Genome-Wide DNA Methylation in Chronic Myeloid Leukaemia

Total Page:16

File Type:pdf, Size:1020Kb

Genome-Wide DNA Methylation in Chronic Myeloid Leukaemia Genome-wide DNA Methylation in Chronic Myeloid Leukaemia Alexandra Bazeos Imperial College London Department of Medicine Centre for Haematology Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy of Imperial College London 2015 1 Abstract Epigenetic alterations occur frequently in leukaemia and might account for differences in clinical phenotype and response to treatment. Despite the consistent presence of the BCR-ABL1 fusion gene in Philadelphia-positive chronic myeloid leukaemia (CML), the clinical course of patients treated with tyrosine kinase inhibitors (TKI) is heterogeneous. This might be due to differing DNA methylation profiles between patients. Therefore, a validated, epigenome-wide survey in CML CD34+ progenitor cells was performed in newly diagnosed chronic phase patients using array-based DNA methylation and gene expression profiling. In practice, the CML DNA methylation signature was remarkably homogeneous; it differed from CD34+ cells of normal persons and did not correlate with an individual patient’s response to TKI therapy. Using a meta-analysis tool it was possible to demonstrate that this signature was highly enriched for developmentally dynamic regions of the human methylome and represents a combination of CML-unique, myeloid leukemia- specific and pan-cancer sub-signatures. The CML profile involved aberrantly methylated genes in signaling pathways already implicated in CML leukaemogenesis, including TGF-beta, Wnt, Jak-STAT and MAPK. Furthermore, a core set of differentially methylated promoters were identified that likely have a role in modulating gene expression levels. In conclusion, the findings are consistent with the notion that CML starts with the acquisition of a BCR-ABL1 fusion gene by a haematopoietic stem cell, which then either causes or cooperates with a series of DNA methylation changes that are specific for CML. 2 Declarations All clinical diagnoses referred to in this thesis were made by other physicians and not myself. Dr. Rob Lowe performed all bioinformatic analyses. Unless otherwise stated or referenced, all work presented in this thesis is my own. ------------------ Alexandra Bazeos The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they no do use it for the commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 3 Acknowledgements On December 24th 2013, the day my dearest friend and mentor Professor John Goldman died, his daughter Cassie gave me her father’s MD thesis “Leukaemic Stem Cells”. On the first page in faded typewriter print was the epigraph “Felix, qui potuit rerum cognoscere causas” literally translated “Happy is he who has been able to understand the causes of things”. This is certainly true; the complexities of the epigenetic code in chronic myeloid leukaemia had provided the backdrop for hours of animated debate, usually late into the night with John diligently commenting on yet another paper I had presented him with. His enthusiasm was infectious, his intellect superhuman and his ability to interpret scientific data extraordinary. Moreover, John guided me, placed opportunities in front of me and showed me the doors that might be useful to open. I know with certainty that I will never have the privilege of meeting anyone like him again. I am grateful to my supervisors Professors Vardhman Rakyan, Jane Apperley and Letizia Foroni. Vardhman, thanks for allowing me to spend so much time with your group at the Blizard and equipping me with the molecular techniques necessary to carry out this study. Letizia, without your practical support, I am not sure that this thesis would have ever reached its conclusion. I would especially like to thank my friend and collaborator Dr. Rob Lowe for not only providing his bioinformatic expertise but also for contributing many excellent ideas during our time working together. It is true to say that without his analyses (and re- analyses), endless assistance and kindness; my project would genuinely not have been possible. I must also express my greatest appreciation and respect to the patients many alive, some no longer, who in the face of adversity donated the blood and bone marrow samples that form the basis of this work. Thanks also, to my medical and nursing staff colleagues at The Catherine Lewis Centre, Hammersmith Hospital. This work was generously supported by the Medical Research Council’s Clinical Research Training Fellowship and Leuka (Registered charity no. 1154856). 4 Finally, I acknowledge my close friends and amazing family whose boundless love, encouragement and faith will forever inspire my human experience. Dad, Mum, Anna and Sophia, as long as we have each other, everything is possible. I dedicate my thesis to John Goldman’s delectable grandchildren Bodecia (aged 7), Juno (aged 7), Zephyrus (aged 6) and Penn (aged 6). 5 1 INTRODUCTION................................................................................................ 13 1.1 Milestones in CML ..................................................................................................................... 13 1.2 Aetiology and epidemiology of CML ......................................................................................... 18 1.3 Clinical aspects of CML ............................................................................................................. 19 1.4 Treatment and treatment related outcomes ............................................................................. 25 1.5 Resistance to imatinib and other TKIs ..................................................................................... 30 1.6 Molecular biology of CML ......................................................................................................... 34 1.7 Epigenetics ................................................................................................................................... 41 1.8 Hypothesis and aims of this thesis ............................................................................................. 57 2 MATERIALS AND METHODS ........................................................................ 58 2.1 Materials ...................................................................................................................................... 58 2.2 Methods ....................................................................................................................................... 65 3 IDENTIFICATION OF A UNIQUE DNA METHYLATION SIGNATURE IN CML CELLS ......................................................................................................... 94 3.1 Background ................................................................................................................................. 94 3.2 Hypothesis ................................................................................................................................... 97 3.3 Objectives .................................................................................................................................... 97 3.4 Results .......................................................................................................................................... 98 3.5 Discussion .................................................................................................................................. 182 4 THE EFFECTS OF BCR-ABL1 CONDITIONAL EXPRESSION ON THE GENOME-WIDE DNA METHYLATION PATTERNS OF U937P210BCR- ABL/C6 CELLS ....................................................................................................... 187 6 4.1 Introduction .............................................................................................................................. 187 4.2 Hypothesis ................................................................................................................................. 189 4.3 Aims ........................................................................................................................................... 189 4.4 Methods and overall experimental design .............................................................................. 190 4.5 Results ........................................................................................................................................ 194 4.6 Discussion .................................................................................................................................. 202 5 INVESTIGATING THE IMPACT OF ABERRANT DNA METHYLATION ON GENE EXPRESSION IN CML ....................................................................... 205 5.1 Introduction .............................................................................................................................. 205 5.2 Hypothesis ................................................................................................................................. 208 5.3 Aims ........................................................................................................................................... 208 5.4 Methods ..................................................................................................................................... 209 5.5
Recommended publications
  • Immuno-Oncology Panel 1
    Immuno-Oncology panel 1 Gene Symbol Target protein name UniProt ID (& link) Modification* (56 analytes) ADA17 ADAM17 metalloprotease domain 17 P78536 *blanks mean the assay detects the ANXA1 Annexin A1 P04083 non-modified peptide sequence ANXA1 Annexin A1 P04083 ARG2 arginase, type II P78540 ATM Serine-protein kinase ATM, Ataxia telangiectasia mutated Q13315 pS2996 ATM Serine-protein kinase ATM, Ataxia telangiectasia mutated Q13315 ATM Serine-protein kinase ATM, Ataxia telangiectasia mutated Q13315 pS367 ATM Serine-protein kinase ATM, Ataxia telangiectasia mutated Q13315 C10orf54 / VISTA chromosome 10 open reading frame 54 Q9H7M9 CCL5 C-C motif chemokine ligand 5 P13501 CD14 CD14 molecule P08571 CD163 CD163 molecule Q86VB7 CD274 / PDL1 Programmed cell death 1 ligand 1 CD274 Q9NZQ7 CD33 CD33 molecule P20138 CD40/TNR5 tumor necrosis factor receptor superfamily member 5 P25942 CD40/TNR5 tumor necrosis factor receptor superfamily member 5 P25942 CD47 CD47 molecule Q08722 CD70 CD70 antigen P32970 CD74/HG2A CD74 molecule, major histocompatibility complex, class II invariant chain Q8SNA0 CEACAM8 carcinoembryonic antigen-related cell adhesion molecule 8 P31997 CX3CL1 C-X3-C motif chemokine ligand 1 P78423 CXCL10 C-X-C motif chemokine ligand 10 P02778 CXCL13 chemokine (C-X-C motif) ligand 13 O43927 ENTPD1 ectonucleoside triphosphate diphosphohydrolase 1 Q86VV3 FAS/TNR6 Fas (TNF receptor superfamily, member 6) P25445 pY291 FAS/TNR6 Fas (TNF receptor superfamily, member 6) P25445 GAPDH Glyceraldehyde-3-phosphate dehydrogenase P04406 HAVCR2 hepatitis
    [Show full text]
  • Mouse Kcnip2 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Kcnip2 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Kcnip2 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Kcnip2 gene (NCBI Reference Sequence: NM_145703 ; Ensembl: ENSMUSG00000025221 ) is located on Mouse chromosome 19. 10 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 10 (Transcript: ENSMUST00000162528). Exon 4 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Kcnip2 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-98F2 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for disruptions in this gene are susceptible to induced cardiac arrhythmias but are otherwise normal. Exon 4 starts from about 27.65% of the coding region. The knockout of Exon 4 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 574 bp, and the size of intron 4 for 3'-loxP site insertion: 532 bp. The size of effective cKO region: ~625 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 2 3 4 5 6 7 8 9 10 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Kcnip2 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • BIO4342 Exercise 2: Browser-Based Annotation and RNA-Seq Data
    BIO4342 Exercise 2: Browser-Based Annotation and RNA-Seq Data Jeremy Buhler March 15, 2010 This exercise continues your introduction to practical issues in comparative annotation. You’ll be annotating genomic sequence from the dot chromosome of Drosophila mojavensis using your knowledge of BLAST and some improved visualization tools. You’ll also consider how best to integrate information from high-throughput sequencing of expressed RNA. 1 Getting Started To begin, go to our local genome browser at http://gander.wustl.edu/. Select “Genome Browser” from the left-side menu and choose the “Improved Dot” assembly of D. mojavensis for viewing. Finally, hit submit to start looking at the sequence. The entire dot assembly is about 1.69 megabases in length; zoom out to see everything. This assembly is built from a set of overlapping fosmid clones prepared for the 2009 edition of BIO 4342. We’ve added a variety of information to the genome browser to help you annotate, such as: • gene-structure predictions from several different tools; • repeats annotated using the RepeatMasker program; • BLAST hits to D. melanogaster proteins; • RNA-Seq data, which we’ll describe in more detail later. Having all this evidence available at once is somewhat overwhelming. To keep the view to a manageable level, I’d suggest that you initially set all the gene prediction tracks (Genscan, Nscan, SNAP, Geneid), as well as the repeat tracks, to “dense” mode, so that each displays on a single line. Set the BLAST hit track (called “D. mel proteins”) to “pack” to see the locations of all BLAST hits, and set the “RNA-Seq Coverage” track to “full” and the “TopHat junctions” track to “pack” to get a detailed view of these results.
    [Show full text]
  • BLAT—The BLAST-Like Alignment Tool
    Resource BLAT—The BLAST-Like Alignment Tool W. James Kent Department of Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA Analyzing vertebrate genomes requires rapid mRNA/DNA and cross-species protein alignments. A new tool, BLAT, is more accurate and 500 times faster than popular existing tools for mRNA/DNA alignments and 50 times faster for protein alignments at sensitivity settings typically used when comparing vertebrate sequences. BLAT’s speed stems from an index of all nonoverlapping K-mers in the genome. This index fits inside the RAM of inexpensive computers, and need only be computed once for each genome assembly. BLAT has several major stages. It uses the index to find regions in the genome likely to be homologous to the query sequence. It performs an alignment between homologous regions. It stitches together these aligned regions (often exons) into larger alignments (typically genes). Finally, BLAT revisits small internal exons possibly missed at the first stage and adjusts large gap boundaries that have canonical splice sites where feasible. This paper describes how BLAT was optimized. Effects on speed and sensitivity are explored for various K-mer sizes, mismatch schemes, and number of required index matches. BLAT is compared with other alignment programs on various test sets and then used in several genome-wide applications. http://genome.ucsc.edu hosts a web-based BLAT server for the human genome. Some might wonder why in the year 2002 the world needs sions on any number of perfect or near-perfect hits. Where another sequence alignment tool.
    [Show full text]
  • A Multithread Blat Algorithm Speeding up Aligning Sequences to Genomes Meng Wang and Lei Kong*
    Wang and Kong BMC Bioinformatics (2019) 20:28 https://doi.org/10.1186/s12859-019-2597-8 SOFTWARE Open Access pblat: a multithread blat algorithm speeding up aligning sequences to genomes Meng Wang and Lei Kong* Abstract Background: The blat is a widely used sequence alignment tool. It is especially useful for aligning long sequences and gapped mapping, which cannot be performed properly by other fast sequence mappers designed for short reads. However, the blat tool is single threaded and when used to map whole genome or whole transcriptome sequences to reference genomes this program can take days to finish, making it unsuitable for large scale sequencing projects and iterative analysis. Here, we present pblat (parallel blat), a parallelized blat algorithm with multithread and cluster computing support, which functions to rapidly fine map large scale DNA/RNA sequences against genomes. Results: The pblat algorithm takes advantage of modern multicore processors and significantly reduces the run time with the number of threads used. pblat utilizes almost equal amount of memory as when running blat. The results generated by pblat are identical with those generated by blat. The pblat tool is easy to install and can run on Linux and Mac OS systems. In addition, we provide a cluster version of pblat (pblat-cluster) running on computing clusters with MPI support. Conclusion: pblat is open source and free available for non-commercial users. It is easy to install and easy to use. pblat and pblat-cluster would facilitate the high-throughput mapping of large scale genomic and transcript sequences to reference genomes with both high speed and high precision.
    [Show full text]
  • Homology & Alignment
    Protein Bioinformatics Johns Hopkins Bloomberg School of Public Health 260.655 Thursday, April 1, 2010 Jonathan Pevsner Outline for today 1. Homology and pairwise alignment 2. BLAST 3. Multiple sequence alignment 4. Phylogeny and evolution Learning objectives: homology & alignment 1. You should know the definitions of homologs, orthologs, and paralogs 2. You should know how to determine whether two genes (or proteins) are homologous 3. You should know what a scoring matrix is 4. You should know how alignments are performed 5. You should know how to align two sequences using the BLAST tool at NCBI 1 Pairwise sequence alignment is the most fundamental operation of bioinformatics • It is used to decide if two proteins (or genes) are related structurally or functionally • It is used to identify domains or motifs that are shared between proteins • It is the basis of BLAST searching (next topic) • It is used in the analysis of genomes myoglobin Beta globin (NP_005359) (NP_000509) 2MM1 2HHB Page 49 Pairwise alignment: protein sequences can be more informative than DNA • protein is more informative (20 vs 4 characters); many amino acids share related biophysical properties • codons are degenerate: changes in the third position often do not alter the amino acid that is specified • protein sequences offer a longer “look-back” time • DNA sequences can be translated into protein, and then used in pairwise alignments 2 Find BLAST from the home page of NCBI and select protein BLAST… Page 52 Choose align two or more sequences… Page 52 Enter the two sequences (as accession numbers or in the fasta format) and click BLAST.
    [Show full text]
  • Pan-Cancer Analysis Connects Tumor Matrisome to Immune Response
    www.nature.com/npjprecisiononcology ARTICLE OPEN Pan-cancer analysis connects tumor matrisome to immune response Su Bin Lim 1,2, Melvin Lee Kiang Chua 3,4,5, Joe Poh Sheng Yeong6,7, Swee Jin Tan8, Wan-Teck Lim7,9,10 and Chwee Teck Lim 1,2,11,12 Recent sequencing efforts unveil genomic landscapes of tumor microenvironment. A key compartment in this niche is the extracellular matrix (ECM) and its related components – matrisome. Yet, little is known about the extent to which matrisome pattern is conserved in progressive tumors across diverse cancer types. Using integrative genomic approaches, we conducted multi- platform assessment of a measure of deregulated matrisome associated with tumor progression, termed as tumor matrisome index (TMI), in over 30,000 patient-derived samples. Combined quantitative analyses of genomics and proteomics reveal that TMI is closely associated with mutational load, tumor pathology, and predicts survival across different malignancies. Interestingly, we observed an enrichment of specific tumor-infiltrating immune cell populations, along with signatures predictive of resistance to immune checkpoint blockade immunotherapy, and clinically targetable immune checkpoints in TMIhigh tumors. B7-H3 emerged as a particularly promising target for anti-tumor immunity in these tumors. Here, we show that matrisomal abnormalities could represent a potential clinically useful biomarker for prognostication and prediction of immunotherapy response. npj Precision Oncology (2019) 3:15 ; https://doi.org/10.1038/s41698-019-0087-0 INTRODUCTION Here we hypothesized that this specific pattern of deregulated The extracellular matrix (ECM) is a complex multi-spatial mesh- matrisome could be a common determinant of tumor aggression work of macromolecules with structural, biochemical and irrespective of tumor origin.
    [Show full text]
  • A Dissertation
    A Dissertation entitled Strategies for Membrane Protein Studies and Structural Characterization of a Metabolic Enzyme for Antibiotic Development by Buenafe T. Arachea Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Chemistry Dr. Ronald E. Viola, Committee Chair Dr. Max O. Funk, Committee Member Dr. Donald Ronning, Committee Member Dr. Marcia McInerney, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2011 Copyright © 2011, Buenafe T. Arachea This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Strategies for Membrane Protein Studies and Structural Characterization of a Metabolic Enzyme for Antibiotic Development by Buenafe T. Arachea Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Chemistry The University of Toledo August 2011 Membrane proteins are essential in a variety of cellular functions, making them viable targets for drug development. However, progress in the structural elucidation of membrane proteins has proven to be a difficult task, thus limiting the number of published structures of membrane proteins as compared with the enormous structural information obtained from soluble proteins. The challenge in membrane protein studies lies in the production of the required sample for characterization, as well as in developing methods to effectively solubilize and maintain a functional and stable form of the target protein during the course of crystallization. To address these issues, two different approaches were explored for membrane protein studies.
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Genome-Wide Association Study of Susceptibility to Idiopathic
    Edinburgh Research Explorer Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis Citation for published version: Allen, RJ, Guillen-Guio, B, Oldham, JM, Ma, S-F, Dressen, A, Paynton, ML, Kraven, LM, Obeidat, M, Li, X, Ng, M, Braybrooke, R, Molina-Molina, M, Hobbs, BD, Putman, RK, Sakornsakolpat, P, Booth, HL, Fahy, WA, Hart, SP, Hill, MR, Hirani, N, Hubbard, RB, McAnulty, RJ, Millar, AB, Navaratnam, V, Oballa, E, Parfrey, H, Saini, G, Whyte, MKB, Zhang, Y, Kaminski, N, Adegunsoye, A, Strek, ME, Neighbors, M, Sheng, XR, Gudmundsson, G, Gudnason, V, Hatabu, H, Lederer, DJ, Manichaikul, A, Newell, JD, O'Connor, GT, Ortega, VE, Xu, H, Fingerlin, TE, Bossé, Y, Hao, K, Joubert, P, Nickle, DC, Sin, DD, Timens, W, Furniss, D, Morris, AP, Zondervan, K, Hall, IP, Sayers, I, Tobin, MD, Maher, TM, Cho, MH, Hunninghake, GM, Schwartz, DA, Yaspan, BL, Molyneaux, PL, Flores, C, Noth, I, Jenkins, RG & Wain, LV 2019, 'Genome- Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis', American Journal of Respiratory and Critical Care Medicine. https://doi.org/10.1164/rccm.201905-1017OC Digital Object Identifier (DOI): 10.1164/rccm.201905-1017OC Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: American Journal of Respiratory and Critical Care Medicine General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation.
    [Show full text]
  • Tutorial 1: Exploring the UCSC Genome Browser
    Last updated: May 22, 2013 Tutorial 1: Exploring the UCSC Genome Browser Open the homepage of the UCSC Genome Browser at: http://genome.ucsc.edu/ In the blue bar at the top, click on the Genomes link. Change the drop down menus so that clade is set to Vertebrate, genome is set to Human and assembly is set to Feb. 2009 (GRCh37/hg19). Then type in “adam2” in the position or search term window and click submit. On the subsequent page, click on the top link under the UCSC Genes section. This should bring up a window that looks similar to that shown in Figure 1: Figure 1: ADAM2 as displayed in the UCSC genome browser with default tracks. The UCSC Genome browser is highly configurable. If your view looks much different than Fig. 1, try clicking the default tracks button below the graphic window. This is a complicated window, so we will go through it from top to bottom: 1. In the row labeled move, are buttons that allow you to move left to right on the chromosome as well as zoom in and out on the information. 2. The position window shows the genomic coordinates of the chromosome sequence displayed. You can edit this manually or use the move controls to zoom in and out or change positions. The entire chromosome can be viewed at once, though this takes a very long time to load. To the right of the jump and clear buttons, the size the genomic region being viewed is listed. The view is taken up by the ADAM2 gene, corresponding to about 94Kb in length, not atypical for a mammalian gene.
    [Show full text]
  • Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders
    177 Arch Neuropsychitry 2020;57:177−191 RESEARCH ARTICLE https://doi.org/10.29399/npa.24890 Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders Hakan GÜRKAN1 , Emine İkbal ATLI1 , Engin ATLI1 , Leyla BOZATLI2 , Mengühan ARAZ ALTAY2 , Sinem YALÇINTEPE1 , Yasemin ÖZEN1 , Damla EKER1 , Çisem AKURUT1 , Selma DEMİR1 , Işık GÖRKER2 1Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey 2Faculty of Medicine, Department of Child and Adolescent Psychiatry, Trakya University, Edirne, Turkey ABSTRACT Introduction: Aneuploids, copy number variations (CNVs), and single in 39 (39/123=31.7%) patients. Twelve CNV variant of unknown nucleotide variants in specific genes are the main genetic causes of significance (VUS) (9.75%) patients and 7 CNV benign (5.69%) patients developmental delay (DD) and intellectual disability disorder (IDD). were reported. In 6 patients, one or more pathogenic CNVs were These genetic changes can be detected using chromosome analysis, determined. Therefore, the diagnostic efficiency of CMA was found to chromosomal microarray (CMA), and next-generation DNA sequencing be 31.7% (39/123). techniques. Therefore; In this study, we aimed to investigate the Conclusion: Today, genetic analysis is still not part of the routine in the importance of CMA in determining the genomic etiology of unexplained evaluation of IDD patients who present to psychiatry clinics. A genetic DD and IDD in 123 patients. diagnosis from CMA can eliminate genetic question marks and thus Method: For 123 patients, chromosome analysis, DNA fragment analysis alter the clinical management of patients. Approximately one-third and microarray were performed. Conventional G-band karyotype of the positive CMA findings are clinically intervenable.
    [Show full text]