Fermat Meets SWAC: Vandiver, the Lehmers, Computers, and Number Theory

Total Page:16

File Type:pdf, Size:1020Kb

Fermat Meets SWAC: Vandiver, the Lehmers, Computers, and Number Theory Fermat Meets SWAC: Vandiver, the Lehmers, Computers, and Number Theory Leo Corry Tel Aviv University This article describes the work of Harry Schultz Vandiver, Derrick Henry Lehmer, and Emma Lehmer on calculations related with proofs of Fermat’s last theorem. This story sheds light on ideological and institutional aspects of activity in number theory in the US during the 20th century, and on the incursion of computer-assisted methods into pure fields of mathematical research. The advent of the electronic digital computer than 100. Extending this result beyond 100 opened a new era of unprecedented possibil- involved, above all, straightforward (if tedious) ities for large-scale number crunching. Begin- computations. Yet, little work was devoted to ning in the late 1940s, these gradually increas- such computations before 1920, and even ing possibilities were duly pursued in many then, this remained an essentially marginal branches of science. Some of them, like trend within number theory. meteorology, geophysics, or engineering sci- Thus, when electronic computers started to ence, underwent deep and quick transforma- became available in the late 1940s, few tions. Pure mathematical disciplines such as mathematicians working in the core, ‘‘pure’’ number theory can be counted among the less fields of the discipline incorporated them in receptive audiences for these newly opened their research agendas. Even fewer did so for possibilities. One way to account for this Fermat’s last theorem. Harry Schultz Vandiver somewhat ironic situation is to examine the (1882–1973) was one of the few to do so. He main research trends that shaped progress in joined forces with the couple Derrick Henry the algebraic theory of numbers from the Lehmer (1905–1991), and Emma Lehmer second half of the 19th century on. Central (1906–2007). The Lehmers possessed the nec- to such trends was a conscious attempt to essary expertise that combined deep knowl- develop powerful conceptual tools for solving edge in both number theory and the use of theoretical problems ‘‘purely by ideas’’ and electronic computers. They also had the with ‘‘a minimum of blind calculations.’’ institutional connections that facilitated the Indeed, this became an ethos that gradually use of computing resources with SWAC (Stan- came to dominate most fields of pure mathe- dards Western Automatic Computer) on be- matics after 1930. half of this project. This conceptual approach was developed This article describes the work of these three by leading German mathematicians such as mathematicians in connection with Fermat’s Richard Dedekind (1831–1916) and David last theorem, and how they came to introduce Hilbert (1862–1943) on the basis of ideas that electronic computers to research on that first appeared in the work of the great Berlin problem. number-theorist, Ernst E. Kummer (1810– 1893), in the 1850s. But Kummer’s own work From Sophie Germain to Kummer actually features many massive computations Sometime after 1630, Pierre de Fermat wrote with particular cases that would eventually in the margins of a book that the equation xn + disappear from the algebraic theory of num- yn 5 zn has no nontrivial integer solutions bers by the turn of the 20th century. Among x,y,z,whenn . 2. He also claimed to have other things, Kummer’s research led in 1859 to found a proof for this fact, which the margins a famous result, namely, that Fermat’s last of his book were too narrow to contain. theorem is true for all prime exponents less Eventually, this unproved conjecture became 0 IEEE Annals of the History of Computing Published by the IEEE Computer Society 1058-6180/08/$25.00 G 2008 IEEE IEEE Annals of the History of Computing anhc-30-01-cor.3d 11/1/08 22:31:26 0 known as Fermat’s last theorem. Attempts to Adrian Marie Legendre (1752–1833) was a prove it, and indeed to find Fermat’s putative prominent French mathematician who was proof, were unsuccessful. The problem increas- among the first to acknowledge Germain’s ingly attracted the curiosity of mathematicians talents. He corresponded with her and tried to and amateurs alike, while becoming the object use her methods for proving additional cases. of many legends. The mythical dimension of Case II turned out to be much more difficult its story was greatly heightened after the grand from the beginning. For p 5 5, case II was finale provided by the brilliant, surprising, and proved only in 1825 in separate, complementa- highly complex proof, advanced in 1994 by ry proofs of Legendre and Peter Lejeune Dirich- Princeton mathematician Andrew Wiles that let (1805–1859). Dirichlet also proved in 1832 turned the theorem, and many names associ- case II for n 5 14, and he did so while trying to ated with it, into the focus of unusual public prove it for p 5 7. This latter case turned out to attention.1 But as a matter of fact, an attentive be especially difficult, and it was finally proved reading of the historical record shows that in 1839 by Gabriel Lame´ (1795–1870).3 from its very inception, this was an open The next significant contribution came conjecture to which few mathematicians (and from Kummer. His line of attack originated above all few outstanding number theorists) in his efforts to address what he considered to dedicated sustained research efforts worthy of be the most important question in number that name—the kind of attention they devoted theory, namely, the so-called higher reciproc- was mostly passive. ity laws. Kummer’s interest in Fermat’s last Born on the physical margins of a book, for theorem was only ancillary to this, but he more than 350 years Fermat’s theorem essen- relied on an important insight discovered as tially remained at the margins of the mathe- part of these efforts, namely the identification matics profession, brought occasionally into of a special class of prime numbers, later called the limelight before the work of Wiles.2 Still, ‘‘regular.’’ In 1850, Kummer proved that the the theorem’s history is important in many theorem is valid for all regular primes. senses, and this is also the case concerning the Kummer also provided an algorithm based question of the relationship between concep- on the use of so-called Bernoulli numbers, Bn, tual breakthroughs and intense calculation in in order to tell for a given prime number mathematics. whether or not it is regular. Using the values of In the early 19th century, some of the Bn known at the time, he worked out all the sporadic efforts toward proving the theorem computations necessary to see the only non- yield interesting results that set the scene for regular primes he found below 164 were 37, the vast majority of subsequent contributions 59, 67, 101, 103, 131, 149, and 157. He did not (prior to Wiles’ proof that eventually came go beyond 164, possibly because of the from a completely different direction). In this complexity and length of the calculations section, I cursorily present those results and involved. At any rate, Kummer initially be- the concepts associated with them, inasmuch lieved that there would be infinitely many as they are necessary for understanding the regular primes, and indeed that only a few starting point of Vandiver’s work. primes would be irregular. An early, significant result specifically aris- Kummer naturally asked himself how to go ing from attempts to prove the theorem was about the case of irregular primes. He brilliant- advanced by Sophie Germain (1776–1831). As ly developed three criteria that provided a a woman, Germain initially worked outside sufficient condition for the validity of Fermat’s the mathematical establishment of her time, last theorem for a given irregular prime p. and corresponded with Carl Friedrich Gauss Checking the criteria for any given p involves a using a pseudonym. The theorem that was considerable computational effort, but they do later associated with her name implied that yield clear results. Kummer was by no means Fermat’s last theorem can be fully elucidated intimidated by the need to make the necessary by handling the following two separate cases: calculations. And, indeed, in 1857 he pub- lished a famous article that broke new ground, N Case I—none of the integers x,y,z is divis- both conceptually and in terms of specific ible by p; calculations4 It introduced the three said N Case II—one, and only one, of the integers criteria and proved that each of the three x,y,z is divisible by p. irregular primes smaller than 100 satisfies them. He thus achieved the impressive result Germain proved case I for all primes under that Fermat’s last theorem is valid for all 197. exponents under 100. January–March 2008 0 IEEE Annals of the History of Computing anhc-30-01-cor.3d 11/1/08 22:31:27 1 Fermat Meets SWAC: Vandiver, the Lehmers, Computers, and Number Theory Kummer never published his calculations the second half of the 19th century, although nor explained any specific formula that per- these developments had little to do with haps facilitated these calculations. Clearly, the proving Fermat’s last theorem. Mainly under latter were lengthy and demanding. Indeed, the influence of an approach embodied in Kummer’s work turned out to contain some Dedekind’s work on the theory of ideals, new relatively minor inaccuracies, but this was ideas on the theory of algebraic fields gradually found out for the first time only in 1920 by developed in a direction that explicitly dis- Vandiver. It was clear at this point, at any rate, tanced itself form the kind of calculational that Kummer’s results might be extended with efforts developed by Kummer himself.
Recommended publications
  • Meetings & Conferences of The
    Meetings & Conferences of the AMS IMPORTANT INFORMATION REGARDING MEETINGS PROGRAMS: AMS Sectional Meeting programs do not appear in the print version of the Notices. However, comprehensive and continually updated meeting and program information with links to the abstract for each talk can be found on the AMS website. See http://www.ams.org/ meetings/. Final programs for Sectional Meetings will be archived on the AMS website accessible from the stated URL and in an electronic issue of the Notices as noted below for each meeting. Tamar Zeigler, Technion, Israel Institute of Technology, Tel Aviv, Israel Patterns in primes and dynamics on nilmanifolds. Bar-Ilan University, Ramat-Gan and Special Sessions Tel-Aviv University, Ramat-Aviv Additive Number Theory, Melvyn B. Nathanson, City University of New York, and Yonutz V. Stanchescu, Afeka June 16–19, 2014 Tel Aviv Academic College of Engineering. Monday – Thursday Algebraic Groups, Division Algebras and Galois Co- homology, Andrei Rapinchuk, University of Virginia, and Meeting #1101 Louis H. Rowen and Uzi Vishne, Bar Ilan University. The Second Joint International Meeting between the AMS Applications of Algebra to Cryptography, David Garber, and the Israel Mathematical Union. Holon Institute of Technology, and Delaram Kahrobaei, Associate secretary: Michel L. Lapidus City University of New York Graduate Center. Announcement issue of Notices: January 2014 Asymptotic Geometric Analysis, Shiri Artstein and Boaz Program first available on AMS website: To be announced Klar’tag, Tel Aviv University, and Sasha Sodin, Princeton Program issue of electronic Notices: To be announced University. Issue of Abstracts: Not applicable Combinatorial Games, Aviezri Fraenkel, Weizmann University, Richard Nowakowski, Dalhousie University, Deadlines Canada, Thane Plambeck, Counterwave Inc., and Aaron For organizers: To be announced Siegel, Twitter.
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach Emigration Of
    Mathematisches Forschungsinstitut Oberwolfach Report No. 51/2011 DOI: 10.4171/OWR/2011/51 Emigration of Mathematicians and Transmission of Mathematics: Historical Lessons and Consequences of the Third Reich Organised by June Barrow-Green, Milton-Keynes Della Fenster, Richmond Joachim Schwermer, Wien Reinhard Siegmund-Schultze, Kristiansand October 30th – November 5th, 2011 Abstract. This conference provided a focused venue to explore the intellec- tual migration of mathematicians and mathematics spurred by the Nazis and still influential today. The week of talks and discussions (both formal and informal) created a rich opportunity for the cross-fertilization of ideas among almost 50 mathematicians, historians of mathematics, general historians, and curators. Mathematics Subject Classification (2000): 01A60. Introduction by the Organisers The talks at this conference tended to fall into the two categories of lists of sources and historical arguments built from collections of sources. This combi- nation yielded an unexpected richness as new archival materials and new angles of investigation of those archival materials came together to forge a deeper un- derstanding of the migration of mathematicians and mathematics during the Nazi era. The idea of measurement, for example, emerged as a critical idea of the confer- ence. The conference called attention to and, in fact, relied on, the seemingly stan- dard approach to measuring emigration and immigration by counting emigrants and/or immigrants and their host or departing countries. Looking further than this numerical approach, however, the conference participants learned the value of measuring emigration/immigration via other less obvious forms of measurement. 2892 Oberwolfach Report 51/2011 Forms completed by individuals on religious beliefs and other personal attributes provided an interesting cartography of Italian society in the 1930s and early 1940s.
    [Show full text]
  • September 2014
    LONDONLONDON MATHEMATICALMATHEMATICAL SOCIETYSOCIETY NEWSLETTER No. 439 September 2014 Society Meetings HIGHEST HONOUR FOR UK and Events MATHEMATICAN Professor Martin Hairer, FRS, 2014 University of Warwick, has become the ninth UK based Saturday mathematician to win the 6 September prestigious Fields Medal over Mathematics and the its 80 year history. The medal First World War recipients were announced Meeting, London on Wednesday 13 August in page 15 a ceremony at the four-year- ly International Congress for 1 Wednesday Mathematicians, which on this 24 September occasion was held in Seoul, South Korea. LMS Popular Lectures See page 4 for the full report. Birmingham page 12 Friday LMS ANNOUNCES SIMON TAVARÉ 14 November AS PRESIDENT-DESIGNATE LMS AGM © The University of Cambridge take over from the London current President, Professor Terry Wednesday Lyons, FRS, in 17 December November 2015. SW & South Wales Professor Tavaré is Meeting a versatile math- Plymouth ematician who has established a distinguished in- ternational career culminating in his current role as The London Mathematical Director of the Cancer Research Society is pleased to announce UK Cambridge Institute and Professor Simon Tavaré, Professor in DAMTP, where he NEWSLETTER FRS, FMedSci, University of brings his understanding of sto- ONLINE: Cambridge, as President-Des- chastic processes and expertise newsletter.lms.ac.uk ignate. Professor Tavaré will in the data science of DNA se- (Cont'd on page 3) LMS NEWSLETTER http://newsletter.lms.ac.uk Contents No. 439 September 2014 15 44 Awards Partial Differential Equations..........................37 Collingwood Memorial Prize..........................11 Valediction to Jeremy Gray..............................33 Calendar of Events.......................................50 News LMS Items European News.................................................16 HEA STEM Strategic Project...........................
    [Show full text]
  • Richard Von Mises's Philosophy of Probability and Mathematics
    “A terrible piece of bad metaphysics”? Towards a history of abstraction in nineteenth- and early twentieth-century probability theory, mathematics and logic Lukas M. Verburgt If the true is what is grounded, then the ground is neither true nor false LUDWIG WITTGENSTEIN Whether all grow black, or all grow bright, or all remain grey, it is grey we need, to begin with, because of what it is, and of what it can do, made of bright and black, able to shed the former , or the latter, and be the latter or the former alone. But perhaps I am the prey, on the subject of grey, in the grey, to delusions SAMUEL BECKETT “A terrible piece of bad metaphysics”? Towards a history of abstraction in nineteenth- and early twentieth-century probability theory, mathematics and logic ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. D.C. van den Boom ten overstaan van een door het College voor Promoties ingestelde commissie in het openbaar te verdedigen in de Agnietenkapel op donderdag 1 oktober 2015, te 10:00 uur door Lukas Mauve Verburgt geboren te Amersfoort Promotiecommissie Promotor: Prof. dr. ir. G.H. de Vries Universiteit van Amsterdam Overige leden: Prof. dr. M. Fisch Universitat Tel Aviv Dr. C.L. Kwa Universiteit van Amsterdam Dr. F. Russo Universiteit van Amsterdam Prof. dr. M.J.B. Stokhof Universiteit van Amsterdam Prof. dr. A. Vogt Humboldt-Universität zu Berlin Faculteit der Geesteswetenschappen © 2015 Lukas M. Verburgt Graphic design Aad van Dommelen (Witvorm)
    [Show full text]
  • November 2014
    LONDONLONDON MATHEMATICALMATHEMATICAL SOCIETYSOCIETY NEWSLETTER No. 441 November 2014 Society Meetings ELECTIONS TO COUNCIL AND and Events NOMINATING COMMITTEE 2014 Members should now have for the election can be found on 2014 received a communication from the LMS website at www.lms. Friday the Electoral Reform Society (ERS) ac.uk/about/council/lms-elections. 14 November for both e-voting and paper ballot. For both electronic and postal LMS AGM For online voting, members may voting the deadline for receipt Naylor Lecture cast a vote by going to www. of votes is Thursday 6 November. London votebyinternet.com/LMS2014 and Members may still cast a vote in page 7 using the two part security code person at the AGM, although an Wednesday on the email sent by the ERS and in-person vote must be cast via a 17 December also on their ballot paper. paper ballot. 1 SW & South Wales All members are asked to look Members may like to note that Regional Meeting out for communication from an LMS Election blog, moderated Plymouth page 27 the ERS. We hope that as many by the Scrutineers, can be members as possible will cast their found at http://discussions.lms. 2015 vote. If you have not received ac.uk/elections2014. ballot material, please contact Friday 16 January [email protected], con- Future Elections 150th Anniversary firming the address (post or email) Members are invited to make sug- Launch, London page 9 to which you would like material gestions for nominees for future sent. election to Council. These should Friday 27 February With respect to the election itself, be addressed to the Nominat- Mary Cartwright there are ten candidates proposed ing Committee (nominations@ Lecture, London for six vacancies for Member-at- lms.ac.uk).
    [Show full text]
  • The Catalan Mathematical Society EMS June 2000 3 EDITORIAL
    CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF ROBIN WILSON Department of Pure Mathematics The Open University Milton Keynes MK7 6AA, UK e-mail: [email protected] ASSOCIATE EDITORS STEEN MARKVORSEN Department of Mathematics Technical University of Denmark Building 303 NEWSLETTER No. 36 DK-2800 Kgs. Lyngby, Denmark e-mail: [email protected] KRZYSZTOF CIESIELSKI June 2000 Mathematics Institute Jagiellonian University Reymonta 4 30-059 Kraków, Poland EMS News : Agenda, Editorial, 3ecm, Bedlewo Meeting, Limes Project ........... 2 e-mail: [email protected] KATHLEEN QUINN Open University [address as above] Catalan Mathematical Society ........................................................................... 3 e-mail: [email protected] SPECIALIST EDITORS The Hilbert Problems ....................................................................................... 10 INTERVIEWS Steen Markvorsen [address as above] SOCIETIES Interview with Peter Deuflhard ....................................................................... 14 Krzysztof Ciesielski [address as above] EDUCATION Vinicio Villani Interview with Jaroslav Kurzweil ..................................................................... 16 Dipartimento di Matematica Via Bounarotti, 2 56127 Pisa, Italy A Major Challenge for Mathematicians ........................................................... 20 e-mail: [email protected] MATHEMATICAL PROBLEMS Paul Jainta EMS Position Paper: Towards a European Research Area ............................. 24
    [Show full text]
  • Leo Corry HILBERT's 6TH PROBLEM: BETWEEN THE
    Leo Corry HILBERT’S 6TH PROBLEM: BETWEEN THE FOUNDATIONS OF GEOMETRY AND THE AXIOMATIZATION OF PHYSICS LEO CORRY1 Abstract. The sixth of Hilbert’s famous 1900 list of twenty-three problems was a programmatic call for the axiomatization of the physical sciences. It was naturally and organically rooted at the core of Hilbert’s conception of what axiomatization is all about. In fact, the axiomatic method which he applied at the turn of the twentieth-century in his famous work on the foundations of geometry originated in a preoccupation with foundational questions related with empirical science in general. Indeed, far from a purely formal conception, Hilbert counted geometry among the sciences with strong empirical content, closely related to other branches of physics and deserving a treatment similar to that reserved for the latter. In this treatment, the axiomatization project was meant to play, in his view, a crucial role. Curiously, and contrary to a once-prevalent view, from all the problems in the list, the sixth is the only one that continually engaged Hilbet’s efforts over a very long period of time, at least between 1894 and 1932. (TO APPEAR IN: Philosophical Transactions of the Royal Society (A) - DOI: 10.1098/rsta.2017.0221) 1. Introduction Of the many important and brilliant talks delivered in International Congresses of Mathematicians (ICM) ever since the inception of this institution in 1897 in Zurich, none has so frequently been quoted and, arguably, none has had the kind of pervasive influence, that had the one delivered by David Hilbert in 1900 at the second ICM in Paris, under the title of “Mathematical Problems”.
    [Show full text]
  • On the Origins of Hilbert's Sixth Problem: Physics and the Empiricist Approach to Axiomatization
    On the origins of Hilbert’s sixth problem: physics and the empiricist approach to axiomatization Leo Corry Abstract. The sixth of Hilbert’s famous 1900 list of twenty-three problems is a programmatic call for the axiomatization of physical sciences. Contrary to a prevalent view this problem was naturally rooted at the core of Hilbert’s conception of what axiomatization is all about. The axiomatic method embodied in his work on geometry at the turn of the twentieth-century orig- inated in a preoccupation with foundational questions related with empirical science, including geometry and other physical disciplines at a similar level. From all the problems in the list, the sixth is the only one that continually engaged his efforts over a very long period, at least between 1894 and 1932. Mathematics Subject Classification (2000). Primary 01A60; Secondary 03-03, 70-03, 83-03. Keywords. David Hilbert, axiomatization, physics. 1. Introduction Of the many important and brilliant plenary talks delivered in ICMs ever since the inception of this institution in 1897 in Zurich, none has so frequently been quoted and, possibly, none has had the kind of pervasive influence, as the one delivered by David Hilbert in 1900 at the second ICM in Paris, under the title of “Mathematical Problems”. Rather than summarizing the state of the art in a central branch of mathematics, Hilbert attempted to “lift the veil” and peer into the development of mathematics in the century that was about to begin. He chose to present a list of twenty-three problems that in his opinion would and should occupy the efforts of mathematicians in the years to come.
    [Show full text]
  • A Bibliography of Publications of Alan Mathison Turing
    A Bibliography of Publications of Alan Mathison Turing Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 24 August 2021 Version 1.227 Abstract This bibliography records publications of Alan Mathison Turing (1912– 1954). Title word cross-reference 0(z) [Fef95]. $1 [Fis15, CAC14b]. 1 [PSS11, WWG12]. $139.99 [Ano20]. $16.95 [Sal12]. $16.96 [Kru05]. $17.95 [Hai16]. $19.99 [Jon17]. 2 [Fai10b]. $21.95 [Sal12]. $22.50 [LH83]. $24.00/$34 [Kru05]. $24.95 [Sal12, Ano04, Kru05]. $25.95 [KP02]. $26.95 [Kru05]. $29.95 [Ano20, CK12b]. 3 [Ano11c]. $54.00 [Kru05]. $69.95 [Kru05]. $75.00 [Jon17, Kru05]. $9.95 [CK02]. H [Wri16]. λ [Tur37a]. λ − K [Tur37c]. M [Wri16]. p [Tur37c]. × [Jon17]. -computably [Fai10b]. -conversion [Tur37c]. -D [WWG12]. -definability [Tur37a]. -function [Tur37c]. 1 2 . [Nic17]. Zycie˙ [Hod02b]. 0-19-825079-7 [Hod06a]. 0-19-825080-0 [Hod06a]. 0-19-853741-7 [Rus89]. 1 [Ano12g]. 1-84046-250-7 [CK02]. 100 [Ano20, FB17, Gin19]. 10011-4211 [Kru05]. 10th [Ano51]. 11th [Ano51]. 12th [Ano51]. 1942 [Tur42b]. 1945 [TDCKW84]. 1947 [CV13b, Tur47, Tur95a]. 1949 [Ano49]. 1950s [Ell19]. 1951 [Ano51]. 1988 [Man90]. 1995 [Fef99]. 2 [DH10]. 2.0 [Wat12o]. 20 [CV13b]. 2001 [Don01a]. 2002 [Wel02]. 2003 [Kov03]. 2004 [Pip04]. 2005 [Bro05]. 2006 [Mai06, Mai07]. 2008 [Wil10]. 2011 [Str11]. 2012 [Gol12]. 20th [Kru05]. 25th [TDCKW84].
    [Show full text]
  • The Historical Origins of Spacetime Scott Walter
    The Historical Origins of Spacetime Scott Walter To cite this version: Scott Walter. The Historical Origins of Spacetime. Abhay Ashtekar, V. Petkov. The Springer Handbook of Spacetime, Springer, pp.27-38, 2014, 10.1007/978-3-662-46035-1_2. halshs-01234449 HAL Id: halshs-01234449 https://halshs.archives-ouvertes.fr/halshs-01234449 Submitted on 26 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The historical origins of spacetime Scott A. Walter Chapter 2 in A. Ashtekar and V. Petkov (eds), The Springer Handbook of Spacetime, Springer: Berlin, 2014, 27{38. 2 Chapter 2 The historical origins of spacetime The idea of spacetime investigated in this chapter, with a view toward un- derstanding its immediate sources and development, is the one formulated and proposed by Hermann Minkowski in 1908. Until recently, the principle source used to form historical narratives of Minkowski's discovery of space- time has been Minkowski's own discovery account, outlined in the lecture he delivered in Cologne, entitled \Space and time" [1]. Minkowski's lecture is usually considered as a bona fide first-person narrative of lived events. Ac- cording to this received view, spacetime was a natural outgrowth of Felix Klein's successful project to promote the study of geometries via their char- acteristic groups of transformations.
    [Show full text]
  • Archimedes Volume 10 Archimedes NEW STUDIES in the HISTORY and PHILOSOPHY of SCIENCE and TECHNOLOGY
    Archimedes Volume 10 Archimedes NEW STUDIES IN THE HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY VOLUME 10 EDITOR JED Z. BUCHWALD, Dreyfuss Professor of History, California Institute of Technology, Pasadena, CA, USA. ADVISORY BOARD HENK BOS, University of Utrecht MORDECHAI FEINGOLD, Virginia Polytechnic Institute ALLAN D. FRANKLIN, University of Colorado at Boulder KOSTAS GAVROGLU, National Technical University of Athens ANTHONY GRAFTON, Princeton University FREDERIC L. HOLMES, Yale University PAUL HOYNINGEN-HUENE, University of Hannover EVELYN FOX KELLER, MIT TREVOR LEVERE, University of Toronto JESPER LÜTZEN, Copenhagen University WILLIAM NEWMAN, Harvard University JÜRGEN RENN, Max-Planck-Institut für Wissenschaftsgeschichte ALEX ROLAND, Duke University ALAN SHAPIRO, University of Minnesota NANCY SIRAISI, Hunter College of the City University of New York NOEL SWERDLOW, University of Chicago Archimedes has three fundamental goals; to further the integration of the histories of science and technology with one another: to investigate the technical, social and prac- tical histories of specific developments in science and technology; and finally, where possible and desirable, to bring the histories of science and technology into closer con- tact with the philosophy of science. To these ends, each volume will have its own theme and title and will be planned by one or more members of the Advisory Board in consultation with the editor. Although the volumes have specific themes, the series it- self will not be limited to one or even to a few particular areas. Its subjects include any of the sciences, ranging from biology through physics, all aspects of technology, bro- adly construed, as well as historically-engaged philosophy of science or technology.
    [Show full text]
  • Rethinking the Reasons Behind the Lack of Reception
    How Much Change is Too Much Change? Rethinking the Reasons Behind the Lack of Reception to Brouwer’s Intuitionism [version accepted for presentation at PSA 2020; please don’t cite or quote without author’s permission] Kati Kish Bar-On The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University [email protected] Abstract The paper analyzes Brouwer’s intuitionistic attempt to reform mathematics through the prism of Leo Corry’s philosophical model of “body” and “image” of knowledge. Such an analysis sheds new light on the question of whether Brouwer’s intuitionism could at all be attractive to broader groups of mathematicians. It focuses on three characteristics that are unique to Bouwer’s reformation attempt and suggests that when considered together, they combine to provide a more complex understanding of the reasons behind the lack of reception to Brouwer’s intuitionism than any of the three can offer alone. 1 1. Introduction Brouwer’s intuitionistic program was an intriguing attempt to reform the foundations of mathematics and was probably the most controversial one within the contours of the foundational debate during the 1920s (van Stigt 1990; Hesseling 2003). Historians and philosophers of mathematics have tried to account for the reasons why Brouwer’s intuitionism did not prevail. Some associate the demise of Brouwer’s intuitionism with his dismissal from the editorial board of the Mathematische Annalen in 1928 (van Atten 2004). Others suggest that the lack of reception derived from technical difficulties within Brouwer’s mathematical arguments (Epple 2000) or due to his awkward and too-technical style of writing (van Dalen 2013).
    [Show full text]