Dimensional Testing for Reverse K-Nearest Neighbor Search

Total Page:16

File Type:pdf, Size:1020Kb

Dimensional Testing for Reverse K-Nearest Neighbor Search University of Southern Denmark Dimensional testing for reverse k-nearest neighbor search Casanova, Guillaume; Englmeier, Elias; Houle, Michael E.; Kröger, Peer; Nett, Michael; Schubert, Erich; Zimek, Arthur Published in: Proceedings of the VLDB Endowment DOI: 10.14778/3067421.3067426 Publication date: 2017 Document version: Final published version Document license: CC BY-NC-ND Citation for pulished version (APA): Casanova, G., Englmeier, E., Houle, M. E., Kröger, P., Nett, M., Schubert, E., & Zimek, A. (2017). Dimensional testing for reverse k-nearest neighbor search. Proceedings of the VLDB Endowment, 10(7), 769-780. https://doi.org/10.14778/3067421.3067426 Go to publication entry in University of Southern Denmark's Research Portal Terms of use This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply: • You may download this work for personal use only. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying this open access version If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to [email protected] Download date: 05. Oct. 2021 Dimensional Testing for Reverse k-Nearest Neighbor Search Guillaume Casanova Elias Englmeier Michael E. Houle ONERA-DCSD, France LMU Munich, Germany NII, Tokyo, Japan [email protected] [email protected] [email protected] Peer Kröger Michael Nett LMU Munich, Germany Google Japan [email protected]fi.lmu.de [email protected] Erich Schubert Arthur Zimek Heidelberg U., Germany SDU, Odense, Denmark [email protected] [email protected] heidelberg.de ABSTRACT data streams, RkNN queries serve as a basic operation for Given a query object q, reverse k-nearest neighbor (RkNN) determining those objects that would potentially be affected search aims to locate those objects of the database that have by a particular data update operation, particularly for those q among their k-nearest neighbors. In this paper, we propose applications that aim to track the changes of clusters and an approximation method for solving RkNN queries, where outliers [1, 36, 35]. Bichromatic RkNN queries have also the pruning operations and termination tests are guided by been proposed, in which the data objects are divided into a characterization of the intrinsic dimensionality of the data. two types, where queries on the objects of the first type The method can accommodate any index structure sup- are to return reverse neighbors drawn from the set of ob- porting incremental (forward) nearest-neighbor search for jects of the second type [29, 48, 50]. Typical applications the generation and verification of candidates, while avoid- of bichromatic queries arise in situations where one object ing impractically-high preprocessing costs. We also provide type represents services, and the other represents clients. experimental evidence that our method significantly outper- The methods suggested in [49] and [9] provide ways of com- forms its competitors in terms of the tradeoff between ex- puting monochromatic or bichromatic RkNN queries for 2- ecution time and the quality of the approximation. Our dimensional location data. approach thus addresses many of the scalability issues sur- Virtually all existing RkNN query strategies aggregate in- rounding the use of previous methods in data mining. formation from the kNN sets (the ‘forward’ neighborhoods) of data objects in order to determine and verify RkNN can- didate objects. Some strategies require the computation of 1. INTRODUCTION exact or approximate kNN distances for all data objects [29, The reverse k-nearest neighbor (RkNN) similarity query 51, 3, 44, 2, 4], whereas others apply distance-based pruning — that is, the computation of all objects of a data set that techniques with index structures such as R-trees [17] for Eu- have a given query object amongst their respective k-nearest clidean data, or M-trees [10] for general metric data [41, 33, neighbors (kNNs) — is a fundamental operation in data min- 40, 43]. Although they are required for the determination of ing. Even though RkNN and kNN queries may seem to be exact RkNN query results, the use of exact kNN sets gen- equivalent at first glance, they require different algorithms erally involves significant overheads for precomputation and and data structures for their implementation. Intuitively storage, especially if the value of k is not known beforehand. speaking, RkNN queries attempt to determine those data In recent years, data sets have grown considerably in com- objects that are most ‘influenced’ by the query object. Such plexity, with the feature spaces often being of high dimen- notions of influence arise in many important applications. sionality. For the many data mining applications that de- In graph mining, the degree of hubness of a node [46] can pend on indices for similarity search, overall performance be computed by means of RkNN queries. RkNN queries are can be sharply limited by the curse of dimensionality. For also crucial for many existing data mining models, partic- reverse neighborhood search, the impact of the curse of di- ularly in the areas of clustering and outlier detection [18, mensionality is felt in the high cost of computing the forward 27, 37]. For dynamic scenarios such as data warehouses and kNN distances needed for the generation and verification of RkNN candidates. Most practical RkNN approaches work with approximations to the true kNN distance values. The quality of the approximate RkNN results, and thus the qual- This work is licensed under the Creative Commons Attribution- ity of the method as a whole, naturally depends heavily on NonCommercial-NoDerivatives 4.0 International License. To view a copy the accuracy of the kNN distance approximation. of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any use beyond those covered by this license, obtain permission by emailing Theoreticians and practitioners have put much effort into [email protected]. finding workarounds for the difficulties caused by the curse Proceedings of the VLDB Endowment, Vol. 10, No. 7 of dimensionality. One approach to the problem has been to Copyright 2017 VLDB Endowment 2150-8097/17/03. 769 characterize the difficulty of datasets not in terms of the rep- terminology. The algorithm is presented in Section 4, fol- resentational dimension of the data, but instead in terms of lowed by its analysis in Section 5. Section 7 describes the a more compact model of the data. Such models have often experimental framework used for the comparison of meth- (explicitly or implicitly) relied on such parameters dimen- ods, and the results of the experimentation are discussed in sion of the surface or manifold that best approximates the Section 8. The presentation concludes in Section 9. data, or of the minimum number of latent variables needed to represent the data. The numbers of such parameters can be regarded as an indication of the intrinsic dimensionality 2. RELATED WORK (ID) of the data set, which is typically much lower than the representational dimension. Intrinsic dimensionality thus 2.1 Methods with Heavy Precomputation serves as an important natural measure of the complexity The basic observation motivating all RkNN methods is of data. For a general reference on intrinsic dimensional that if the distance of an object v to the query object q is measures, see for example [13]. smaller than the actual kNN distance of v, then v is a RkNN Recently, intrinsic dimensionality has been considered in of q. This relationship between RkNN queries and the kNN the design and analysis of similarity search applications, in distances of data objects was first formalized in [29]. The the form of the expansion dimension of Karger and Ruhl [28] authors proposed a solution (originally for the special case and its variant, the generalized expansion dimension (GED) k = 1) in which each database object is transformed into the [22]. The GED is a measure of dimensionality based on the smallest possible hypersphere covering the k-neighborhood rate of growth in the cardinality of a neighborhood as its of the object. For this purpose, the (exact) kNN distance radius increases — it can be regarded as an estimator of of each object must be precomputed. By indexing the ob- the extreme-value-theoretic local intrinsic dimension (LID) tained collection of hyperspheres in an R-Tree [17], the au- of distance distributions [20, 5], which assesses the rate of thors reduced the RkNN problem to that of answering point growth of the probability measure (‘intrinsic volume’) cap- containment queries for hyperspheres. The authors of the tured by a ball with expanding radius centered at a location RdNN-Tree [51] extend this idea: at each index node, the of interest. LID is in turn related to certain measures of the maximum of the kNN distances of the points (hypersphere overall intrinsic dimensionality of data sets, including the radii) is aggregated within the subtree rooted at this node. classical Hausdorff dimension [34], correlation dimension [16, In this way, smaller bounding rectangles can be maintained 42], and other forms of fractal dimension [13]. Originally for- at the R-Tree nodes, with the potential of higher pruning mulated solely for the analysis of similarity search indices [6, power when processing queries. 28], the expansion dimension and its variants have recently An obvious limitation of the aforementioned solutions is been used in the analysis of the performance of a projection- that an independent R-Tree would be required for each pos- based heuristic for outlier detection [12], and of approxima- sible value of k — which is generally infeasible in practice. tion algorithms for multistep similarity search with lower- Approaches such as [3, 44, 2, 4] attempt to overcome this bounding distances [23, 24, 25].
Recommended publications
  • Two Algorithms for Nearest-Neighbor Search in High Dimensions
    Two Algorithms for Nearest-Neighbor Search in High Dimensions Jon M. Kleinberg∗ February 7, 1997 Abstract Representing data as points in a high-dimensional space, so as to use geometric methods for indexing, is an algorithmic technique with a wide array of uses. It is central to a number of areas such as information retrieval, pattern recognition, and statistical data analysis; many of the problems arising in these applications can involve several hundred or several thousand dimensions. We consider the nearest-neighbor problem for d-dimensional Euclidean space: we wish to pre-process a database of n points so that given a query point, one can ef- ficiently determine its nearest neighbors in the database. There is a large literature on algorithms for this problem, in both the exact and approximate cases. The more sophisticated algorithms typically achieve a query time that is logarithmic in n at the expense of an exponential dependence on the dimension d; indeed, even the average- case analysis of heuristics such as k-d trees reveals an exponential dependence on d in the query time. In this work, we develop a new approach to the nearest-neighbor problem, based on a method for combining randomly chosen one-dimensional projections of the underlying point set. From this, we obtain the following two results. (i) An algorithm for finding ε-approximate nearest neighbors with a query time of O((d log2 d)(d + log n)). (ii) An ε-approximate nearest-neighbor algorithm with near-linear storage and a query time that improves asymptotically on linear search in all dimensions.
    [Show full text]
  • Rank-Approximate Nearest Neighbor Search: Retaining Meaning and Speed in High Dimensions
    Rank-Approximate Nearest Neighbor Search: Retaining Meaning and Speed in High Dimensions Parikshit Ram, Dongryeol Lee, Hua Ouyang and Alexander G. Gray Computational Science and Engineering, Georgia Institute of Technology Atlanta, GA 30332 p.ram@,dongryel@cc.,houyang@,agray@cc. gatech.edu { } Abstract The long-standing problem of efficient nearest-neighbor (NN) search has ubiqui- tous applications ranging from astrophysics to MP3 fingerprinting to bioinformat- ics to movie recommendations. As the dimensionality of the dataset increases, ex- act NN search becomes computationally prohibitive; (1+) distance-approximate NN search can provide large speedups but risks losing the meaning of NN search present in the ranks (ordering) of the distances. This paper presents a simple, practical algorithm allowing the user to, for the first time, directly control the true accuracy of NN search (in terms of ranks) while still achieving the large speedups over exact NN. Experiments on high-dimensional datasets show that our algorithm often achieves faster and more accurate results than the best-known distance-approximate method, with much more stable behavior. 1 Introduction In this paper, we address the problem of nearest-neighbor (NN) search in large datasets of high dimensionality. It is used for classification (k-NN classifier [1]), categorizing a test point on the ba- sis of the classes in its close neighborhood. Non-parametric density estimation uses NN algorithms when the bandwidth at any point depends on the ktℎ NN distance (NN kernel density estimation [2]). NN algorithms are present in and often the main cost of most non-linear dimensionality reduction techniques (manifold learning [3, 4]) to obtain the neighborhood of every point which is then pre- served during the dimension reduction.
    [Show full text]
  • Nearest Neighbor Search in Google Correlate
    Nearest Neighbor Search in Google Correlate Dan Vanderkam Robert Schonberger Henry Rowley Google Inc Google Inc Google Inc 76 9th Avenue 76 9th Avenue 1600 Amphitheatre Parkway New York, New York 10011 New York, New York 10011 Mountain View, California USA USA 94043 USA [email protected] [email protected] [email protected] Sanjiv Kumar Google Inc 76 9th Avenue New York, New York 10011 USA [email protected] ABSTRACT queries are then noted, and a model that estimates influenza This paper presents the algorithms which power Google Cor- incidence based on present query data is created. relate[8], a tool which finds web search terms whose popu- This estimate is valuable because the most recent tradi- larity over time best matches a user-provided time series. tional estimate of the ILI rate is only available after a two Correlate was developed to generalize the query-based mod- week delay. Indeed, there are many fields where estimating eling techniques pioneered by Google Flu Trends and make the present[1] is important. Other health issues and indica- them available to end users. tors in economics, such as unemployment, can also benefit Correlate searches across millions of candidate query time from estimates produced using the techniques developed for series to find the best matches, returning results in less than Google Flu Trends. 200 milliseconds. Its feature set and requirements present Google Flu Trends relies on a multi-hour batch process unique challenges for Approximate Nearest Neighbor (ANN) to find queries that correlate to the ILI time series. Google search techniques. In this paper, we present Asymmetric Correlate allows users to create their own versions of Flu Hashing (AH), the technique used by Correlate, and show Trends in real time.
    [Show full text]
  • R-Trees with Voronoi Diagrams for Efficient Processing of Spatial
    VoR-Tree: R-trees with Voronoi Diagrams for Efficient Processing of Spatial Nearest Neighbor Queries∗ y Mehdi Sharifzadeh Cyrus Shahabi Google University of Southern California [email protected] [email protected] ABSTRACT A very important class of spatial queries consists of nearest- An important class of queries, especially in the geospatial neighbor (NN) query and its variations. Many studies in domain, is the class of nearest neighbor (NN) queries. These the past decade utilize R-trees as their underlying index queries search for data objects that minimize a distance- structures to address NN queries efficiently. The general ap- based function with reference to one or more query objects. proach is to use R-tree in two phases. First, R-tree's hierar- Examples are k Nearest Neighbor (kNN) [13, 5, 7], Reverse chical structure is used to quickly arrive to the neighborhood k Nearest Neighbor (RkNN) [8, 15, 16], k Aggregate Nearest of the result set. Second, the R-tree nodes intersecting with Neighbor (kANN) [12] and skyline queries [1, 11, 14]. The the local neighborhood (Search Region) of an initial answer applications of NN queries are numerous in geospatial deci- are investigated to find all the members of the result set. sion making, location-based services, and sensor networks. While R-trees are very efficient for the first phase, they usu- The introduction of R-trees [3] (and their extensions) for ally result in the unnecessary investigation of many nodes indexing multi-dimensional data marked a new era in de- that none or only a small subset of their including points veloping novel R-tree-based algorithms for various forms belongs to the actual result set.
    [Show full text]
  • Efficient Nearest Neighbor Searching for Motion Planning
    E±cient Nearest Neighbor Searching for Motion Planning Anna Atramentov Steven M. LaValle Dept. of Computer Science Dept. of Computer Science Iowa State University University of Illinois Ames, IA 50011 USA Urbana, IL 61801 USA [email protected] [email protected] Abstract gies of con¯guration spaces. The topologies that usu- ally arise are Cartesian products of R, S1, and projective We present and implement an e±cient algorithm for per- spaces. In these cases, metric information must be ap- forming nearest-neighbor queries in topological spaces propriately processed by any data structure designed to that usually arise in the context of motion planning. perform nearest neighbor computations. The problem is Our approach extends the Kd tree-based ANN algo- further complicated by the high dimensionality of con¯g- rithm, which was developed by Arya and Mount for Eu- uration spaces. clidean spaces. We argue the correctness of the algo- rithm and illustrate its e±ciency through computed ex- In this paper, we extend the nearest neighbor algorithm amples. We have applied the algorithm to both prob- and part of the ANN package of Arya and Mount [16] to abilistic roadmaps (PRMs) and Rapidly-exploring Ran- handle general topologies with very little computational dom Trees (RRTs). Substantial performance improve- overhead. Related literature is discussed in Section 3. ments are shown for motion planning examples. Our approach is based on hierarchically searching nodes in a Kd tree while handling the appropriate constraints induced by the metric and topology. We have proven the 1 Introduction correctness of our approach, and we have demonstrated the e±ciency of the algorithm experimentally.
    [Show full text]
  • A Fast All Nearest Neighbor Algorithm for Applications Involving Large Point-Clouds à Jagan Sankaranarayanan , Hanan Samet, Amitabh Varshney
    Best Journal Paper of 2007 Award ARTICLE IN PRESS Computers & Graphics 31 (2007) 157–174 www.elsevier.com/locate/cag A fast all nearest neighbor algorithm for applications involving large point-clouds à Jagan Sankaranarayanan , Hanan Samet, Amitabh Varshney Department of Computer Science, Center for Automation Research, Institute for Advanced Computer Studies, University of Maryland, College Park, MD - 20742, USA Abstract Algorithms that use point-cloud models make heavy use of the neighborhoods of the points. These neighborhoods are used to compute the surface normals for each point, mollification, and noise removal. All of these primitive operations require the seemingly repetitive process of finding the k nearest neighbors (kNNs) of each point. These algorithms are primarily designed to run in main memory. However, rapid advances in scanning technologies have made available point-cloud models that are too large to fit in the main memory of a computer. This calls for more efficient methods of computing the kNNs of a large collection of points many of which are already in close proximity. A fast kNN algorithm is presented that makes use of the locality of successive points whose k nearest neighbors are sought to reduce significantly the time needed to compute the neighborhood needed for the primitive operation as well as enable it to operate in an environment where the data is on disk. Results of experiments demonstrate an order of magnitude improvement in the time to perform the algorithm and several orders of magnitude improvement in work efficiency when compared with several prominent existing methods. r 2006 Elsevier Ltd. All rights reserved.
    [Show full text]
  • Fast Algorithm for Nearest Neighbor Search Based on a Lower Bound Tree
    in Proceedings of the 8th International Conference on Computer Vision, Vancouver, Canada, Jul. 2001, Volume 1, pages 446–453 Fast Algorithm for Nearest Neighbor Search Based on a Lower Bound Tree Yong-Sheng Chen†‡ Yi-Ping Hung†‡ Chiou-Shann Fuh‡ †Institute of Information Science, Academia Sinica, Taipei, Taiwan ‡Dept. of Computer Science and Information Engineering, National Taiwan University, Taiwan Email: [email protected] Abstract In the past, Bentley [2] proposed the k-dimensional bi- nary search tree to speed up the the nearest neighbor search. This paper presents a novel algorithm for fast nearest This method is very efficient when the dimension of the data neighbor search. At the preprocessing stage, the proposed space is small. However, as reported in [13] and [3], its algorithm constructs a lower bound tree by agglomeratively performance degrades exponentially with increasing dimen- clustering the sample points in the database. Calculation of sion. Fukunaga and Narendra [8] constructed a tree struc- the distance between the query and the sample points can be ture by repeating the process of dividing the set of sam- avoided if the lower bound of the distance is already larger ple points into subsets. Given a query point, they used than the minimum distance. The search process can thus a branch-and-bound search strategy to efficiently find the be accelerated because the computational cost of the lower closest point by using the tree structure. Djouadi and Bouk- bound, which can be calculated by using the internal node tache [5] partitioned the underlying space of the sample of the lower bound tree, is less than that of the distance.
    [Show full text]
  • Efficient Similarity Search in High-Dimensional Data Spaces
    New Jersey Institute of Technology Digital Commons @ NJIT Dissertations Electronic Theses and Dissertations Spring 5-31-2004 Efficient similarity search in high-dimensional data spaces Yue Li New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/dissertations Part of the Computer Sciences Commons Recommended Citation Li, Yue, "Efficient similarity search in high-dimensional data spaces" (2004). Dissertations. 633. https://digitalcommons.njit.edu/dissertations/633 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment
    [Show full text]
  • A Cost Model for Nearest Neighbor Search in High-Dimensional Data Space
    A Cost Model For Nearest Neighbor Search in High-Dimensional Data Space Stefan Berchtold Christian Böhm University of Munich University of Munich Germany Germany [email protected] [email protected] Daniel A. Keim Hans-Peter Kriegel University of Munich University of Munich Germany Germany [email protected] [email protected] Abstract multimedia indexing [9], CAD [17], molecular biology (for In this paper, we present a new cost model for nearest neigh- the docking of molecules) [24], string matching [1], etc. Most bor search in high-dimensional data space. We first analyze applications use some kind of feature vector for an efficient different nearest neighbor algorithms, present a generaliza- access to the complex original data. Examples of feature vec- tion of an algorithm which has been originally proposed for tors are color histograms [23], shape descriptors [16, 18], Quadtrees [13], and show that this algorithm is optimal. Fourier vectors [26], text descriptors [15], etc. Nearest neigh- Then, we develop a cost model which - in contrast to previous bor search on the high-dimensional feature vectors may be models - takes boundary effects into account and therefore defined as follows: also works in high dimensions. The advantages of our model Given a data set DS of d-dimensional points, find the data are in particular: Our model works for data sets with an arbi- point NN from the data set which is closer to the given query trary number of dimensions and an arbitrary number of data point Q than any other point in the data set.
    [Show full text]
  • Improving K-Nearest Neighbor Approaches for Density-Based Pixel Clustering in Hyperspectral Remote Sensing Images
    remote sensing Article Improving K-Nearest Neighbor Approaches for Density-Based Pixel Clustering in Hyperspectral Remote Sensing Images Claude Cariou 1,*, , Steven Le Moan 2 and Kacem Chehdi 1 1 Institut d’Électronique et des Technologies du numéRique, CNRS, Univ Rennes, UMR 6164, Enssat, 6 rue de Kerampont, F22300 Lannion, France; [email protected] 2 Centre for Research in Image and Signal Processing, Massey University, Palmerston North 4410, New Zealand; [email protected] * Correspondence: [email protected] Received: 30 September 2020; Accepted: 12 November 2020; Published: 14 November 2020 Abstract: We investigated nearest-neighbor density-based clustering for hyperspectral image analysis. Four existing techniques were considered that rely on a K-nearest neighbor (KNN) graph to estimate local density and to propagate labels through algorithm-specific labeling decisions. We first improved two of these techniques, a KNN variant of the density peaks clustering method DPC, and a weighted-mode variant of KNNCLUST, so the four methods use the same input KNN graph and only differ by their labeling rules. We propose two regularization schemes for hyperspectral image analysis: (i) a graph regularization based on mutual nearest neighbors (MNN) prior to clustering to improve cluster discovery in high dimensions; (ii) a spatial regularization to account for correlation between neighboring pixels. We demonstrate the relevance of the proposed methods on synthetic data and hyperspectral images, and show they achieve superior overall performances in most cases, outperforming the state-of-the-art methods by up to 20% in kappa index on real hyperspectral images. Keywords: clustering methods; density estimation; nearest neighbor search; deterministic algorithm; unsupervised learning 1.
    [Show full text]
  • Very Large Scale Nearest Neighbor Search: Ideas, Strategies and Challenges
    Int. Jnl. Multimedia Information Retrieval, IJMIR, vol. 2, no. 4, 2013. The final publication is available at Springer via http://dx.doi.org/10.1007/s13735-013-0046-4 Very Large Scale Nearest Neighbor Search: Ideas, Strategies and Challenges Erik Gast, Ard Oerlemans, Michael S. Lew Leiden University Niels Bohrweg 1 2333CA Leiden The Netherlands {gast, aoerlema, mlew} @liacs.nl Abstract Web-scale databases and Big Data collections are computationally challenging to analyze and search. Similarity or more precisely nearest neighbor searches are thus crucial in the analysis, indexing and utilization of these massive multimedia databases. In this work, we begin by reviewing the top approaches from the research literature in the past decade. Furthermore, we evaluate the scalability and computational complexity as the feature complexity and database size vary. For the experiments we used two different data sets with different dimensionalities. The results reveal interesting insights regarding the index structures and their behavior when the data set size is increased. We also summarized the ideas, strategies and challenges for the future. 1. Introduction Very large scale multimedia databases are becoming common and thus searching within them has become more important. Clearly, one of the most frequently used searching paradigms is k-nearest neighbor(k- NN), where the k objects that are most similar to the query are retrieved. Unfortunately, this k-NN search is also a very expensive operation. In order to do a k-NN search efficiently, it is important to have an index structure that can efficiently handle k-NN searches on large databases. From a theoretical and technical point of view, finding the k nearest neighbors is less than linear time is challenging and largely 1 unsolved.
    [Show full text]
  • Voronoi-Based Nearest Neighbor Search for Multi-Dimensional Uncertain Databases
    Voronoi-based Nearest Neighbor Search for Multi-Dimensional Uncertain Databases Peiwu Zhang #1, Reynold Cheng #2, Nikos Mamoulis #3, Matthias Renz ∗4 Andreas Zufile¨ ∗5, Yu Tang #6, Tobias Emrich ∗7 #The University of Hong Kong, Pokfulam Road, Hong Kong fpwzhang 1, ckcheng 2, nikos 3,ytang [email protected] ∗Ludwig-Maximilians-Universitat¨ Munchen,¨ Munich, Germany ∗frenz 4, zuefle 5, emrich [email protected]fi.lmu.de Abstract— In Voronoi-based nearest neighbor search, the public, may also be perturbed with noise, in order to alleviate Voronoi cell of every point p in a database can be used to privacy concerns [2]. check whether p is the closest to some query point q. We In natural habitat monitoring, information collected at sen- extend the notion of Voronoi cells to support uncertain objects, whose attribute values are inexact. Particularly, we propose the sor nodes (e.g., temperature and humidity) can be contam- Possible Voronoi cell (or PV-cell). A PV-cell of a multi-dimensional inated with measurement error [3]. In order to satisfy the uncertain object o is a region R, such that for any point p 2 R, increasing needs of managing imprecise data, several uncertain o may be the nearest neighbor of p. If the PV-cells of all objects databases have been developed [4]–[7]. in a database S are known, they can be used to identify objects In this paper, we study the efficient evaluation of the that have a chance to be the nearest neighbor of q. However, there is no efficient algorithm for computing an probabilistic nearest neighbor query (PNNQ), a fundamental exact PV-cell.
    [Show full text]