Fast Algorithm for Nearest Neighbor Search Based on a Lower Bound Tree

Total Page:16

File Type:pdf, Size:1020Kb

Fast Algorithm for Nearest Neighbor Search Based on a Lower Bound Tree in Proceedings of the 8th International Conference on Computer Vision, Vancouver, Canada, Jul. 2001, Volume 1, pages 446–453 Fast Algorithm for Nearest Neighbor Search Based on a Lower Bound Tree Yong-Sheng Chen†‡ Yi-Ping Hung†‡ Chiou-Shann Fuh‡ †Institute of Information Science, Academia Sinica, Taipei, Taiwan ‡Dept. of Computer Science and Information Engineering, National Taiwan University, Taiwan Email: [email protected] Abstract In the past, Bentley [2] proposed the k-dimensional bi- nary search tree to speed up the the nearest neighbor search. This paper presents a novel algorithm for fast nearest This method is very efficient when the dimension of the data neighbor search. At the preprocessing stage, the proposed space is small. However, as reported in [13] and [3], its algorithm constructs a lower bound tree by agglomeratively performance degrades exponentially with increasing dimen- clustering the sample points in the database. Calculation of sion. Fukunaga and Narendra [8] constructed a tree struc- the distance between the query and the sample points can be ture by repeating the process of dividing the set of sam- avoided if the lower bound of the distance is already larger ple points into subsets. Given a query point, they used than the minimum distance. The search process can thus a branch-and-bound search strategy to efficiently find the be accelerated because the computational cost of the lower closest point by using the tree structure. Djouadi and Bouk- bound, which can be calculated by using the internal node tache [5] partitioned the underlying space of the sample of the lower bound tree, is less than that of the distance. points into a set of cells. A few cells located in the vicinity To reduce the number of the lower bounds actually calcu- of the query point can be determined by calculating the dis- lated, the winner-update search strategy is used for travers- tances between the query point and the centers of the cells. ing the tree. Moreover, the query and the sample points The nearest neighbor can then be found by searching only can be transformed for further efficiency improvement. Our in these neighboring cells, instead of the whole space. Nene experiments show that the proposed algorithm can greatly and Nayar [13] proposed a very fast algorithm to search for speed up the nearest neighbor search process. When apply- the nearest neighbor within a pre-specified distance thresh- ing to the real database used in Nayar’s object recognition old. From the first to the last dimension, their method can system, the proposed algorithm is about one thousand times exclude the sample points that the distances from those sam- faster than the exhaustive search. ple points to the query point at the current dimension are larger than the threshold. Then, the nearest neighbor can be determined by examining the remaining candidates. Lee and Chae [11] proposed another elimination-based method. 1. Introduction Based on triangle inequality, they used a number of anchor sample points to eliminate many distance calculations. In- Nearest neighbor search is very useful in recognizing ob- stead of finding the exact nearest neighbor, Arya et al. [1] jects [12], matching stereo images [15], classifying patterns proposed a fast algorithm which can find the approximate [9], compressing images [10], and retrieving information in nearest neighbor within a factor of (1 + r) of the distance database system [7]. In general, given a fixed data set P between the query point and its exact nearest neighbor. which consists of s sample points in a d-dimensional space, In this paper, we present a novel algorithm which can ef- d that is, P = {pi ∈ R |i = 1,..., s}, preprocessing can be ficiently search for the exact nearest neighbor in Euclidean performed to construct a particular data structure. For each space. At the preprocessing stage, the proposed algorithm query point q, the goal of the nearest neighbor search is to constructs a lower bound tree (LB-tree), in which each leaf find in P the point closest to q. The straightforward way node represents a sample point and each internal node rep- to find the nearest neighbor is to exhaustively compute and resents a mean point in a space of smaller dimension. Given compare the distances from the query point to all the sam- a query point, the lower bound of its distance to each sample ple points. The computational complexity of this exhaustive point can be calculated by using the mean point of the inter- search is O(s · d). When s, d, or both are large, this process nal node in the LB-tree. Calculation of the distance between becomes very computational-intensive. the query and the sample points can be avoided if the lower bound of the distance is already larger than the minimum 0 p p1 distance between the query point and its nearest neighbor. Because the computational cost of the lower bound is less than that of the distance, the whole search process can be 1 accelerated. p p1 p2 Furthermore, we adopt the following three techniques to reduce the number of the lower bounds actually calcu- lated. The first one is the winner-update search strategy 2 p p1 p2 p3 p4 [4] for traversing the LB-tree. We adopt this search strat- egy to reduce the number of the nodes examined. Starting from the root node of the LB-tree, the node having the min- 3 imum lower bound is chosen and its children will then join p p1 p2 p3 p4 p5 p6 p7 p8 the competition after their lower bounds having been calcu- lated. The second one is the agglomerative clustering tech- nique for the LB-tree construction. The major advantage of Figure 1. An example of the 4-level structure this technique is that it can keep the number of the internal of the point p, where p ∈ R8. nodes as small as possible while keeping the lower bound as tight as possible. The last technique we adopt is data trans- formation. By applying data transformation to each point, p. Figure 1 illustrates an example of the 4-level structures, the lower bound of an internal node can be further tight- 0 3 ened, and thus save more computation. We use two kind {p ,..., p }, where d = 8. of data transformation in this work: wavelet transform and Given the multilevel structures of two points p and q, we principal component analysis. can derive the following inequality property. Our experiments show that the proposed algorithm can save substantial computation of the nearest neighbor search, Property 1 The Euclidean distance between p and q is larger than or equal to the Euclidean distance between their in particular, when the distance of the query point to its l l nearest neighbor is relatively small compared with its dis- level-l projections p and q for each level l. That is, tance to most other samples. l l kp − qk2 ≥ kp − q k2, l = 0,..., L. l l 2. Multilevel structure and LB-tree From Property 1, the distance kp − q k2 between the level-l projections can be considered as a lower bound of the This section introduces the LB-tree, the essential data distance kp − qk2 between the points p and q. Notice that l l structure used in the proposed nearest neighbor search al- the computational cost of the distance kp −q k2 is less than gorithm. We will first describe the multilevel structure of a that of the distance kp−qk2. To be specific, the complexity data point. The multilevel structures of all the sample points of calculating the distance between level-l projections arises 0 can be used for the LB-tree construction. from O(2 ) to O(2L) as l varies from 0 to L. 2.1. Multilevel structure of each point 2.2. LB-tree for the data set For a point p = [p1, p2,..., pd] in a d-dimensional Eu- To construct an LB-tree, we need to use the multilevel d clidean space, R , we define its multilevel structure, de- structures of all the sample points pi, i = 1,..., s, in the noted by {p0, p1,..., pL}, in the following way. At each data set P . Suppose the multilevel structure has L + 1 lev- level l, pl comprises the first dl dimensions of the point p, els, that is, from level 0 to level L. Then, the LB-tree also where the integer dl satisfies 1 ≤ dl ≤ d, l = 0,..., L. has L + 1 levels without considering the dummy root node l That is, p = [p1, p2,..., pdl ], which will be referred to as having zero dimension. Each leaf node at level L in the LB- L the level-l projection of p. tree contains a level-L projection pi , which is exactly the l In this paper, we assume that the dimension of the un- same as the sample point pi. The level-l projections, pi , derlying space, d, is equal to 2L without loss of generality. i = 1,..., s, of all the sample points can be hierarchically Zero padding can be used to enlarge the dimension if d is clustered from level 0 to level L − 1, as illustrated in Fig- not a power of 2. In the multilevel structure, the dimension ure 2. More discussions on the LB-tree construction will be at level l is set to be dl = 2l. In this way, a (L + 1)-level given in Section 4. structure of triangle shape can be constructed for point p. Let hpi denote the node containing the point p in the LB- L l Notice that level-L projection, p , is the same as the point tree.
Recommended publications
  • Two Algorithms for Nearest-Neighbor Search in High Dimensions
    Two Algorithms for Nearest-Neighbor Search in High Dimensions Jon M. Kleinberg∗ February 7, 1997 Abstract Representing data as points in a high-dimensional space, so as to use geometric methods for indexing, is an algorithmic technique with a wide array of uses. It is central to a number of areas such as information retrieval, pattern recognition, and statistical data analysis; many of the problems arising in these applications can involve several hundred or several thousand dimensions. We consider the nearest-neighbor problem for d-dimensional Euclidean space: we wish to pre-process a database of n points so that given a query point, one can ef- ficiently determine its nearest neighbors in the database. There is a large literature on algorithms for this problem, in both the exact and approximate cases. The more sophisticated algorithms typically achieve a query time that is logarithmic in n at the expense of an exponential dependence on the dimension d; indeed, even the average- case analysis of heuristics such as k-d trees reveals an exponential dependence on d in the query time. In this work, we develop a new approach to the nearest-neighbor problem, based on a method for combining randomly chosen one-dimensional projections of the underlying point set. From this, we obtain the following two results. (i) An algorithm for finding ε-approximate nearest neighbors with a query time of O((d log2 d)(d + log n)). (ii) An ε-approximate nearest-neighbor algorithm with near-linear storage and a query time that improves asymptotically on linear search in all dimensions.
    [Show full text]
  • Rank-Approximate Nearest Neighbor Search: Retaining Meaning and Speed in High Dimensions
    Rank-Approximate Nearest Neighbor Search: Retaining Meaning and Speed in High Dimensions Parikshit Ram, Dongryeol Lee, Hua Ouyang and Alexander G. Gray Computational Science and Engineering, Georgia Institute of Technology Atlanta, GA 30332 p.ram@,dongryel@cc.,houyang@,agray@cc. gatech.edu { } Abstract The long-standing problem of efficient nearest-neighbor (NN) search has ubiqui- tous applications ranging from astrophysics to MP3 fingerprinting to bioinformat- ics to movie recommendations. As the dimensionality of the dataset increases, ex- act NN search becomes computationally prohibitive; (1+) distance-approximate NN search can provide large speedups but risks losing the meaning of NN search present in the ranks (ordering) of the distances. This paper presents a simple, practical algorithm allowing the user to, for the first time, directly control the true accuracy of NN search (in terms of ranks) while still achieving the large speedups over exact NN. Experiments on high-dimensional datasets show that our algorithm often achieves faster and more accurate results than the best-known distance-approximate method, with much more stable behavior. 1 Introduction In this paper, we address the problem of nearest-neighbor (NN) search in large datasets of high dimensionality. It is used for classification (k-NN classifier [1]), categorizing a test point on the ba- sis of the classes in its close neighborhood. Non-parametric density estimation uses NN algorithms when the bandwidth at any point depends on the ktℎ NN distance (NN kernel density estimation [2]). NN algorithms are present in and often the main cost of most non-linear dimensionality reduction techniques (manifold learning [3, 4]) to obtain the neighborhood of every point which is then pre- served during the dimension reduction.
    [Show full text]
  • Nearest Neighbor Search in Google Correlate
    Nearest Neighbor Search in Google Correlate Dan Vanderkam Robert Schonberger Henry Rowley Google Inc Google Inc Google Inc 76 9th Avenue 76 9th Avenue 1600 Amphitheatre Parkway New York, New York 10011 New York, New York 10011 Mountain View, California USA USA 94043 USA [email protected] [email protected] [email protected] Sanjiv Kumar Google Inc 76 9th Avenue New York, New York 10011 USA [email protected] ABSTRACT queries are then noted, and a model that estimates influenza This paper presents the algorithms which power Google Cor- incidence based on present query data is created. relate[8], a tool which finds web search terms whose popu- This estimate is valuable because the most recent tradi- larity over time best matches a user-provided time series. tional estimate of the ILI rate is only available after a two Correlate was developed to generalize the query-based mod- week delay. Indeed, there are many fields where estimating eling techniques pioneered by Google Flu Trends and make the present[1] is important. Other health issues and indica- them available to end users. tors in economics, such as unemployment, can also benefit Correlate searches across millions of candidate query time from estimates produced using the techniques developed for series to find the best matches, returning results in less than Google Flu Trends. 200 milliseconds. Its feature set and requirements present Google Flu Trends relies on a multi-hour batch process unique challenges for Approximate Nearest Neighbor (ANN) to find queries that correlate to the ILI time series. Google search techniques. In this paper, we present Asymmetric Correlate allows users to create their own versions of Flu Hashing (AH), the technique used by Correlate, and show Trends in real time.
    [Show full text]
  • R-Trees with Voronoi Diagrams for Efficient Processing of Spatial
    VoR-Tree: R-trees with Voronoi Diagrams for Efficient Processing of Spatial Nearest Neighbor Queries∗ y Mehdi Sharifzadeh Cyrus Shahabi Google University of Southern California [email protected] [email protected] ABSTRACT A very important class of spatial queries consists of nearest- An important class of queries, especially in the geospatial neighbor (NN) query and its variations. Many studies in domain, is the class of nearest neighbor (NN) queries. These the past decade utilize R-trees as their underlying index queries search for data objects that minimize a distance- structures to address NN queries efficiently. The general ap- based function with reference to one or more query objects. proach is to use R-tree in two phases. First, R-tree's hierar- Examples are k Nearest Neighbor (kNN) [13, 5, 7], Reverse chical structure is used to quickly arrive to the neighborhood k Nearest Neighbor (RkNN) [8, 15, 16], k Aggregate Nearest of the result set. Second, the R-tree nodes intersecting with Neighbor (kANN) [12] and skyline queries [1, 11, 14]. The the local neighborhood (Search Region) of an initial answer applications of NN queries are numerous in geospatial deci- are investigated to find all the members of the result set. sion making, location-based services, and sensor networks. While R-trees are very efficient for the first phase, they usu- The introduction of R-trees [3] (and their extensions) for ally result in the unnecessary investigation of many nodes indexing multi-dimensional data marked a new era in de- that none or only a small subset of their including points veloping novel R-tree-based algorithms for various forms belongs to the actual result set.
    [Show full text]
  • Dimensional Testing for Reverse K-Nearest Neighbor Search
    University of Southern Denmark Dimensional testing for reverse k-nearest neighbor search Casanova, Guillaume; Englmeier, Elias; Houle, Michael E.; Kröger, Peer; Nett, Michael; Schubert, Erich; Zimek, Arthur Published in: Proceedings of the VLDB Endowment DOI: 10.14778/3067421.3067426 Publication date: 2017 Document version: Final published version Document license: CC BY-NC-ND Citation for pulished version (APA): Casanova, G., Englmeier, E., Houle, M. E., Kröger, P., Nett, M., Schubert, E., & Zimek, A. (2017). Dimensional testing for reverse k-nearest neighbor search. Proceedings of the VLDB Endowment, 10(7), 769-780. https://doi.org/10.14778/3067421.3067426 Go to publication entry in University of Southern Denmark's Research Portal Terms of use This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply: • You may download this work for personal use only. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying this open access version If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to [email protected] Download date: 05. Oct. 2021 Dimensional Testing for Reverse k-Nearest Neighbor Search Guillaume Casanova Elias Englmeier Michael E. Houle ONERA-DCSD, France LMU Munich, Germany NII, Tokyo,
    [Show full text]
  • Efficient Nearest Neighbor Searching for Motion Planning
    E±cient Nearest Neighbor Searching for Motion Planning Anna Atramentov Steven M. LaValle Dept. of Computer Science Dept. of Computer Science Iowa State University University of Illinois Ames, IA 50011 USA Urbana, IL 61801 USA [email protected] [email protected] Abstract gies of con¯guration spaces. The topologies that usu- ally arise are Cartesian products of R, S1, and projective We present and implement an e±cient algorithm for per- spaces. In these cases, metric information must be ap- forming nearest-neighbor queries in topological spaces propriately processed by any data structure designed to that usually arise in the context of motion planning. perform nearest neighbor computations. The problem is Our approach extends the Kd tree-based ANN algo- further complicated by the high dimensionality of con¯g- rithm, which was developed by Arya and Mount for Eu- uration spaces. clidean spaces. We argue the correctness of the algo- rithm and illustrate its e±ciency through computed ex- In this paper, we extend the nearest neighbor algorithm amples. We have applied the algorithm to both prob- and part of the ANN package of Arya and Mount [16] to abilistic roadmaps (PRMs) and Rapidly-exploring Ran- handle general topologies with very little computational dom Trees (RRTs). Substantial performance improve- overhead. Related literature is discussed in Section 3. ments are shown for motion planning examples. Our approach is based on hierarchically searching nodes in a Kd tree while handling the appropriate constraints induced by the metric and topology. We have proven the 1 Introduction correctness of our approach, and we have demonstrated the e±ciency of the algorithm experimentally.
    [Show full text]
  • A Fast All Nearest Neighbor Algorithm for Applications Involving Large Point-Clouds à Jagan Sankaranarayanan , Hanan Samet, Amitabh Varshney
    Best Journal Paper of 2007 Award ARTICLE IN PRESS Computers & Graphics 31 (2007) 157–174 www.elsevier.com/locate/cag A fast all nearest neighbor algorithm for applications involving large point-clouds à Jagan Sankaranarayanan , Hanan Samet, Amitabh Varshney Department of Computer Science, Center for Automation Research, Institute for Advanced Computer Studies, University of Maryland, College Park, MD - 20742, USA Abstract Algorithms that use point-cloud models make heavy use of the neighborhoods of the points. These neighborhoods are used to compute the surface normals for each point, mollification, and noise removal. All of these primitive operations require the seemingly repetitive process of finding the k nearest neighbors (kNNs) of each point. These algorithms are primarily designed to run in main memory. However, rapid advances in scanning technologies have made available point-cloud models that are too large to fit in the main memory of a computer. This calls for more efficient methods of computing the kNNs of a large collection of points many of which are already in close proximity. A fast kNN algorithm is presented that makes use of the locality of successive points whose k nearest neighbors are sought to reduce significantly the time needed to compute the neighborhood needed for the primitive operation as well as enable it to operate in an environment where the data is on disk. Results of experiments demonstrate an order of magnitude improvement in the time to perform the algorithm and several orders of magnitude improvement in work efficiency when compared with several prominent existing methods. r 2006 Elsevier Ltd. All rights reserved.
    [Show full text]
  • Efficient Similarity Search in High-Dimensional Data Spaces
    New Jersey Institute of Technology Digital Commons @ NJIT Dissertations Electronic Theses and Dissertations Spring 5-31-2004 Efficient similarity search in high-dimensional data spaces Yue Li New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/dissertations Part of the Computer Sciences Commons Recommended Citation Li, Yue, "Efficient similarity search in high-dimensional data spaces" (2004). Dissertations. 633. https://digitalcommons.njit.edu/dissertations/633 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment
    [Show full text]
  • A Cost Model for Nearest Neighbor Search in High-Dimensional Data Space
    A Cost Model For Nearest Neighbor Search in High-Dimensional Data Space Stefan Berchtold Christian Böhm University of Munich University of Munich Germany Germany [email protected] [email protected] Daniel A. Keim Hans-Peter Kriegel University of Munich University of Munich Germany Germany [email protected] [email protected] Abstract multimedia indexing [9], CAD [17], molecular biology (for In this paper, we present a new cost model for nearest neigh- the docking of molecules) [24], string matching [1], etc. Most bor search in high-dimensional data space. We first analyze applications use some kind of feature vector for an efficient different nearest neighbor algorithms, present a generaliza- access to the complex original data. Examples of feature vec- tion of an algorithm which has been originally proposed for tors are color histograms [23], shape descriptors [16, 18], Quadtrees [13], and show that this algorithm is optimal. Fourier vectors [26], text descriptors [15], etc. Nearest neigh- Then, we develop a cost model which - in contrast to previous bor search on the high-dimensional feature vectors may be models - takes boundary effects into account and therefore defined as follows: also works in high dimensions. The advantages of our model Given a data set DS of d-dimensional points, find the data are in particular: Our model works for data sets with an arbi- point NN from the data set which is closer to the given query trary number of dimensions and an arbitrary number of data point Q than any other point in the data set.
    [Show full text]
  • Improving K-Nearest Neighbor Approaches for Density-Based Pixel Clustering in Hyperspectral Remote Sensing Images
    remote sensing Article Improving K-Nearest Neighbor Approaches for Density-Based Pixel Clustering in Hyperspectral Remote Sensing Images Claude Cariou 1,*, , Steven Le Moan 2 and Kacem Chehdi 1 1 Institut d’Électronique et des Technologies du numéRique, CNRS, Univ Rennes, UMR 6164, Enssat, 6 rue de Kerampont, F22300 Lannion, France; [email protected] 2 Centre for Research in Image and Signal Processing, Massey University, Palmerston North 4410, New Zealand; [email protected] * Correspondence: [email protected] Received: 30 September 2020; Accepted: 12 November 2020; Published: 14 November 2020 Abstract: We investigated nearest-neighbor density-based clustering for hyperspectral image analysis. Four existing techniques were considered that rely on a K-nearest neighbor (KNN) graph to estimate local density and to propagate labels through algorithm-specific labeling decisions. We first improved two of these techniques, a KNN variant of the density peaks clustering method DPC, and a weighted-mode variant of KNNCLUST, so the four methods use the same input KNN graph and only differ by their labeling rules. We propose two regularization schemes for hyperspectral image analysis: (i) a graph regularization based on mutual nearest neighbors (MNN) prior to clustering to improve cluster discovery in high dimensions; (ii) a spatial regularization to account for correlation between neighboring pixels. We demonstrate the relevance of the proposed methods on synthetic data and hyperspectral images, and show they achieve superior overall performances in most cases, outperforming the state-of-the-art methods by up to 20% in kappa index on real hyperspectral images. Keywords: clustering methods; density estimation; nearest neighbor search; deterministic algorithm; unsupervised learning 1.
    [Show full text]
  • Very Large Scale Nearest Neighbor Search: Ideas, Strategies and Challenges
    Int. Jnl. Multimedia Information Retrieval, IJMIR, vol. 2, no. 4, 2013. The final publication is available at Springer via http://dx.doi.org/10.1007/s13735-013-0046-4 Very Large Scale Nearest Neighbor Search: Ideas, Strategies and Challenges Erik Gast, Ard Oerlemans, Michael S. Lew Leiden University Niels Bohrweg 1 2333CA Leiden The Netherlands {gast, aoerlema, mlew} @liacs.nl Abstract Web-scale databases and Big Data collections are computationally challenging to analyze and search. Similarity or more precisely nearest neighbor searches are thus crucial in the analysis, indexing and utilization of these massive multimedia databases. In this work, we begin by reviewing the top approaches from the research literature in the past decade. Furthermore, we evaluate the scalability and computational complexity as the feature complexity and database size vary. For the experiments we used two different data sets with different dimensionalities. The results reveal interesting insights regarding the index structures and their behavior when the data set size is increased. We also summarized the ideas, strategies and challenges for the future. 1. Introduction Very large scale multimedia databases are becoming common and thus searching within them has become more important. Clearly, one of the most frequently used searching paradigms is k-nearest neighbor(k- NN), where the k objects that are most similar to the query are retrieved. Unfortunately, this k-NN search is also a very expensive operation. In order to do a k-NN search efficiently, it is important to have an index structure that can efficiently handle k-NN searches on large databases. From a theoretical and technical point of view, finding the k nearest neighbors is less than linear time is challenging and largely 1 unsolved.
    [Show full text]
  • Voronoi-Based Nearest Neighbor Search for Multi-Dimensional Uncertain Databases
    Voronoi-based Nearest Neighbor Search for Multi-Dimensional Uncertain Databases Peiwu Zhang #1, Reynold Cheng #2, Nikos Mamoulis #3, Matthias Renz ∗4 Andreas Zufile¨ ∗5, Yu Tang #6, Tobias Emrich ∗7 #The University of Hong Kong, Pokfulam Road, Hong Kong fpwzhang 1, ckcheng 2, nikos 3,ytang [email protected] ∗Ludwig-Maximilians-Universitat¨ Munchen,¨ Munich, Germany ∗frenz 4, zuefle 5, emrich [email protected]fi.lmu.de Abstract— In Voronoi-based nearest neighbor search, the public, may also be perturbed with noise, in order to alleviate Voronoi cell of every point p in a database can be used to privacy concerns [2]. check whether p is the closest to some query point q. We In natural habitat monitoring, information collected at sen- extend the notion of Voronoi cells to support uncertain objects, whose attribute values are inexact. Particularly, we propose the sor nodes (e.g., temperature and humidity) can be contam- Possible Voronoi cell (or PV-cell). A PV-cell of a multi-dimensional inated with measurement error [3]. In order to satisfy the uncertain object o is a region R, such that for any point p 2 R, increasing needs of managing imprecise data, several uncertain o may be the nearest neighbor of p. If the PV-cells of all objects databases have been developed [4]–[7]. in a database S are known, they can be used to identify objects In this paper, we study the efficient evaluation of the that have a chance to be the nearest neighbor of q. However, there is no efficient algorithm for computing an probabilistic nearest neighbor query (PNNQ), a fundamental exact PV-cell.
    [Show full text]