Diverse Kappa Opioid Receptor Agonists: Relationships Between Signaling and Behavior

Total Page:16

File Type:pdf, Size:1020Kb

Diverse Kappa Opioid Receptor Agonists: Relationships Between Signaling and Behavior Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2020 Diverse Kappa Opioid Receptor Agonists: Relationships Between Signaling and Behavior Amelia Dunn Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons DIVERSE KAPPA OPIOID RECEPTOR AGONISTS: RELATIONSHIPS BETWEEN SIGNALING AND BEHAVIOR A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Amelia Dunn June 2020 © Copyright by Amelia Dunn 2020 Diverse Kappa Opioid Receptor Agonists: Relationships Between Signaling and Behavior Amelia Dunn, Ph.D. The Rockefeller University 2020 The opioid system, comprised mainly of the three opioid receptors (kappa, mu and delta) and their endogenous neuropeptide ligands (dynorphin, endorphin and enkephalin, respectively), mediates mood and reward. Activation of the mu opioid receptor is associated with positive reward and euphoria, while activation of the kappa opioid receptor (KOR) has the opposite effect. Activation of the KOR causes a decrease in dopamine levels in reward-related regions of the brain, and can block the rewarding effects of various drugs of abuse, making it a potential drug target for addictive diseases. KOR agonists are of particular interest for the treatment of cocaine and other psychostimulant addictions, because there are currently no available medications for these diseases. Studies in humans and animals, however, have shown that activation of the KOR also causes negative side effects such as hallucinations, aversion and sedation. Several strategies are currently being employed to develop KOR agonists that block the rewarding effects of drugs of abuse with fewer side effects, including KOR agonists with unique pharmacology. The goal of the research presented here was to profile the signaling pathways activated by KOR agonists and to investigate relationships between unique pharmacology and animal models of KOR-mediated behaviors, in order to better understand how to target the KOR for therapeutic use. First, we quantified the effects of KOR agonists at both G-protein and b-arrestin-2 signaling pathways to compare to a variety of downstream effects, including sedation behavior. We found that b-arrestin-2, but not G-protein, efficacy strongly correlated with sedation in mice. We found that there was no apparent relationship between either G-protein or b-arrestin-2 signaling pathways with other investigated downstream signaling pathways, such as ERK1/2 and mTOR, however. We also investigated the effects of KOR activation on protein-receptor interactions, to identify other potential mediators of KOR effects. Finally, we compared the effects of several unique KOR agonists on addiction-related behaviors in mice. We found that nalfurafine, which is approved for human use in Japan, very potent KOR agonist, was able to modulate the rewarding effects of cocaine at very low doses that did not cause sedation or aversion. We also found that the commonly-used, full KOR agonist U50,488 had a similar effect, suggesting that this “therapeutic window” could be a property of the KOR system in general. Overall, this work suggests that KOR agonists at very low doses, that show very little b-arrestin-2 signaling activity, may be able to modulate the rewarding effects of cocaine while causing fewer negative side effects. ACKNOWLEDGMENTS First and foremost, I want to thank my advisor Dr. Mary Jeanne Kreek. Her science has helped so many people, and I feel incredibly lucky for the opportunity to learn from her and her example of both scientific rigor and passion for her work. I’m so grateful for the support and guidance I’ve received during my time here. Dr. Kreek – thank you for everything. This work, of course, also belongs to many members of the Kreek lab. I’m forever grateful for the mentorship of Dr. Brian Reed, who was there for every single step of my PhD. Brian, I’ll strive to follow your example of going where the data leads, while always keeping the bigger picture, and the people you’re trying to help, in mind. Thank you for teaching me so much, and for the opportunity to contribute to this project. I’m lucky to have had so many wonderful mentors in the Kreek lab, including Drs. Yong Zhang and Eduardo Butelman. Eduardo, thank you for so many helpful suggestions and encouragement. Yong, thank you your many kind words and telling me to go home on the weekends. I’m incredibly grateful to Dr. Kyle Windisch for being a mentor, friend, and role model. Thank you for showing me how to be a careful and critical scientist, as well as a thoughtful and generous lab citizen. And of course, for the endless hours teaching and helping with surgeries. Finally, I want to thank the students and research assistants that I’ve been lucky enough to work with over the years, in particular, Josh, Catherine, Ali, Jose, Ariel and Phil. Thank you for making the endless hours in the CBC and the GTPgS room not only bearable, but sometimes even fun. I’m so lucky to have been a part of Team Kappa with you. I’ve received a great deal of support and mentoring from my thesis committee, Drs. Vanessa Ruta, Tom Sakmar and Brian Chait, as well. Your encouragement and thoughtful contributions to my project, both during and outside of my committee meetings, were incredibly helpful and iii essential for this work. Thank you to the Sakmar lab in particular for crucial technical help early on in my project, as well as welcoming me into their scientific community. And of course, the Chait lab was where I started my Rockefeller career in 2012. I’m grateful to Brian, and entire Chait lab, both for that opportunity and for the continued help, guidance and collaboration in the years since. In particular, I’d like to thank Dr. Wenzhu Zhang for so much patient technical help preparing and running the mass spectrometry samples, and Dr. Paul Olinares for always lending a helpful hand and kind ear. It has been such a privilege to be part of the Rockefeller community. I’m incredibly grateful to the Dean’s Office – Sid Strickland, Emily Harms, Cris Rosario, Stephanie Fernandez, Kristen Cullen, Andrea Morris, Marta Delgado – for their support through the graduate program, and their commitment to providing opportunities for students to get involved in research. Participating in the SURF program started me on this path, and teaching for the Summer Neuroscience Program here has been a highlight of my grad school career. A huge thank you to my fellow SNP directors, and especially to all of the incredible high school students, who made the last two weeks of August the craziest and most fun time of the year. Thank you to all of my friends that have made the past five years, the best five years. Your encouragement and support have meant the world to me, and you’ve made NYC home. And finally, I’m forever grateful for the endless support of my family and Ananth – I couldn’t have done it without you. iv TABLE OF CONTENTS ACKNOWLEDGMENTS…………………………………………………………….....iii TABLE OF CONTENTS ……………………………………………………………......v LIST OF FIGURES……………………………………………………………….….....vii LIST OF TABLES…………………………………………………………………..…...ix LIST OF ABBREVIATIONS……………………………………………………………x CHAPTER 1. Background and Introduction…………………………………………..1 1.1 Opioid receptors mediate mood and reward, including addiction ........................ 1 1.2 The KOR system negatively regulates reward .................................................... 3 1.3 Many KOR agonists have negative side effects in humans ................................. 4 1.4 KOR agonists activate multiple signaling pathways ........................................... 6 1.5 Additional signaling pathways may be involved in opioid receptor signaling ... 10 1.6 Research goals ................................................................................................. 11 CHAPTER 2. Materials and Methods…………………………………………………13 2.1 Chemical compounds ....................................................................................... 13 2.2 In vitro signaling studies .................................................................................. 14 2.2.1 b-arrestin-2 enzyme fragment complementation ...................................... 14 2.2.2 [35S]GTPgS Binding with U2OS cell membranes .................................... 14 2.2.3 [35S]GTPgS Binding with mouse striatum tissue ...................................... 15 2.2.4 In-cell western blots for ERK1/2 phosphorylation ................................... 16 2.2.5 Western blots for Rps6 phosphorylation .................................................. 16 2.2.6 LogRAi bias calculations ........................................................................ 17 2.3 Biochemical studies and imaging ..................................................................... 19 2.3.1 Stable-isotope labeling in cell culture (SILAC) and immunoprecipitation 19 2.3.2 Mass spectrometry analysis ..................................................................... 19 2.3.3 Immunofluorescent sample preparation and imaging ............................... 20 2.4 Animal model studies ...................................................................................... 20 2.4.1 Animals .................................................................................................. 20 2.4.2 Prolactin serum ....................................................................................... 21 2.4.3 Rotarod assay .........................................................................................
Recommended publications
  • PDF File of All Submitted Abstracts
    APHAR 2012 Abstract Preview MEETING ABSTRACTS 18th Scientific Symposium of the Austrian Pharmacological Society (APHAR) Joint Meeting with the Croatian, Serbian and Slovenian Pharmacological Societies Graz, Austria, 20–21 September 2012 A1 Acknowledgements: This work was supported in part by the Antidepressant-like effects of benzodiazepine site inverse Ministry of Education and Science, Republic of Serbia, grant no. agonists in the rat forced swim test 175076. Janko Samardžić and Dragan I Obradović Institute of Pharmacology, Clinical Pharmacology and Toxicology, A2 Medical Faculty, University of Belgrade, 11129 Belgrade, Serbia Methadone-drugs interactions: possible causes of methadone- E-mail: [email protected] related deaths Vesna Mijatović1, Isidora Samojlik1, Stojan Petković2 and Nikša Background: There are three kinds of allosteric modulators acting 2 Ajduković through the benzodiazepine (BZ) binding site of the GABA 1 A Department of Pharmacology, Toxicology and Clinical receptor: positive (agonist), neutral (antagonist), and negative Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 (inverse agonist) modulators. Agonists and inverse agonists 2 Novi Sad, Serbia; Department of Forensic Medicine, Faculty of commonly exert bidirectional influences on observed behavioral Medicine, University of Novi Sad, 21000 Novi Sad, Serbia parameters. In the present study we have investigated the E-mail: [email protected] modulation of behavioral responses to environmental novelty in two unconditioned paradigms: spontaneous locomotor activity (SLA) and Background: Methadone is an effective analgesic and it is widely forced swim test (FST), elicited by DMCM (methyl-6,7-dimethoxy-4- used to suppress withdrawal symptoms from other opiates. Its ethyl-beta-carboline-3-carboxylate), a non-selective inverse agonist, consumption is usually associated with concomitant drug use in in the dose range that previously did not produce anxiogenic effects heroin addicts, and this combination is a possible risk factor for and convulsions.
    [Show full text]
  • House Bill No. 325
    FIRST REGULAR SESSION HOUSE BILL NO. 325 101ST GENERAL ASSEMBLY INTRODUCED BY REPRESENTATIVE PRICE IV. 0249H.01I DANA RADEMAN MILLER, Chief Clerk AN ACT To repeal sections 195.010, 579.015, 579.020, 579.040, 579.055, and 579.105, RSMo, and to enact in lieu thereof twenty new sections relating to the legalization of marijuana for adult use, with penalty provisions. Be it enacted by the General Assembly of the state of Missouri, as follows: Section A. Sections 195.010, 579.015, 579.020, 579.040, 579.055, and 579.105, RSMo, 2 are repealed and twenty new sections enacted in lieu thereof, to be known as sections 195.010, 3 195.2300, 195.2303, 195.2309, 195.2310, 195.2312, 195.2315, 195.2317, 195.2318, 195.2321, 4 195.2324, 195.2327, 195.2330, 195.2333, 579.015, 579.020, 579.040, 579.055, 579.105, and 5 610.134, to read as follows: 195.010. The following words and phrases as used in this chapter and chapter 579, 2 unless the context otherwise requires, mean: 3 (1) "Acute pain", pain, whether resulting from disease, accidental or intentional trauma, 4 or other causes, that the practitioner reasonably expects to last only a short period of time. Acute 5 pain shall not include chronic pain, pain being treated as part of cancer care, hospice or other 6 end-of-life care, or medication-assisted treatment for substance use disorders; 7 (2) "Addict", a person who habitually uses one or more controlled substances to such an 8 extent as to create a tolerance for such drugs, and who does not have a medical need for such 9 drugs, or who is so far addicted to the use of such drugs as to have lost the power of self-control 10 with reference to his or her addiction; 11 (3) "Administer", to apply a controlled substance, whether by injection, inhalation, 12 ingestion, or any other means, directly to the body of a patient or research subject by: 13 (a) A practitioner (or, in his or her presence, by his or her authorized agent); or EXPLANATION — Matter enclosed in bold-faced brackets [thus] in the above bill is not enacted and is intended to be omitted from the law.
    [Show full text]
  • Design and Synthesis of Cyclic Analogs of the Kappa Opioid Receptor Antagonist Arodyn
    Design and synthesis of cyclic analogs of the kappa opioid receptor antagonist arodyn By © 2018 Solomon Aguta Gisemba Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Chair: Dr. Blake Peterson Co-Chair: Dr. Jane Aldrich Dr. Michael Rafferty Dr. Teruna Siahaan Dr. Thomas Tolbert Date Defended: 18 April 2018 The dissertation committee for Solomon Aguta Gisemba certifies that this is the approved version of the following dissertation: Design and synthesis of cyclic analogs of the kappa opioid receptor antagonist arodyn Chair: Dr. Blake Peterson Co-Chair: Dr. Jane Aldrich Date Approved: 10 June 2018 ii Abstract Opioid receptors are important therapeutic targets for mood disorders and pain. Kappa opioid receptor (KOR) antagonists have recently shown potential for treating drug addiction and 1,2,3 4 8 depression. Arodyn (Ac[Phe ,Arg ,D-Ala ]Dyn A(1-11)-NH2), an acetylated dynorphin A (Dyn A) analog, has demonstrated potent and selective KOR antagonism, but can be rapidly metabolized by proteases. Cyclization of arodyn could enhance metabolic stability and potentially stabilize the bioactive conformation to give potent and selective analogs. Accordingly, novel cyclization strategies utilizing ring closing metathesis (RCM) were pursued. However, side reactions involving olefin isomerization of O-allyl groups limited the scope of the RCM reactions, and their use to explore structure-activity relationships of aromatic residues. Here we developed synthetic methodology in a model dipeptide study to facilitate RCM involving Tyr(All) residues. Optimized conditions that included microwave heating and the use of isomerization suppressants were applied to the synthesis of cyclic arodyn analogs.
    [Show full text]
  • “Biosynthesis of Morphine in Mammals”
    “Biosynthesis of Morphine in Mammals” D i s s e r t a t i o n zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Frau Nadja Grobe geb. am 21.08.1981 in Querfurt Gutachter /in 1. 2. 3. Halle (Saale), Table of Contents I INTRODUCTION ........................................................................................................1 II MATERIAL & METHODS ........................................................................................ 10 1 Animal Tissue ....................................................................................................... 10 2 Chemicals and Enzymes ....................................................................................... 10 3 Bacteria and Vectors ............................................................................................ 10 4 Instruments ........................................................................................................... 11 5 Synthesis ................................................................................................................ 12 5.1 Preparation of DOPAL from Epinephrine (according to DUNCAN 1975) ................. 12 5.2 Synthesis of (R)-Norlaudanosoline*HBr ................................................................. 12 5.3 Synthesis of [7D]-Salutaridinol and [7D]-epi-Salutaridinol ..................................... 13 6 Application Experiments .....................................................................................
    [Show full text]
  • Euphoric Non-Fentanil Novel Synthetic Opioids on the Illicit Drugs Market
    Forensic Toxicology (2019) 37:1–16 https://doi.org/10.1007/s11419-018-0454-5 REVIEW ARTICLE The search for the “next” euphoric non‑fentanil novel synthetic opioids on the illicit drugs market: current status and horizon scanning Kirti Kumari Sharma1,2 · Tim G. Hales3 · Vaidya Jayathirtha Rao1,2 · Niamh NicDaeid4,5 · Craig McKenzie4 Received: 7 August 2018 / Accepted: 11 November 2018 / Published online: 28 November 2018 © The Author(s) 2018 Abstract Purpose A detailed review on the chemistry and pharmacology of non-fentanil novel synthetic opioid receptor agonists, particularly N-substituted benzamides and acetamides (known colloquially as U-drugs) and 4-aminocyclohexanols, developed at the Upjohn Company in the 1970s and 1980s is presented. Method Peer-reviewed literature, patents, professional literature, data from international early warning systems and drug user fora discussion threads have been used to track their emergence as substances of abuse. Results In terms of impact on drug markets, prevalence and harm, the most signifcant compound of this class to date has been U-47700 (trans-3,4-dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylbenzamide), reported by users to give short- lasting euphoric efects and a desire to re-dose. Since U-47700 was internationally controlled in 2017, a range of related compounds with similar chemical structures, adapted from the original patented compounds, have appeared on the illicit drugs market. Interest in a structurally unrelated opioid developed by the Upjohn Company and now known as BDPC/bromadol appears to be increasing and should be closely monitored. Conclusions International early warning systems are an essential part of tracking emerging psychoactive substances and allow responsive action to be taken to facilitate the gathering of relevant data for detailed risk assessments.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20100227876A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0227876 A1 Rech (43) Pub. Date: Sep. 9, 2010 (54) METHODS OF REDUCING SIDE EFFECTS Publication Classi?cation OF ANALGESICS (51) Int CL A61K 31/485 (2006.01) A61K 31/40 (2006.01) (75) Inventor: Richard H. Rech, Okemos, MI A61K 31/445 (2006-01) (Us) A61K 31/439 (2006.01) (52) US. Cl. ........................ .. 514/282; 514/409; 514/329 (57) ABSTRACT Correspondence Address: The invention provides for compositions and methods of MARSHALL, GERSTEIN & BORUN LLP reducing pain in a subject by administering a combination of 233 SOUTH WACKER DRIVE, 6300 WILLIS mu-opioid receptor agonist, kappal-opioid receptor agonist TOWER and a nonselective opioid receptor antagonist in amounts CHICAGO, IL 60606-6357 (US) effective to reduce pain and ameliorate an adverse side effect of treatment combining opioid-receptor agonists. The inven tion also provides for methods of enhancing an analgesic effect of treatment With an opioid-receptor agonist in a sub (73) Assignee: RECHFENSEN LLP, RidgeWood, ject suffering from pain While reducing an adverse side effect NJ (US) of the treatment. The invention also provides for methods of reducing the hyperalgesic effect of treatment With an opioid receptor agonist in a subject suffering from pain While reduc ing an adverse side effect of the treatment. The invention (21) Appl. No.: 12/399,629 further provides for methods of promoting the additive anal gesia of pain treatment With an opioid-receptor agonist in a subject in need While reducing an adverse side effect of the (22) Filed: Mar.
    [Show full text]
  • Opioid Receptorsreceptors
    OPIOIDOPIOID RECEPTORSRECEPTORS defined or “classical” types of opioid receptor µ,dk and . Alistair Corbett, Sandy McKnight and Graeme Genes encoding for these receptors have been cloned.5, Henderson 6,7,8 More recently, cDNA encoding an “orphan” receptor Dr Alistair Corbett is Lecturer in the School of was identified which has a high degree of homology to Biological and Biomedical Sciences, Glasgow the “classical” opioid receptors; on structural grounds Caledonian University, Cowcaddens Road, this receptor is an opioid receptor and has been named Glasgow G4 0BA, UK. ORL (opioid receptor-like).9 As would be predicted from 1 Dr Sandy McKnight is Associate Director, Parke- their known abilities to couple through pertussis toxin- Davis Neuroscience Research Centre, sensitive G-proteins, all of the cloned opioid receptors Cambridge University Forvie Site, Robinson possess the same general structure of an extracellular Way, Cambridge CB2 2QB, UK. N-terminal region, seven transmembrane domains and Professor Graeme Henderson is Professor of intracellular C-terminal tail structure. There is Pharmacology and Head of Department, pharmacological evidence for subtypes of each Department of Pharmacology, School of Medical receptor and other types of novel, less well- Sciences, University of Bristol, University Walk, characterised opioid receptors,eliz , , , , have also been Bristol BS8 1TD, UK. postulated. Thes -receptor, however, is no longer regarded as an opioid receptor. Introduction Receptor Subtypes Preparations of the opium poppy papaver somniferum m-Receptor subtypes have been used for many hundreds of years to relieve The MOR-1 gene, encoding for one form of them - pain. In 1803, Sertürner isolated a crystalline sample of receptor, shows approximately 50-70% homology to the main constituent alkaloid, morphine, which was later shown to be almost entirely responsible for the the genes encoding for thedk -(DOR-1), -(KOR-1) and orphan (ORL ) receptors.
    [Show full text]
  • Modulation of the Mu and Kappa Opioid Axis for Treatment of Chronic Pruritus
    Modulation of the Mu and Kappa Opioid Axis for the Treatment of Chronic Pruritus Sarina Elmariah, MD, PhD1, Sarah Chisolm, MD2, Thomas Sciascia, MD3, Shawn G. Kwatra, MD4 1Massachusetts General Hospital, Boston, MA, USA; 2Emory University Department of Dermatology, Atlanta, GA, USA; VA VISN 7, USA; 3Trevi Therapeutics, New Haven, CT, USA; 4Johns Hopkins University School of Medicine, Baltimore, MD, USA Introduction Results Conclusions • Conditions such as uremic pruritus (UP) and prurigo nodularis • In the United States, opioid receptor–targeting agents have been used off-label to Figure 4. Change in VAS Scores From Baseline (Preobservation Period) to Last 7 – In a patient subgroup with severe UP (n=179), sleep disruption attributed to • These data suggest that agents that modulate underlying are characterized by chronic pruritus, which negatively impacts treat chronic itch19 Days of Treatment With KOR Agonist Nalfurafine vs Placebo for Uremic Pruritus21 itching improved significantly vs placebo (P=0.006) neurologic components of pruritus through µ-antagonism quality of life (QoL), sleep, and mood1-7 and/or κ-agonism are effective and safe options for the • Several agents that target MORs and KORs are being used off-label or are in clinical alfurafine 2.5 µg alfurafine 5 µg Placeo – The most common reason for discontinuing treatment was gastrointestinal side n112 n114 n111 treatment of chronic pruritus • Opioid receptors and their endogenous ligands are involved in development for the treatment of chronic itch associated with various disease states 0 effects (eg, nausea, vomiting) during titration the regulation of itch, with activation of mu (µ) opioid receptors (Figure 2) These agents have low abuse potential and generally appear well Figure 5.
    [Show full text]
  • (Butorphanol Tartrate) Nasal Spray
    NDA 19-890/S-017 Page 3 ® STADOL (butorphanol tartrate) Injection, USP STADOL NS® (butorphanol tartrate) Nasal Spray DESCRIPTION Butorphanol tartrate is a synthetically derived opioid agonist-antagonist analgesic of the phenanthrene series. The chemical name is (-)-17-(cyclobutylmethyl) morphinan-3, 14-diol [S- (R*,R*)] - 2,3 - dihydroxybutanedioate (1:1) (salt). The molecular formula is C21H29NO2,C4H6O6, which corresponds to a molecular weight of 477.55 and the following structural formula: Butorphanol tartrate is a white crystalline substance. The dose is expressed as the tartrate salt. One milligram of the salt is equivalent to 0.68 mg of the free base. The n-octanol/aqueous buffer partition coefficient of butorphanol is 180:1 at pH 7.5. STADOL (butorphanol tartrate) Injection, USP, is a sterile, parenteral, aqueous solution of butorphanol tartrate for intravenous or intramuscular administration. In addition to 1 or 2 mg of butorphanol tartrate, each mL of solution contains 3.3 mg of citric acid, 6.4 mg sodium citrate, and 6.4 mg sodium chloride, and 0.1 mg benzethonium chloride (in multiple dose vial only) as a preservative. NDA 19-890/S-017 Page 4 STADOL NS (butorphanol tartrate) Nasal Spray is an aqueous solution of butorphanol tartrate for administration as a metered spray to the nasal mucosa. Each bottle of STADOL NS contains 2.5 mL of a 10 mg/mL solution of butorphanol tartrate with sodium chloride, citric acid, and benzethonium chloride in purified water with sodium hydroxide and/or hydrochloric acid added to adjust the pH to 5.0. The pump reservoir must be fully primed (see PATIENT INSTRUCTIONS) prior to initial use.
    [Show full text]
  • Opioid Receptors: Structural and Mechanistic Insights Into Pharmacology and Signaling
    European Journal of Pharmacology ∎ (∎∎∎∎) ∎∎∎–∎∎∎ Contents lists available at ScienceDirect European Journal of Pharmacology journal homepage: www.elsevier.com/locate/ejphar Opioid receptors: Structural and mechanistic insights into pharmacology and signaling Yi Shang, Marta Filizola n Icahn School of Medicine at Mount Sinai, Department of Structural and Chemical Biology, One Gustave, L. Levy Place, Box 1677, New York, NY 10029, USA article info abstract Article history: Opioid receptors are important drug targets for pain management, addiction, and mood disorders. Al- Received 25 January 2015 though substantial research on these important subtypes of G protein-coupled receptors has been Received in revised form conducted over the past two decades to discover ligands with higher specificity and diminished side 2 March 2015 effects, currently used opioid therapeutics remain suboptimal. Luckily, recent advances in structural Accepted 11 May 2015 biology of opioid receptors provide unprecedented insights into opioid receptor pharmacology and signaling. We review here a few recent studies that have used the crystal structures of opioid receptors as Keywords: a basis for revealing mechanistic details of signal transduction mediated by these receptors, and for the GPCRs purpose of drug discovery. Opioid binding & 2015 Elsevier B.V. All rights reserved. Receptor Molecular dynamics Allosteric modulators Virtual screening Functional selectivity Dimerization 1. Introduction been devoted over the years to reduce the disadvantages of these drugs while retaining their therapeutic efficacy. In the absence of Opioid receptors belong to the super-family of G-protein cou- high-resolution crystal structures of opioid receptors until 2012, pled receptors (GPCRs), which are by far the most abundant class the majority of these efforts used ligand-based strategies, although of cell-surface receptors, and also the targets of about one-third of some also resorted to rudimentary molecular models of the re- approved/marketed drugs (Vortherms and Roth, 2005).
    [Show full text]
  • Evaluation of Antinociceptive Effects of Chitosan-Coated Liposomes Entrapping the Selective Kappa Opioid Receptor Agonist U50,488 in Mice
    medicina Article Evaluation of Antinociceptive Effects of Chitosan-Coated Liposomes Entrapping the Selective Kappa Opioid Receptor Agonist U50,488 in Mice Liliana Mititelu Tartau 1, Maria Bogdan 2,* , Beatrice Rozalina Buca 1, Ana Maria Pauna 1, Cosmin Gabriel Tartau 1, Lorena Anda Dijmarescu 3 and Eliza Gratiela Popa 4 1 Department of Pharmacology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; liliana.tartau@umfiasi.ro (L.M.T.); beatrice-rozalina.buca@umfiasi.ro (B.R.B.); ana-maria-raluca-d-pauna@umfiasi.ro (A.M.P.); [email protected]fiasi.ro (C.G.T.) 2 Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania 3 Department of Obstetrics-Gynecology, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania; [email protected] 4 Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; eliza.popa@umfiasi.ro * Correspondence: [email protected] Abstract: Background and Objectives: The selective kappa opioid receptor agonist U50,488 was reported to have analgesic, cough suppressant, diuretic and other beneficial properties. The aim of our study was to analyze the effects of some original chitosan-coated liposomes entrapping U50,488 in somatic and visceral nociceptive sensitivity in mice. Materials and Methods: The influence on the somatic pain was assessed using a tail flick test by counting the tail reactivity to thermal noxious stimulation. Citation: Mititelu Tartau, L.; Bogdan, The nociceptive visceral estimation was performed using the writhing test in order to evaluate the M.; Buca, B.R.; Pauna, A.M.; Tartau, behavioral manifestations occurring as a reaction to the chemical noxious peritoneal irritation with C.G.; Dijmarescu, L.A.; Popa, E.G.
    [Show full text]
  • Phencyclidine: an Update
    Phencyclidine: An Update U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alcohol, Drug Abuse and Mental Health Administration Phencyclidine: An Update Editor: Doris H. Clouet, Ph.D. Division of Preclinical Research National Institute on Drug Abuse and New York State Division of Substance Abuse Services NIDA Research Monograph 64 1986 DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administratlon National Institute on Drug Abuse 5600 Fishers Lane Rockville, Maryland 20657 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, DC 20402 NIDA Research Monographs are prepared by the research divisions of the National lnstitute on Drug Abuse and published by its Office of Science The primary objective of the series is to provide critical reviews of research problem areas and techniques, the content of state-of-the-art conferences, and integrative research reviews. its dual publication emphasis is rapid and targeted dissemination to the scientific and professional community. Editorial Advisors MARTIN W. ADLER, Ph.D. SIDNEY COHEN, M.D. Temple University School of Medicine Los Angeles, California Philadelphia, Pennsylvania SYDNEY ARCHER, Ph.D. MARY L. JACOBSON Rensselaer Polytechnic lnstitute National Federation of Parents for Troy, New York Drug Free Youth RICHARD E. BELLEVILLE, Ph.D. Omaha, Nebraska NB Associates, Health Sciences Rockville, Maryland REESE T. JONES, M.D. KARST J. BESTEMAN Langley Porter Neuropsychiatric lnstitute Alcohol and Drug Problems Association San Francisco, California of North America Washington, D.C. DENISE KANDEL, Ph.D GILBERT J. BOTV N, Ph.D. College of Physicians and Surgeons of Cornell University Medical College Columbia University New York, New York New York, New York JOSEPH V.
    [Show full text]