concept of glaciation first developed.
    [Show full text]
  • Omnibus Codes (For Nebraska Only)
    UnitedHealthcare® Community Plan Medical Policy Omnibus Codes (for Nebraska Only) Policy Number: CS087NE.AI Effective Date: February 1, 2020 Instructions for Use Table of Contents Page Commercial Policy Application ..................................................................................... 1 • Omnibus Codes Coverage Summary ....................................................................... 1 Coverage Rationale/Clinical Evidence ......................................... 8 Policy History/Revision Information ......................................... 142 Instructions for Use ................................................................... 143 Application This Medical Policy only applies to the state of Nebraska Coverage Summary All CPT/HCPCS codes/services addressed in this policy are noted in the table below. Click the code link to be directed to the full coverage rationale and clinical evidence applicable to each of the listed procedures. CPT® is a registered trademark of the American Medical Association Code Description Conclusion 0061U Transcutaneous measurement of five biomarkers (tissue oxygenation [StO2], Unproven oxyhemoglobin [ctHbO2], deoxyhemoglobin [ctHbR], papillary and reticular dermal hemoglobin concentrations [ctHb1 and ctHb2]), using spatial frequency domain imaging (SFDI) and multi-spectral analysis 0100T Placement of a subconjunctival retinal prosthesis receiver and pulse Unproven generator, and implantation of intra-ocular retinal electrode array, with vitrectomy 0174T Computer-aided detection (CAD)
    [Show full text]
  • Topic 4A: Coastal Change and Conflict
    Topic 4A: Coastal Change and Conflict Headlands and bays: Bays form due Erosional landform: to rapid erosion of soft rock. Once Caves, arches, stacks and stumps: A cave is formed when a formed bays are sheltered by joint/fault in a rock is eroded and deepens. This can then headlands. Headlands are left develop into an arch when two caves form back to back sticking out where the hard rock has from either side of a headland and meet in the middle. resisted erosion. Once formed When an arch collapses, it creates a stack. When a stack however the headlands are more collapses it creates a stump. vulnerable to erosion. These are generally found along discordant coastlines. Depositional landforms: Beaches—can be straight or curved. Curved beaches are formed by waves refracting or bending as they enter a bay. They can be sandy or pebbly (shingle). Shingle beaches are found where cliffs are being eroded. Ridges in a beach parallel to the sea are called berms and the one highest up the beach shows where the highest tide reaches. Exam questions: Spits– narrow projections of sand or shingle 1. Explain how a wave- Erosional landform: that are attached to the land at one end. cut platform is formed Wave-cut platform: A wave-cut notch They extend across a bay or estuary or (4) is created when erosion occurs at the where the coastline changes direction. They 2. Briefly describe how base of a cliff. As undercutting occurs are formed by longshore drift powered by a spits are formed (2) the notch gets bigger.
    [Show full text]
  • The Path of a Pebble- Coastal Processes Activities
    The path of a pebble Teachers notes Indulge your natural sense of exploration on the beach by collecting pebbles and recording sound effects. This activity uses the intuitive games that pupils and adults alike will want to play when exploring the beach for the first (or twentieth) time while helping to embed learning about abrasion, attrition, and other processes of coastal change. Location: Barton on Sea or any shingle or pebble beach Timing: 30-45 minutes Age: Key stage 2 Curriculum links: Maths- 3D shapes, volume, estimation, Geography- coastal processes and change Science- rock types and properties, forces. English- poetry, onomatopoeia. (* check tides, weather conditions and safety of access near actively eroding cliffs prior to visit, take throw rope and appropriate emergency numbers, clearly demarcate and explain which areas pupils can explore safely) Learning Outcomes: Estimate the volume of different beach materials and the energy need to move and lift them Discover that shingle is made from mixed materials (rock types, shells, man-made etc.) which have varying degrees of hardness. Understand that harder rocks erode softer rocks creating shingle and pebbles of varying sizes (attrition) Resources needed: Blank postcard sized plain card Coloured pencils Aerial photo of your coastal site from e.g. google earth in two different time periods. The path of a pebble- Teachers notes Part 1- Does the coast stay the same? From a high point, admire the view and point out landmarks (the Solent, Isle of Wight, Bournemouth). Ask pupils to imagine this landscape 10, 100 and 10,000 years ago and suggest reasons it may have changed.
    [Show full text]
  • Morphology, Grain Size Characteristics, and Fluvial Processes of Two Bars, Colville River Delta, Alaska
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1977 Morphology, Grain Size Characteristics, and Fluvial Processes of Two Bars, Colville River Delta, Alaska. Donald Franklin Nemeth Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Nemeth, Donald Franklin, "Morphology, Grain Size Characteristics, and Fluvial Processes of Two Bars, Colville River Delta, Alaska." (1977). LSU Historical Dissertations and Theses. 3075. https://digitalcommons.lsu.edu/gradschool_disstheses/3075 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Analysis of Runoff from Small Drainage Basins in Wyoming
    Analysis of Runoff from Small Drainage Basins in Wyoming GEOLOGICAL SURVEY WATER-SUPPLY PAPER 2056 Prepared In cooperation with the Wyoming Highway Department and the U.S. Department of Transportation, Federal Highway Administration Analysis of Runoff from Small Drainage Basins in Wyoming By GORDON S. CRAIG, JR., and JAMES G. RANKL GEOLOGICAL SURVEY WATER-SUPPLY PAPER 2056 Prepared in cooperation with the Wyoming Highway Department and the U.S. Department of Transportation, Federal Highway Administration UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1978 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Catalog-card Number 78-600090 For sale by the Superintendent of Documents, U. S. Government Printing OfEce Washington, D. C. 20402 Stock Number 024-001-03106-0 CONTENTS Page Symbols_________________________________________ V Abstract_________________________________________ 1 Introduction ________________________________________ 1 Purpose and scope _______ ____________________________ 1 Limitations of study _______________________________ 5 Acknowledgments ________________________________________ 5 Use of metric units of measurement ________________________ 6 Data collection ____________________________________ 6 Description of area __________________________________ 6 Instrumentation __________________________________ 7 Types of records _________________________________________ 7 Station frequency analysis _________________________________ 9 Runoff
    [Show full text]
  • 2021 Hunting and Trapping Regulations
    Effective July through2021 June 30, 2022 Updated 9.10.21 MINNESOTA HUNTING & TRAPPING REGULATIONS SHARE THE PASSION mndnr.gov/hunting #huntmn Paid Advertisement FIREWOOD ALERT! You have the power to protect forests and trees! Pests like the invasive Buy locally harvested firewood at emerald ash borer can or near your destination. hitchhike in your firewood. Buy certified heat-treated firewood You can prevent the spread ahead of time, if available. of these damaging insects and diseases by following Gather firewood on site when these firewood tips: permitted. What might be in your firewood? GYPSY MOTH is a devastati ng pest SPOTTED LANTERNFLY sucks sap from of oaks and other trees. Female dozens of tree and plant species. This pest moths lay tan patches of eggs on loves tree-of-heaven but will feed on black fi rewood, campers, vehicles, pati o walnut, white oak, sycamore, and grape. furniture — anything outside! When Like the gypsy moth, this pest lays clusters these items are moved to new areas, of eggs on just about any dry surface, from this pest gets a free ride. landscaping stone to fi rewood! ASIAN LONGHORNED BEETLE will EMERALD ASH BORER — the infamous tunnel through, and destroy, over killer of ash trees — is found in forests 20 species of trees — especially and city trees across much of the eastern maple trees. The larvae of this and central United States. This insect is beetle bore into tree branches and notoriously good at hitching rides in infested trunks, making it an easy pest to fi rewood. Don’t give this tree-killing bug a accidentally transport in fi rewood.
    [Show full text]
  • PADDLING TRAIL River Thames: Putney to Old Isleworth
    PADDLING TRAIL River Thames: Putney to Old Isleworth Key Information Start: Putney Slipway, Putney Portages: 0 For more Embankment, Putney, Time: 2-4 hours information scan SW15 1JW Distance: 8 miles the QR code or Finish: Isleworth Draw Dock, OS Map: Explorer 161 https://bit.ly/2Lyh5 Church St, Old Isleworth, London South k1 TW7 6BG & 173 London North This is a busy and tidal part of the River Thames. You must visit boatingonthethames.co.uk to check tide times and safety advice before undertaking this trail. The trail covers the Upper Tideway in south west London, with sweeping aspects of the river. The course of the annual University Boat Race forms part of the trail. 1. We recommend you paddle with the assistance of the tidal flow, departing from Putney in the first 2 hours of the flood tide. Closely timing the tides can allow a return trip. Put in at the public slipway, crossing to the Football Stadium side of the river and turning left, for correct rules of travel. 2. Approaching Hammersmith Bridge the London Wetland Centre is behind the tree line on the opposite bank. Beware of the tide pushing you into Dove Pier after the b ridge. 3. Between Hammersmith and Chiswick Ait the river is flanked by elegant houses. At Chiswick Ait an option is to take the inside channel; usually passable after an hour or so of a flood tide. 4. Chiswick Pier signals a crossing point for a change in navigation rules. Keep the green marker buoys on your right on this sweeping bend of the river to Chiswick Bridge.
    [Show full text]
  • Application of Remote Sensing and GIS Technology for Monitoring Coastal Changes in Estuary Area of the Red River System, Vietnam
    Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 31, No. 6-2, 529-538, 2013 http://dx.doi.org/10.7848/ksgpc.2013.31.6-2.529 Application of Remote Sensing and GIS technology for monitoring coastal changes in estuary area of the Red river system, Vietnam Pham Thi Lan1) · Tong Si Son2) · Kavinda Gunasekara3) · Nguyen Thi Nhan4)· La Phu Hien5) Abstract Coastline is the most dynamic part of seascape since its shape is affected by various factors. Coastal zone is an area with immense geological, geomorphological and ecological interest. Monitoring coastal change is very important for safe navigation, coastal resource management. This paper shows a result of monitoring coastal morphological changes using Remote Sensing and GIS. Study was carried out to obtain intensity of erosion, deposition and sand bar movement in the Red River Delta. Satellite images of ALOS/AVNIR-2 and Landsat were used for the monitoring of coastal morphological changes over the period of 1975 to 2009. Band rationing and threshold technique was used for the coastline extraction. Tidal levels at the time of image acquisition varied from -0.89m to 2.87m. Therefore, coastline from another image at a different tidal level in the same year was considered to get the corrected coastline by interpolation technique. A series of points were generated along the coastal line from 1975 image and were established as reference points to see the change in later periods. The changes were measured in Euclidean distances from these reference points. Positive values represented deposition to the sea and negative values are erosion.
    [Show full text]
  • Breaking Down Chipping and Fragmentation in Sediment Transport: the Control of Material Strength Sophie Bodek1 and Douglas J
    https://doi.org/10.5194/esurf-2021-17 Preprint. Discussion started: 9 March 2021 c Author(s) 2021. CC BY 4.0 License. Breaking down chipping and fragmentation in sediment transport: the control of material strength Sophie Bodek1 and Douglas J. Jerolmack2,3 1Department of Earth Sciences, University of Delaware, Newark, Delaware, USA 2Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA 3Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, USA Correspondence: [email protected] Abstract. As rocks are transported, they primarily undergo two breakdown mechanisms: chipping and fragmentation. Chipping occurs at relatively low collision energies typical of bed-load transport, and involves shallow cracking; this process rounds river pebbles in a universal manner. Fragmentation involves catastrophic breakup by fracture growth in the bulk — a response that occurs at high collision energies such as rock falls — and produces angular shards. Despite its geophysical significance, the 5 transition from chipping to fragmentation is not well studied. Indeed, most models implicitly assume that impact erosion of pebbles and bedrock is governed by fragmentation rather than chipping. Here we experimentally delineate the boundary between chipping and fragmentation by examining the mass and shape evolution of concrete particles in a rotating drum. Attrition rate should be a function of both impact energy and material strength; here we keep the former constant, while systematically varying the latter. For sufficiently strong particles, chipping occurred and was characterized by the following: 10 daughter products were significantly smaller than the parent; attrition rate was independent of material strength; and particles experienced monotonic rounding toward a spherical shape.
    [Show full text]