Taxonomical and Physiological Comparisons of the Three Species of the Genus Amphibacillus

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomical and Physiological Comparisons of the Three Species of the Genus Amphibacillus J. Gen. Appl. Microbiol., 55, 155‒162 (2009) Full Paper Taxonomical and physiological comparisons of the three species of the genus Amphibacillus Toshiaki Arai,1,† Shuhei Yanahashi,1,† Junichi Sato,1 Takumi Sato,1 Morio Ishikawa,2 Yukimichi Koizumi,2 Shinji Kawasaki,1 Youichi Niimura,1,* and Junichi Nakagawa3 1 Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156‒8502, Japan 2 Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156‒8502, Japan 3 Department of Food Science and Technology, Tokyo University of Agriculture, Abashiri, Hokkaido 099‒2493, Japan (Received December 2, 2008; Accepted December 22, 2008) Amphibacillus is a genus for Gram-positive, spore-forming, rod-shaped, facultatively anaerobic bacteria with low-G+C content of DNA, established by Niimura et al. in 1990. Amphibacillus xy- lanus, the type species of the genus, grows well under both strictly anaerobic and aerobic condi- tions in spite of lacking any isoprenoid quinones, cytochromes, and catalase. Amphibacillus fermentum and Amphibacillus tropicus were later proposed by Zhilina et al. in 2001 for the iso- lates from a soda lake. In this paper, we revealed the latter two species also lacked isoprenoid quinones, cytochrome and catalase, and that they grew well under strictly anaerobic and aerobic conditions. The consistent growth of A. xylanus under both conditions is due to the presence of anaerobic and aerobic pathways for glucose metabolism in the organism. Although A. fermen- tum and A. tropicus are supposed to have a side enzymatic pyruvate pathway to produce lactate under both conditions, the two species have two major pyruvate metabolic pathways as ob- served in A. xylanus. Analysis data indicated that NADH formed both by the aerobic pyruvate pathway and by the glycolytic pathway was re-oxidized by the NADH oxidase in A. fermentum and A. tropicus as well as A. xylanus, and furthermore that the NADH oxidase-Prx (AhpC) system, i.e., NADH oxidase scavenging hydrogen peroxide with Prx, also functions in A. tropicus as ob- served with A. xylanus. Not only the taxonomical character of the genus Amphibacillus but also the growth characterization based on the two metabolic pathways and unique oxygen metabo- lism are distinctive in those traits from other facultative anaerobes. Key Words—Amphibacillus; NADH oxidase Introduction nus Amphibacillus, which was established by Niimura et al. (1990) as a Gram-positive, spore-forming, rod- Amphibacillus xylanus is the first species of the ge- shaped, facultatively anaerobic bacteria isolated from alkaline compost. Since then, halophilic/halotolerant/ alkaliphilic and/or alkalitolerant bacilli have been clas- * Address reprint requests to: Dr. Youichi Niimura, Depart- sified in the HA group (Ishikawa et al., 2002) and their ment of Bioscience, Tokyo University of Agriculture, 1‒1‒1 physiology studied extensively. The HA group consist Sakuragaoka, Setagaya-ku, Tokyo 156‒8502, Japan. of 82 species of 19 genera including A. xylanus which Tel: +81‒3‒5477‒2761 Fax: +81‒3‒5477‒2668 E-mail: [email protected] are phylogenetically closely related to each other † Toshiaki Arai and Shuhei Yanahashi contributed equally to based on 16S rRNA gene sequences. A. xylanus is this research and are co-first authors. classified as an independent taxon in the group and 156 ARAI et al. Vol. 55 Fig. 1. Phylogenetic relationships among Amphibacillus species and other related bacteria, based on 16S rRNA gene sequences. Alicyclobacillus acidoterrestris DSM 3922T (AJ133631) was used as an outgroup. The 16S rRNA gene sequences re- trieved from public databases were aligned using the CLUSTAL X program (version 1.8) (Thompson et al., 1997). The phy- logenetic tree, constructed by using the neighbor-joining method, is based on a comparison of approximately 1,400 nucle- otides. In the phylogenetic analysis, hypervariable regions were omitted. Bar, 0.01 Knuc in nucleotide sequences. Bootstrap values, expressed as a percentage of 1,000 replications, are given at branching points; only values above 50% are shown. closely related to 3 genera and 11 species (Paralioba- taxonomic properties. In this report we provide de- cillus, Gracilibacillus, Halolactibacillus, Fig. 1) (Ishika- tailed taxonomical and physiological characterization wa et al., 2002). A. xylanus, which lacks a respiratory of the three species of the genus Amphibacillus to system and heme proteins, including catalase, grows show the unique behavior to oxygen of the genus. well and displays the same growth rate and cell yield under strictly anaerobic and aerobic conditions. This Materials and Methods is due to the presence of anaerobic and aerobic path- ways (Niimura et al., 1989), comprising a unique oxy- Bacterial strains, media and growth conditions. The gen metabolic system (Niimura et al., 1995, 2000). strains studied were A. xylanus Ep01T (=DSM 6626T Zhilina et al. (2001) subsequently isolated alkaliphilic =JCM 7361T=NBRC 15112T), A. fermentum Z-7984T rod-shaped, Gram-positive anaerobic bacteria from a (=DSM 13869T=UNIQEM 210T) and A. tropicus Z- soda lake in Africa, and proposed two new species of 7792T (=DSM 13870T =UNIQEM 212T). A. xylanus was the genus Amphibacillus, namely A. fermentum and A. grown aerobically or anaerobically in a glucose-con- tropicus for the strains. However, physiological com- taining medium as previously described (Niimura et parisons of the three Amphibacillus species have not al., 1987, 1990). For static culture of A. fermentum and been studied in detail yet in consideration with their A. tropicus, we used a modified GYPF medium (Ishika- 2009 Physiology of the genus Amphibacillus 157 wa et al., 2005) named GYPFKMK medium in this previously described (Nishiyama et al., 1997). Briefly, report, composed of 10 g glucose, 5 g yeast extract cell-free extracts of genus Amphibacillus were pre- (Difco), 5 g Polypeptone (Nihon Seiyaku), 5 g Extract pared from aerobically grown cells. Equal amounts of Bonito (fish extract; Wako Pure Chemical), 1 g K2HPO4, protein (20 µg) were subjected to 12.5% polyacry- 0.2 g KCl, 0.1 g MgCl2, 50.4 g NaHCO3 and 63.6 g lamide gels and electrophoresed under denaturing Na2CO3 (per 1,000 ml). Glucose and NaHCO3-Na2CO3 conditions, then transferred onto polyvinylidene difluo- were autoclaved separately at 121°C, 15 min. After ride (PVDF) membranes. Immunoblottings were incu- autoclaving, each component of the medium was bated with a rabbit polyclonal anti-NADH oxidase anti- mixed (final pH 9.5). For aerobic and anaerobic culture body or anti-Prx antibody, followed by a horseradish of A. fermentum and A. tropicus, we used a modified peroxidase-conjugated anti-rabbit secondary antibody GYPFKMK, composed of 10 g glucose, 5 g yeast and visualized with Immunostaining HRP-1000 kit extract (Difco), 5 g Polypeptone (Nihon Seiyaku), 5 g (KONICA MINOLTA). Purified Prx (BAA33808) or NADH Extract Bonito (fish extract; Wako Pure Chemical), 1 g oxidase (BAA33809) from A. xylanus was used as a -1 K2HPO4, 0.2 g KCl, 5 ml salt solution [(ml ): 40 mg control. MgSO4・7H2O, 2 mg MnSO4・4H2O, 2 mg FeSO4・7H2O], 50.4 g NaHCO3 and 63.6 g Na2CO3 (per 1,000 ml). Results Glucose, salt solution, and NaHCO3-Na2CO3 were au- toclaved separately at 121°C, 15 min. Oxygen-free N2 Optimization of the culture media for growth of Amphi- gas was used for preparation of anaerobic media as bacillus fermentum and Amphibacillus tropicus previously described (Niimura et al., 1987). After auto- In anaerobic or static culture, A. fermentum DSM claving, each component of medium was mixed (final 13869T and A. tropicus DSM 13870T grew well in GYP- pH 9.5). The cells were cultivated at 37°C with aerobic FKMK medium in which NaCl and salt solution were shaking or under anaerobic conditions (Niimura et al., removed from GYPF medium. On the other hand, the 1987, 1990), harvested at late log phase, washed with two species did not show good growth in GYPFKMK 50 mM sodium phosphate buffer (pH 8.0), and then medium under aerobic conditions with shaking. Aero- stored at -80°C until use, or incubated with shaking at bic growth was rescued by supplementing with MnSO4 37°C for 1 h to prepare resting cells (Niimura et al., and FeSO4 to the medium (named modified GYPFKMK 1989). medium) as observed with A. xylanus (Niimura et al., Chemotaxonomic and biochemical characteristics. 1990). The cell yield of these strains in the modified Cellular fatty acid composition and quinone systems GYPFKMK medium was good enough to use as the were determined as previously described (Komagata starting biomass for further study on their physiology and Suzuki, 1987). Cytochrome systems were deter- and chemotaxonomy. mined as previously described (Niimura et al., 1987). The fermentation products were analyzed as previ- Chemotaxonomic characterization of Amphibacillus ously described (Ishikawa et al., 2002). fermentum and Amphibacillus tropicus Cell-free extract was prepared as previously de- Cellular fatty acid composition of A. fermentum DSM scribed (Nishiyama et al., 2001) without ultracentrifu- 13869T and A. tropicus DSM 13870T was analyzed by gation and dialysis process. NADH oxidase activity using the cells cultivated in GYPFKMK broth for static was measured as previously described (Niimura et al., culture. The constituents of the cellular fatty acids of A. 1989). Oxygen consumptions in the presence of AhpC fermentum DSM 13869T and A. tropicus DSM 13870T (Prx) were measured as previously described (Niimura were anteiso-, iso-branched and straight chain, as et al., 2000) with cell-free extracts instead of purified those of A. xylanus (Table 1). NADH oxidase. NADH dependent hydrogen peroxide Subsequently measurement of isoprenoid qui- reductase activities in the presence of Prx were mea- nones, cytochromes and catalase activity was carried sured as previously described (Niimura et al., 1995) in out by using the cells obtained by aerobic culture in anaerobic conditions with cell-free extracts instead of the modified GYPFKMK medium as previously done purified NADH oxidase.
Recommended publications
  • Desulfuribacillus Alkaliarsenatis Gen. Nov. Sp. Nov., a Deep-Lineage
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Extremophiles (2012) 16:597–605 DOI 10.1007/s00792-012-0459-7 ORIGINAL PAPER Desulfuribacillus alkaliarsenatis gen. nov. sp. nov., a deep-lineage, obligately anaerobic, dissimilatory sulfur and arsenate-reducing, haloalkaliphilic representative of the order Bacillales from soda lakes D. Y. Sorokin • T. P. Tourova • M. V. Sukhacheva • G. Muyzer Received: 10 February 2012 / Accepted: 3 May 2012 / Published online: 24 May 2012 Ó The Author(s) 2012. This article is published with open access at Springerlink.com Abstract An anaerobic enrichment culture inoculated possible within a pH range from 9 to 10.5 (optimum at pH with a sample of sediments from soda lakes of the Kulunda 10) and a salt concentration at pH 10 from 0.2 to 2 M total Steppe with elemental sulfur as electron acceptor and for- Na? (optimum at 0.6 M). According to the phylogenetic mate as electron donor at pH 10 and moderate salinity analysis, strain AHT28 represents a deep independent inoculated with sediments from soda lakes in Kulunda lineage within the order Bacillales with a maximum of Steppe (Altai, Russia) resulted in the domination of a 90 % 16S rRNA gene similarity to its closest cultured Gram-positive, spore-forming bacterium strain AHT28. representatives. On the basis of its distinct phenotype and The isolate is an obligate anaerobe capable of respiratory phylogeny, the novel haloalkaliphilic anaerobe is suggested growth using elemental sulfur, thiosulfate (incomplete as a new genus and species, Desulfuribacillus alkaliar- T T reduction) and arsenate as electron acceptor with H2, for- senatis (type strain AHT28 = DSM24608 = UNIQEM mate, pyruvate and lactate as electron donor.
    [Show full text]
  • Description of Bacillus Laevolacticus (Ex Nakayarna and Yanoshi 1967) Sp
    INTERNATIONAL JOURN~OF SYSTEMATIC BACTERIOLOGY,OCt. 1994, p. 659-664 Vol. 44, No. 4 0020-7713/94/$04.00 + 0 Copyright 0 1994, International Union of Microbiological Societies Description of Bacillus laevolacticus (ex Nakayarna and Yanoshi 1967) sp. nov., norn. rev. I. ANDERSCH,? S. PIANKA, D. FRITZE,* AND D. CLAUS DSM-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, 0-38124 Braunschweig, Germany The name “Bacillus laevolacticus” Nakayama and Yanoshi 1967 was not included on the Approved Lists of Bacterial Names and therefore has no standing in bacteriological nomenclature. In this study 22 catalase- positive, acid-tolerant, facultatively anaerobic, lactic acid-producingBacillus strains were examined taxonom- ically and compared with a number of strains belonging to phenetically similar Bacillus species (Bacillus coagulans, Bacillus smithii, “Bacillus vesiculiferous”) and with Sporolactobacillus. The G+ C contents (43 to 45 mol%), DNA-DNA homology values (72 to 98%), and results of phenetic similarity analyses revealed that the members of the 44B.laevolacticus” group were very homogeneous in their phenotypic and genotypic character- istics and clearly distinguishable from other Bacillus and SporolactobaciUus species. On the basis of these findings, revival of the name Bacillus laevolacticus is proposed. Traditionally, production of lactic acid is observed in micro- walls containing diaminopimelic acid were consistent with organisms which are grouped under the term “lactic acid the description of the genus Bacillus. Accordingly, these bacteria.” However, a considerable number of lactic acid- organisms were placed in a new genus, Sporolactobacillus, as producing, aerobic, spore-forming organisms have been de- Sporolactobacillus inulinus. Similar organisms, including scribed. These bacteria have been isolated from food or in “Sporolactobacillus laevas,” “Sporolactobacillus laevas var.
    [Show full text]
  • Unraveling the Underlying Heavy Metal Detoxification Mechanisms Of
    microorganisms Review Unraveling the Underlying Heavy Metal Detoxification Mechanisms of Bacillus Species Badriyah Shadid Alotaibi 1, Maryam Khan 2 and Saba Shamim 2,* 1 Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; [email protected] 2 Institute of Molecular Biology and Biotechnology (IMBB), Defence Road Campus, The University of Lahore, Lahore 55150, Pakistan; [email protected] * Correspondence: [email protected] Abstract: The rise of anthropogenic activities has resulted in the increasing release of various contaminants into the environment, jeopardizing fragile ecosystems in the process. Heavy metals are one of the major pollutants that contribute to the escalating problem of environmental pollution, being primarily introduced in sensitive ecological habitats through industrial effluents, wastewater, as well as sewage of various industries. Where heavy metals like zinc, copper, manganese, and nickel serve key roles in regulating different biological processes in living systems, many heavy metals can be toxic even at low concentrations, such as mercury, arsenic, cadmium, chromium, and lead, and can accumulate in intricate food chains resulting in health concerns. Over the years, many physical and chemical methods of heavy metal removal have essentially been investigated, but their disadvantages like the generation of chemical waste, complex downstream processing, and the uneconomical cost of both methods, have rendered them inefficient,. Since then, microbial bioremediation, particularly the Citation: Alotaibi, B.S.; Khan, M.; use of bacteria, has gained attention due to the feasibility and efficiency of using them in removing Shamim, S. Unraveling the heavy metals from contaminated environments. Bacteria have several methods of processing heavy Underlying Heavy Metal metals through general resistance mechanisms, biosorption, adsorption, and efflux mechanisms.
    [Show full text]
  • Natronobacillus Azotifigens Gen. Nov., Sp. Nov., an Anaerobic Diazotrophic
    Extremophiles (2008) 12:819–827 DOI 10.1007/s00792-008-0188-0 ORIGINAL PAPER Natronobacillus azotifigens gen. nov., sp. nov., an anaerobic diazotrophic haloalkaliphile from soda-rich habitats I. D. Sorokin Æ E. V. Zadorina Æ I. K. Kravchenko Æ E. S. Boulygina Æ T. P. Tourova Æ D. Y. Sorokin Received: 27 June 2008 / Accepted: 17 August 2008 / Published online: 4 September 2008 Ó The Author(s) 2008. This article is published with open access at Springerlink.com Abstract Gram-positive bacteria capable of nitrogen obligately alkaliphilic and highly salt-tolerant natrono- fixation were obtained in microoxic enrichments from soda philes (chloride-independent sodaphiles). Growth was soils in south-western Siberia, north-eastern Mongolia, and possible within a pH range from 7.5 to 10.6, with an the Lybian desert (Egypt). The same organisms were optimum at 9.5–10, and within a salt range from 0.2 to 4 M obtained in anoxic enrichments with glucose from soda Na?, with an optimum at 0.5–1.5 M for the different lake sediments in the Kulunda Steppe (Altai, Russia) using strains. The nitrogenase activity in the whole cells also had nitrogen-free alkaline medium of pH 10. The isolates were an alkaline pH optimum but was much more sensitive to represented by thin motile rods forming terminal round high salt concentrations compared to the growing cells. The endospores. They are strictly fermentative saccharolytic isolates formed a compact genetic group with a high level anaerobes but tolerate high oxygen concentrations, proba- of DNA similarity. Phylogenetic analysis based on 16S- bly due to a high catalase activity.
    [Show full text]
  • Oligomeric Characterization of a Putative Biomarker of Oxidative Stress in the Blood Storage Scenario
    Università degli Studi della Tuscia di Viterbo Dipartimento di Scienze Ecologiche e Biologiche Dottorato di ricerca in Genetica e Biologia Cellulare – XXIV° CICLO Peroxiredoxin-2: Oligomeric characterization of a putative biomarker of oxidative stress in the blood storage scenario BIO 11 Coordinator Prof. Giorgio Prantera PhD student Barbara Blasi Tutor Prof. Lello Zolla -"Ora ajutami ad uscirne, - disse alla fine Zi' Dima. Ma quanto larga di pancia, tanto quella giara era stretta di collo. Zi' Dima, nella rabbia, non ci aveva fatto caso. Ora, prova e riprova, non trovava più il modo di uscirne. E il contadino, invece di dargli ajuto, eccolo là, si torceva dalle risa. Imprigionato, imprigionato lì, nella giara da lui stesso sanata e che ora - non c'era via di mezzo - per farlo uscire, doveva essere rotta daccapo e per sempre. "La giara". Luigi Pirandello, 1916. Index Chapter 1. Introduction 1.1 Blood 2 1.2 Erythrocytes 3 1.2.1 Erythrocytes membrane 3 1.2.2 Haemoglobin 6 1.2.3 Erythrocytes metabolism 7 1.3 Erythrocytes storage 9 1.3.1 Historic evolution 9 1.3.2 Blood fractionation 10 1.4 Erythrocytes storage lesions 11 1.4.1 Metabolic storage lesions 11 1.4.2 Enzymatic storage lesions 13 1.4.3 Physical storage lesions 13 1.4.4 Oxidative storage lesions 14 1.5 Antioxydative enzymatic defence 17 1.6 Peroxiredoxins 19 1.6.1 Mechanisms of regulation of Peroxiredoxins 19 1.6.2 Oligomerization of Peroxiredoxins 22 1.7 Aim of the thesis 24 Chapter 2. Materials and methods 2.1 Sampling 27 2.2 Deoxygenating treatment 27 2.3 RBC membrane preparation and trapping of PrxII in its native state 27 2.4 Gel electrophoresis 28 2.4.1 1D-SDS PAGE 28 2.4.2 Clear Native PAGE of cytosolic proteins 29 2.4.3 Blue Native PAGE of membrane proteins 29 2.4.4 2D CN/BN –SDS PAGE 29 2.5 Immunoblotting 30 2.6 RBC membrane lipoperoxidation 30 2.7 In gel PrxII activity assay 30 2.8 In gel digestion 31 2.9 Protein identification by tandem mass spectrometry 31 2.10 Statistical analysis 32 Chapter 3.
    [Show full text]
  • High Oxygen As an Additional Factor in Food Preservation Promotor: Prof
    High Oxygen as an additional factor in Food Preservation Promotor: Prof. Dr. ir. F.M. Rombouts Hoogleraar in de Levensmiddelenhygiëne en microbiologie, Wageningen Universiteit Copromotors: Dr. L.G.M. Gorris SEAC, Unilever, Colworth House, Verenigd Koninkrijk Dr. E.J. Smid Groupleader Natural Ingredients, NIZO Food Research, Ede Samenstelling promotiecommissie: Prof. Dr. ir. J. Debevere (Universiteit Gent, België) Prof. Dr. G.J.E. Nychas (Agricultural University of Athens, Griekenland) Prof. Dr. J.T.M. Wouters (Wageningen Universiteit) Dr. J. Hugenholtz (NIZO Food Research, Ede) Athina Amanatidou High Oxygen as an additional factor in Food Preservation Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus, van Wageningen Universiteit, Prof. dr. ir. L. Speelman, in het openbaar te verdedigen op dinsdag 23 oktober des namiddags te half twee in de Aula Amanatidou A.-High Oxygen as an additional factor in Food Preservation-2001 Thesis Wageningen University-With summary in Dutch- pp. 114 ISBN: 90-5808-474-4 To my parents, my brother and to Erik Abstract In this thesis, the efficacy of high oxygen as an additional hurdle for food preservation is studied. At high oxygen conditions and at low temperature, significant impairment of growth and viability of bacterial cells is found to occur as the result of free radical attack. The imposed oxidative stress leads - to an increase of intracellularly generated reactive oxygen species (mainly O2 , H2O2 and HO·), which disturbs the cellular homeostasis due to catabolic imbalance and results in growth inhibition. The so- called “free radical burst” probably is responsible for the induction of a host defence mechanism against the destructive impact of high oxygen.
    [Show full text]
  • Ep 2434019 A1
    (19) & (11) EP 2 434 019 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 28.03.2012 Bulletin 2012/13 C12N 15/82 (2006.01) C07K 14/395 (2006.01) C12N 5/10 (2006.01) G01N 33/50 (2006.01) (2006.01) (2006.01) (21) Application number: 11160902.0 C07K 16/14 A01H 5/00 C07K 14/39 (2006.01) (22) Date of filing: 21.07.2004 (84) Designated Contracting States: • Kamlage, Beate AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 12161, Berlin (DE) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • Taman-Chardonnens, Agnes A. 1611, DS Bovenkarspel (NL) (30) Priority: 01.08.2003 EP 03016672 • Shirley, Amber 15.04.2004 PCT/US2004/011887 Durham, NC 27703 (US) • Wang, Xi-Qing (62) Document number(s) of the earlier application(s) in Chapel Hill, NC 27516 (US) accordance with Art. 76 EPC: • Sarria-Millan, Rodrigo 04741185.5 / 1 654 368 West Lafayette, IN 47906 (US) • McKersie, Bryan D (27) Previously filed application: Cary, NC 27519 (US) 21.07.2004 PCT/EP2004/008136 • Chen, Ruoying Duluth, GA 30096 (US) (71) Applicant: BASF Plant Science GmbH 67056 Ludwigshafen (DE) (74) Representative: Heistracher, Elisabeth BASF SE (72) Inventors: Global Intellectual Property • Plesch, Gunnar GVX - C 6 14482, Potsdam (DE) Carl-Bosch-Strasse 38 • Puzio, Piotr 67056 Ludwigshafen (DE) 9030, Mariakerke (Gent) (BE) • Blau, Astrid Remarks: 14532, Stahnsdorf (DE) This application was filed on 01-04-2011 as a • Looser, Ralf divisional application to the application mentioned 13158, Berlin (DE) under INID code 62.
    [Show full text]
  • From Genotype to Phenotype: Inferring Relationships Between Microbial Traits and Genomic Components
    From genotype to phenotype: inferring relationships between microbial traits and genomic components Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Aaron Weimann aus Oberhausen D¨usseldorf,29.08.16 aus dem Institut f¨urInformatik der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathemathisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Alice C. McHardy Koreferent: Prof. Dr. Martin J. Lercher Tag der m¨undlichen Pr¨ufung: 24.02.17 Selbststandigkeitserkl¨ arung¨ Hiermit erkl¨areich, dass ich die vorliegende Dissertation eigenst¨andigund ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ¨ahnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche un- ternommen. D¨usseldorf,den . ... ... ... (Aaron Weimann) Statement of authorship I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure. Summary Bacteria live in almost any imaginable environment, from the most extreme envi- ronments (e.g. in hydrothermal vents) to the bovine and human gastrointestinal tract. By adapting to such diverse environments, they have developed a large arsenal of enzymes involved in a wide variety of biochemical reactions. While some such enzymes support our digestion or can be used for the optimization of biotechnological processes, others may be harmful { e.g. mediating the roles of bacteria in human diseases.
    [Show full text]
  • As Is Well Known, the Genus Lactobacillus Has Been Defined As Being Gram-Positive, Non-Motile, Non-Sporulating, Catalase-Negative and Micro- Aerophilic
    J. Gen. Appl. Microbiol. Vol. 9, No. 1, 1963 SPOROLACTOBACILLUS NOV. SUBGEN. KAKUO KITAHARA and JIRO SUZUKI Institute of Applied Microbiology, Uiniversity of Tokyo, Tokyo Received October 23, 1962 As is well known, the genus Lactobacillus has been defined as being Gram-positive, non-motile, non-sporulating, catalase-negative and micro- aerophilic. The organisms are rod-shaped bacteria producing lactic acid from glucose through either homo- or hetero-f ermentative pathways. One of the present authors (KITAHARA,(1)) pointed out, however, in 1940 that there are intermediate forms between the homo-f ermentative Lactobacillus and the genus Bacillus, and he named them wild lactobacilli. NAKAYAMA(2) made careful comparative studies on these organisms and classified the wild type into Bacillus coagulans calling them spore-forming lactic acid bacteria because they form spores in sugar-deficient media. This group includes Lactobacillus thermophilus, L. sporogenes, Bacillus dextrolacticus, B. thermo- acidurans, etc. The general characteristics of this group were described as catalase-positive, motile, spore-forming and (dextro-rotatory) L(+)-lactic acid forming. Recently, some investigators reported the presence of some strains that resemble normal homo-fermentative Lactobacillus in many respects except for their motility with peritrichous flagella in early growth phases. Re- presentative strains of these bacteria are L. plantarum var, mobile of HARRISONand HANSEN(3) and a variety of L. case2 of DEIBEL and NIVEN (4). The optical form of lactic acid produced by these bacteria varied with strain from L(+) to DL. During the course of studies on the distribution of micro-organisms in assorted chicken feed, the present authors isolated an unusal strain of lactic acid bacteria that is different from any of the species hitherto described, and tentatively named it strain EU.
    [Show full text]
  • The Relation Between Blastocystis and the Intestinal Microbiota in Swedish
    Forsell et al. BMC Microbiology (2017) 17:231 DOI 10.1186/s12866-017-1139-7 RESEARCHARTICLE Open Access The relation between Blastocystis and the intestinal microbiota in Swedish travellers Joakim Forsell1* , Johan Bengtsson-Palme2,3, Martin Angelin4, Anders Johansson5, Birgitta Evengård4 and Margareta Granlund1 Abstract Background: Blastocystis sp. is a unicellular eukaryote that is commonly found in the human intestine. Its ability to cause disease is debated and a subject for ongoing research. In this study, faecal samples from 35 Swedish university students were examined through shotgun metagenomics before and after travel to the Indian peninsula or Central Africa. We aimed at assessing the impact of travel on Blastocystis carriage and seek associations between Blastocystis and the bacterial microbiota. Results: We found a prevalence of Blastocystis of 16/35 (46%) before travel and 15/35 (43%) after travel. The two most commonly Blastocystis subtypes (STs) found were ST3 and ST4, accounting for 20 of the 31 samples positive for Blastocystis. No mixed subtype carriage was detected. All ten individuals with a typable ST before and after travel maintained their initial ST. The composition of the gut bacterial community was not significantly different between Blastocystis-carriers and non-carriers. Interestingly, the presence of Blastocystis was accompanied with higher abundances of the bacterial genera Sporolactobacillus and Candidatus Carsonella. Blastocystis carriage was positively associated with high bacterial genus richness, and negatively correlated to the Bacteroides-driven enterotype. These associations were both largely dependent on ST4 – a subtype commonly described from Europe – while the globally prevalent ST3 did not show such significant relationships. Conclusions: ThehighrateofBlastocystis subtype persistence found during travel indicates that long-term carriage of Blastocystis is common.
    [Show full text]
  • D-Lactic Acid Fermentation Performance and the Enzyme Activity of a Novel Bacterium Terrilactibacillus Laevilacticus SK5–6
    Annals of Microbiology (2019) 69:1537–1546 https://doi.org/10.1007/s13213-019-01538-8 ORIGINAL ARTICLE D-Lactic acid fermentation performance and the enzyme activity of a novel bacterium Terrilactibacillus laevilacticus SK5–6 Budsabathip Prasirtsak1 & Sitanan Thitiprasert2 & Vasana Tolieng2 & Suttichai Assabumrungrat3 & Somboon Tanasupawat4 & Nuttha Thongchul2 Received: 15 July 2019 /Accepted: 20 November 2019 /Published online: 7 December 2019 # The Author(s) 2019 Abstract Purpose The aim of this study was to prove that Terrilactibacillus laevilacticus SK5-6, a novel D-lactate producer, exhibited a good fermentation performance comparing to the reference D-lactate producer Sporolactobacillus sp. Methods Glucose bioconversion for D-lactate production and the activity of five key enzymes including phosphofructokinase (PFK), pyruvate kinase (PYK), D-lactate dehydrogenase (D-LDH), L-lactate dehydrogenase (L-LDH), and lactate isomerase (LI) were investigated in the cultivation of T. laevilacticus SK5–6andS. laevolacticus 0361T. Results T. laevilacticus SK5–6 produced D-lactate at higher yield, productivity, and optical purity compared with S. laevolacticus 0361T. T. laevilacticus SK5–6, the catalase-positive isolate, simultaneously grew and produced D-lactate without lag phase while delayed growth and D-lactate production were observed in the culture of S. laevolacticus 0361T. The higher production of D- lactate in T. laevilacticus SK5–6 was due to the higher growth rate and the higher specific activities of the key enzymes observed at the early stage of the fermentation. The low isomerization activity was responsible for the high optical purity of D-lactate in the cultivation of T. laevilacticus SK5–6. Conclusion The lowest specific activity of PFK following by PYK and D/L-LDHs, respectively, indicated that the conversion of fructose-6-phosphate was the rate limiting step.
    [Show full text]
  • Structural Characterization of the Family GH115 ±-Glucuronidase from Amphibacillus Xylanus Yields Insight Into Its Coordinated
    Structural characterization of the family GH115 a-glucuronidase from Amphibacillus xylanus yields insight into its coordinated action with a-arabinofuranosidases Downloaded from: https://research.chalmers.se, 2021-10-05 10:52 UTC Citation for the original published paper (version of record): Yan, R., Wang, W., Vuong, T. et al (2021) Structural characterization of the family GH115 a-glucuronidase from Amphibacillus xylanus yields insight into its coordinated action with a-arabinofuranosidases New Biotechnology, 62: 49-56 http://dx.doi.org/10.1016/j.nbt.2021.01.005 N.B. When citing this work, cite the original published paper. research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is administrated and maintained by Chalmers Library (article starts on next page) New BIOTECHNOLOGY 62 (2021) 49–56 Contents lists available at ScienceDirect New BIOTECHNOLOGY journal homepage: www.elsevier.com/locate/nbt Full length Article Structural characterization of the family GH115 α-glucuronidase from Amphibacillus xylanus yields insight into its coordinated action with α-arabinofuranosidases Ruoyu Yan a, Weijun Wang a, Thu V. Vuong a, Yang Xiu a, Tatiana Skarina a, Rosa Di Leo a, Paul Gatenholm b, Guillermo Toriz c, Maija Tenkanen d, Peter J. Stogios a, Emma R. Master a,e,* a Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada b Department of Chemistry and Chemical Engineering, Wallenberg Wood Science Center and Biopolymer Technology, Chalmers University of Technology, Kemivagen¨ 4, Gothenburg, 412 96, Sweden c Department of Wood, Cellulose and Paper Research, University of Guadalajara, Guadalajara, 44100, Mexico d Department of Food and Environmental Sciences, University of Helsinki, P.O.
    [Show full text]