(12) United States Patent (10) Patent No.: US 7,772,369 B2 Rupar Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 7,772,369 B2 Rupar Et Al USOO7772369B2 (12) United States Patent (10) Patent No.: US 7,772,369 B2 Rupar et al. (45) Date of Patent: Aug. 10, 2010 (54) COLEOPTERAN-TOXIC POLYPEPTIDE 6, 197,312 B1 3/2001 Peak et al. COMPOSITIONS AND INSECTRESISTANT 6,372.480 B1* 4/2002 Narva et al. .............. 435/2525 TRANSGENC PLANTS (75) Inventors: Mark J. Rupar, Wilmington, DE (US); FOREIGN PATENT DOCUMENTS William P. Donovan, Levittown, PA EP 0454485 A2 10, 1991 (US); Chih-Rei Chu, Exton, PA (US); WO WO 9314205 7, 1993 Elizabeth Pease, Danville, PA (US); WO WO 97/40162 10, 1997 Yuping Tan, Fremont, CA (US); Annette C. Slaney, Burlington, NJ (US); Thomas M. Malvar, Troy, MO (US); OTHER PUBLICATIONS James A. Baum, Webster Groves, MO Ely, S., The Engineering of Plants to Express Bacillus thuringiensis (US) Delta-Endotoxins, Bacillus thuringiensis, An Environmental Biopesticide: Theory and Practice, Edited by P.F. Entwistle et al., (73) Assignee: Monsanto Technology LLC, St. Louis, XP-002054693, pp. 105-124 (1993). MO (US) Donovan, W.P. et al., Characterization of Two Genes Encoding Bacillus thuringiensis Insecticidal Crystal Proteins Toxic to (*) Notice: Subject to any disclaimer, the term of this Coleoptera Species, Applied and Environmental Microbiology, patent is extended or adjusted under 35 XP-000876861, pp. 3921-3927 (1992). U.S.C. 154(b) by 24 days. Fidock et al., “Conservation of the Plasmodium falciparum Sporozoite Surface Protein Gene, STARP in Field Isolates and Dis (21) Appl. No.: 12/256,812 tinct Species of Plasmodium.” Molecular and Biochemical Parasitol ogy, 67:255-267 (1994). (22) Filed: Oct. 23, 2008 Yuan et al., GenBank Accession No. AJO00743 (1998). Salomon et al., GenBank Accession No. S42303 (1993). (65) Prior Publication Data Morio et al., GenBank Accession No. C89791 (1998). US 2009/OO94714 A1 Apr. 9, 2009 * cited by examiner Related U.S. Application Data Primary Examiner Anne Kubelik (62) Division of application No. 1 1/485,079, filed on Jul. (74) Attorney, Agent, or Firm Timothy K. Ball, Esq.; 12, 2006, now Pat. No. 7,442,540, which is a division Howrey LLP of application No. 10/408.692, filed on Apr. 7, 2003, now Pat. No. 7,078,592, which is a division of appli (57) ABSTRACT cation No. 09/563,269, filed on May 3, 2000, now Pat. No. 6,555,655. Disclosed are novel insecticidal polypeptides, and composi tions comprising these polypeptides, peptide fragments (60) Provisional application No. 60/172.240, filed on May thereof, and antibodies specific therefor. Also disclosed are 4, 1999. vectors, transformed host cells, and transgenic plants that contain nucleic acid segments that encode the disclosed Ö-en (51) Int. Cl. dotoxin polypeptides. Also disclosed are methods of identi C07K I4/325 (2006.01) fying related polypeptides and polynucleotides, methods of (52) U.S. Cl. ...................................................... 530/350 making and using transgenic cells comprising these poly (58) Field of Classification Search ....................... None nucleotide sequences, as well as methods for controlling an See application file for complete search history. insect population, Such as Colorado potato beetle, Southern (56) References Cited corn rootworm and western corn rootworm, and for confer ring to a plant resistance to a target insect species. U.S. PATENT DOCUMENTS 6,127,180 A 10, 2000 Narva et al. 10 Claims, 3 Drawing Sheets U.S. Patent Aug. 10, 2010 Sheet 1 of 3 US 7,772,369 B2 Hind g g> D 3 ECOR ECOR s r f HindIII FIG. 1 U.S. Patent Aug. 10, 2010 Sheet 2 of 3 US 7,772,369 B2 HindII Cla Ssp ECOR HindIII SSp Xmn ECOR HindII FIG. 2 U.S. Patent Aug. 10, 2010 Sheet 3 of 3 US 7,772,369 B2 O LO N. L. r CN | | | | s US 7,772,369 B2 1. 2 COLEOPTERAN-TOXC POLYPEPTOE insect, Solubilization in the insect midgut (a combination COMPOSITIONS AND INSECTRESISTANT stomach and Small intestine), resistance to digestive enzymes TRANSGENC PLANTS Sometimes with partial digestion actually “activating the toxin, binding to the midgut cells, formation of a pore in the This application is a divisional of application Ser. No. 5 insect cells and the disruption of cellular homeostasis (En 1 1/485,079, filed Jul 12, 2006 now U.S. Pat. No. 7,442,540, glish and Slatin, 1992). which is a divisional of application Ser. No. 10/408.692, filed One of the unique features of B. thuringiensis is its pro Apr. 7, 2003, now U.S. Pat. No. 7,078,592, which is a divi duction of crystal proteins during sporulation which are spe sional of application Ser. No. 09/563,269, filed May 3, 2000, cifically toxic to certain orders and species of insects. Many now U.S. Pat. No. 6,555,655, which claims the benefit of U.S. 10 different strains of B. thuringiensis have been shown to pro Provisional Application No. 60/172,240, filed May 4, 1999. duce insecticidal crystal proteins. Compositions including B. 1.O BACKGROUND OF THE INVENTION thuringiensis strains which produce proteins having insecti cidal activity against lepidopteran and dipteran insects have 1.1 Field of the Invention 15 been commercially available and used as environmentally The present invention relates generally to the fields of acceptable insecticides because they are quite toxic to the molecular biology. More particularly, certain embodiments specific target insect, but are harmless to plants and other concern methods and compositions comprising DNA seg non-targeted organisms. ments, and proteins derived from bacterial species. More The mechanism of insecticidal activity of the B. thuring particularly, it concerns novel genes from Bacillus thuring- 20 iensis crystal proteins has been studied extensively in the past iensis encoding coleopteran-toxic crystal proteins. Various decade. It has been shown that the crystal proteins are toxic to methods for making and using these DNA segments, DNA the insect only after ingestion of the protein by the insect. The segments encoding synthetically-modified Ö-endotoxin alkaline pH and proteolytic enzymes in the insect mid-gut polypeptides, and native and synthetic crystal proteins are solubilize the proteins, thereby allowing the release of com disclosed, such as, for example, the use of DNA segments as 25 diagnostic probes and templates for protein production, and ponents which are toxic to the insect. These toxic components the use of proteins, fusion protein carriers and peptides in disrupt the mid-gut cells, cause the insect to cease feeding, various immunological and diagnostic applications. Also dis and, eventually, bring about insect death. For this reason, B. closed are methods of making and using nucleic acid seg thuringiensis has proven to be an effective and environmen ments in the development of transgenic plant cells containing 30 tally safe insecticide in dealing with various insect pests. As noted by Höfte et al., (1989) the majority of insecticidal the polynucleotides disclosed herein. B. thuringiensis strains are active against insects of the order 1.2. Description of the Related Art Lepidoptera, i.e. caterpillar insects. Other B. thuringiensis Because crops of commercial interest are often the target of insect attack, environmentally-sensitive methods for control stains are insecticidally active against insects of the order 35 Diptera, i.e., flies and mosquitoes, or against both lepi ling or eradicating insect infestation are desirable in many dopteran and dipteran insects. In recent years, a few B. thur instances. This is particularly true for farmers, nurserymen, ingiensis strains have been reported as producing crystal pro growers, and commercial and residential areas which seek to control insect populations using eco-friendly compositions. teins that are toxic to insects of the order Coleoptera, i.e., The most widely used environmentally-sensitive insecticidal beetles (Krieg et al., 1983; Sicket al., 1990; Donovan et al., formulations developed in recent years have been composed 40 1992: Lambert et al., 1992a: 1992b). of microbial pesticides derived from the bacterium Bacillus 1.2.2 Genes Encoding Crystal Proteins thuringiensis. B. thuringiensis is a Gram-positive bacterium Many of the 8-endotoxins are related to various degrees by that produces crystal proteins or inclusion bodies which are similarities in their amino acid sequences. Historically, the specifically toxic to certain orders and species of insects. proteins and the genes which encode them were classified Many different strains of B. thuringiensis have been shown to 45 based largely upon their spectrum of insecticidal activity. The produce insecticidal crystal proteins. Compositions including review by Höfte and Whiteley (1989) discusses the genes and B. thuringiensis strains which produce insecticidal proteins proteins that were identified in B. thuringiensis prior to 1990, have been commercially-available and used as environmen and sets forth the nomenclature and classification scheme tally-acceptable insecticides because they are quite toxic to which has traditionally been applied to B. thuringiensis genes the specific target insect, but are harmless to plants and other 50 and proteins. cryI genes encode lepidopteran-toxic Cry I pro non-targeted organisms. teins, and cryII genes encode CryII proteins that are toxic to 1.2.1 Ö-Endotoxins both lepidopterans and dipterans. cry III genes encode Ö-endotoxins are used to controla wide range of leaf-eating coleopteran-toxic CryIII proteins, while cryIV genes encode caterpillars and beetles, as well as mosquitoes. These pro- 55 dipteran-toxic Cry IV proteins. teinaceous parasporal crystals, also referred to as insecticidal Based on the degree of sequence similarity, the proteins crystal proteins, crystal proteins, Bt inclusions, crystalline were further classified into subfamilies; more highly related inclusions, inclusion bodies, and Bt toxins, are a large collec proteins within each family were assigned divisional letters tion of insecticidal proteins produced by B. thuringiensis that such as CryIA, CryIB, CryIC, etc. Even more closely related are toxic upon ingestion by a Susceptible insect host.
Recommended publications
  • Departamento De Zoologıa, Genética Y Antropologıa Fısica Facultad De
    The Coleopterists Bulletin, 72(3): 421–426. 2018. WHAT CAUSED THE DISJUNCT DISTRIBUTIONS OF THE LACHNAIA TRISTIGMA SPECIES-GROUP (COLEOPTERA:CHRYSOMELIDAE) ON THE IBERIAN PENINSULA? RAMIRO MARTIN´ -DEVASA AND ANDRES´ BASELGA Departamento de Zoolog´ıa, Gen´etica y Antropolog´ıaF´ısica Facultad de Biolog´ıa, Universidad de Santiago de Compostela R´ua Lope G´omez de Marzoa, 15782, Santiago de Compostela, SPAIN [email protected] ABSTRACT Non-overlapping distributions of closely related species can be explained by two mechanisms, either niche divergence or vicariance in the absence of niche differentiation. We assess which of these mechanisms is the most likely cause of the disjunct distributions of three closely related species of Lachnaia Dejean, 1836 (Coleoptera: Chrysomelidae) on the Iberian Peninsula. We estimated the three species’ climatic niches, compared them using multivariate analysis, and projected their potential distributions under climatic conditions during the Last Glacial Maximum (LGM) around 20,000 years ago. Lachnaia tristigma (Lacordaire, 1848) and Lachnaia pseudobarathraea (Daniel and Daniel, 1898) hardly differ in their climatic niches. The temperature ranges are similar among the three species, but Lachnaia gallaeca Baselga and Ru´ız- Garc´ıa, 2007 occupies a fraction of the environmental space with higher precipitation. The three climatic niches present a broad overlap, which does not suggest speciation events driven by niche differentiation. In turn, the projection of their climatic envelopes to the LGM conditions shows that their potential distributions are compatible with the existence of different glacial refugia for each species. Therefore, we hypothesize that the contraction of species ranges during LGM and subsequent vicariance could have been a major mechanism behind the disjunct distributions that we observe in the present.
    [Show full text]
  • Title of Article: Current Status of Viral Disease Spread In
    Int. J. Indust. Entomol. 31(2) 70-74 (2015) IJIE ISSN 1598-3579, http://dx.doi.org/10.7852/ijie.2015.31.2.70 Title of Article: Current status of viral disease spread in Korean horn beetle, Allomyrina dichotoma (Coleoptera: Scarabeidae) Seokhyun Lee, Hong-Geun Kim, Kwan-ho Park, Sung-hee Nam, Kyu-won Kwak and Ji-young Choi* Industrial Insect Division, National Institute of Agricultural Science, Rural Development Administration, Jeollabuk-do, Korea Abstract The current market size of insect industry in Korea is estimated at 300 million dollars and more than 500 local farms are related to many insect industry. One of the strong candidates for insect industry is Korean horn beetle, Allomyrina dichotoma. Early this year, we reported a viral disease extremely fatal to A. dichotoma larvae. While we were proceeding a nationwide investigation of this disease, it was informed that similar disease symptom has been occurred occasionally during past over 10 years. The symptom can be easily confused with early stage of bacterial infection or physiological damage such as low temperature and high humidity. A peroral infection with the purified virus to healthy larvae produced a result that only 21% of larvae survived and became pupae. Although some of the survived adult beetle was deformational, many of them had no abnormal appearance and even succeeded in mating. Later, these beetles were examined if they were carrying the virus, and all except one were confirmed as live virus carrier. This implies that these beetles may fly out and spread the Received : 14 Oct 2015 disease to the nature.
    [Show full text]
  • Abstract Book Conference “Insects to Feed the World” | the Netherlands 14-17 May 2014
    1st International Conference 14-17 May 2014, Wageningen (Ede), The Netherlands. Insects to feed the world SUMMARY REPORT Insects to Feed the World Conference SUMMARY REPORT Document compiled by Paul Vantomme Senior Forestry Officer [email protected] Christopher Münke FAO Consultant [email protected] Insects for Food and Feed Programme Non-Wood Forest Products Programme Forestry Department FAO 00153 Rome, Italy Insects for Food and Feed: http://www.fao.org/forestry/edibleinsects/en/ and Arnold van Huis Tropical entomologist Laboratory of Entomology [email protected] Joost van Itterbeeck PhD Student Laboratory of Entomology Anouk Hakman Student Laboratory of Entomology Wageningen University and Research Centre Wageningen, The Netherlands www.wageningenur.nl/ent Cover Photograph: Participants attending a Plenary session during the Conference (Photo Paul Vantomme) Table of Contents Objectives of the conference .................................................................................. III Executive summary..................................................................................................IV Summary notes from the sessions.........................................................................VI Conclusion .................................................................................................................X Recommendations ..................................................................................................XII Annex.......................................................................................................................XIII
    [Show full text]
  • On the Origin and Evolutionary Diversification of Beetle Horns
    On the origin and evolutionary diversification of beetle horns Douglas J. Emlen*†, Laura Corley Lavine‡, and Ben Ewen-Campen* *Division of Biological Sciences, University of Montana, Missoula, MT 59812; and ‡Department of Entomology, Washington State University, Pullman, WA 99164 Many scarab beetles produce rigid projections from the body called beetle horn evolution. This integration of perspectives comprises an horns. The exaggerated sizes of these structures and the stagger- important step in our attempts to elucidate the myriad ways in ing diversity of their forms have impressed biologists for centuries. which these exaggerated structures have radiated in form. It also Recent comparative studies using DNA sequence-based phylog- illustrates the more general theme of this colloquium: that ‘‘Dar- enies have begun to reconstruct the historical patterns of beetle winian’’ processes of selection, combined with subtle genetic vari- horn evolution. At the same time, developmental genetic experi- ations in basic developmental processes, can account for the origin, ments have begun to elucidate how beetle horns grow and how and the subsequent diversification of even the most extreme animal horn growth is modulated in response to environmental variables, structures. such as nutrition. We bring together these two perspectives to show that they converge on very similar conclusions regarding A Natural History of Beetles with Horns beetle evolution. Horns do not appear to be difficult structures to Beetle horns are weapons: they are used in combat between rival gain or lose, and they can diverge both dramatically and rapidly in males over access to females (9–11). These contests tend to occur form. Although much of this work is still preliminary, we use in physically restricted substrates, such as on branches or bamboo available information to propose a conceptual developmental shoots or more commonly, inside the confines of tunnels.
    [Show full text]
  • Coleoptera: Scarabaeidae: Dynastinae) and the Separation of Dynastini and Oryctini
    Chromosome analyses challenge the taxonomic position of Augosoma centaurus Fabricius, 1775 (Coleoptera: Scarabaeidae: Dynastinae) and the separation of Dynastini and Oryctini Anne-Marie DUTRILLAUX Muséum national d’Histoire naturelle, UMR 7205-OSEB, case postale 39, 57 rue Cuvier, F-75231 Paris cedex 05 (France) Zissis MAMURIS University of Thessaly, Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, 41221 Larissa (Greece) Bernard DUTRILLAUX Muséum national d’Histoire naturelle, UMR 7205-OSEB, case postale 39, 57 rue Cuvier, F-75231 Paris cedex 05 (France) Dutrillaux A.-M., Mamuris Z. & Dutrillaux B. 2013. — Chromosome analyses challenge the taxonomic position of Augosoma centaurus Fabricius, 1775 (Coleoptera: Scarabaeidae: Dynastinae) and the separation of Dynastini and Oryctini. Zoosystema 35 (4): 537-549. http://dx.doi.org/10.5252/z2013n4a7 ABSTRACT Augosoma centaurus Fabricius, 1775 (Melolonthidae: Dynastinae), one of the largest Scarabaeoid beetles of the Ethiopian Region, is classified in the tribe Dynastini MacLeay, 1819, principally on the basis of morphological characters of the male: large frontal and pronotal horns, and enlargement of fore legs. With the exception of A. centaurus, the 62 species of this tribe belong to ten genera grouped in Oriental plus Australasian and Neotropical regions. We performed cytogenetic studies of A. centaurus and several Asian and Neotropical species of Dynastini, in addition to species belonging to other sub-families of Melolonthidae Leach, 1819 and various tribes of Dynastinae MacLeay, 1819: Oryctini Mulsant, 1842, Phileurini Burmeister, 1842, Pentodontini Mulsant, 1842 and Cyclocephalini Laporte de Castelnau, 1840. The karyotypes of most species were fairly alike, composed of 20 chromosomes, including 18 meta- or sub-metacentric autosomes, one acrocentric or sub-metacentric X-chromosome, and one punctiform Y-chromosome, as that of their presumed common ancestor.
    [Show full text]
  • Literature on the Chrysomelidae from CHRYSOMELA Newsletter, Numbers 1-41 October 1979 Through April 2001 May 18, 2001 (Rev
    Literature on the Chrysomelidae From CHRYSOMELA Newsletter, numbers 1-41 October 1979 through April 2001 May 18, 2001 (rev. 1)—(2,635 citations) Terry N. Seeno, Editor The following citations appeared in the CHRYSOMELA process and rechecked for accuracy, the list undoubtedly newsletter beginning with the first issue published in 1979. contains errors. Revisions and additions are planned and will be numbered sequentially. Because the literature on leaf beetles is so expansive, these citations focus mainly on biosystematic references. They Adobe Acrobat® 4.0 was used to distill the list into a PDF were taken directly from the publication, reprint, or file, which is searchable using standard search procedures. author’s notes and not copied from other bibliographies. If you want to add to the literature in this bibliography, Even though great care was taken during the data entering please contact me. All contributors will be acknowledged. Abdullah, M. and A. Abdullah. 1968. Phyllobrotica decorata de Gratiana spadicea (Klug, 1829) (Coleoptera, Chrysomelidae, DuPortei, a new sub-species of the Galerucinae (Coleoptera: Chrysomel- Cassidinae) em condições de laboratório. Rev. Bras. Entomol. idae) with a review of the species of Phyllobrotica in the Lyman 30(1):105-113, 7 figs., 2 tabs. Museum Collection. Entomol. Mon. Mag. 104(1244-1246):4-9, 32 figs. Alegre, C. and E. Petitpierre. 1982. Chromosomal findings on eight Abdullah, M. and A. Abdullah. 1969. Abnormal elytra, wings and species of European Cryptocephalus. Experientia 38:774-775, 11 figs. other structures in a female Trirhabda virgata (Chrysomelidae) with a summary of similar teratological observations in the Coleoptera.
    [Show full text]
  • Coleoptera, Chrysomelidae) De Las Sierras Tejeda Y Almijara Y Los Acantilados De Maro (Sur De España, Málaga- Granada)
    ARTÍCULO DE INVESTIGACIÓN Inventario comentado de los crisomélidos (Coleoptera, Chrysomelidae) de las Sierras Tejeda y Almijara y los Acantilados de Maro (Sur de España, Málaga- Granada) A commented inventory of the leaf beetles (Coleoptera, Chrysomelidae) of the Sierras Tejeda and Almijara and the Acantilados de Maro (Southern Spain, Málaga-Granada) JOSÉ MIGUEL VELA1, GLORIA BASTAZO2 Y FRANK FRITZLAR3 1. IFAPA, Cortijo de la Cruz, s/n, 29140 Churriana, Málaga, España. josem.vela@junta- deandalucia.es 2. IES Jacarandá, 29140 Málaga, España. 3. Kernbergstr. 73, 07749 Jena, Alemania. [email protected] Recibido: 15-11-2016. Aceptado: 28-01-2017. Publicado online: 27-02-2017. ISSN: 0210-8984 ABSTRACT A commented check list of Coleoptera of family Chrysomelidae in Sierras Tejeda and Almijara, and Acantilados de Maro (Spain, Málaga-Granada) is given. The reported species have amounted to 126. Locality, dates, host plants and taxonomical or distributional remarks are shown. A number of these species are rare or infrequent, as is the case of Otiothraea filabrensis, Cyrtonus cobosi, Timarcha carmelenae, Galeruca sp. cf. angusta, Anthobiodes heydeni, Longitarsus seticollis, Orestia sierrana, Psylliodes vehemens ssp. normandi, Phyllotreta gloriae and Cassida angustifrons. Longitarsus frontosus is a new record for the Iberian Peninsula. Chrysolina salviae and Argopus brevis are reported in Andalusia by first time, as well as Orestia sierrana for Algarve (South Portugal). At last, Longitarsus andalusicus, only known from Andalucía without further locality data from a series of four females, has been found and its aedeagus is here figured for the first time. Key words: Coleoptera, leaf beetles, check-list, distribution, host plants, Iberian peninsula, Andalusia.
    [Show full text]
  • Drug Discovery Insights from Medicinal Beetles in Traditional Chinese Medicine
    Review Biomol Ther 29(2), 105-126 (2021) Drug Discovery Insights from Medicinal Beetles in Traditional Chinese Medicine Stephen T. Deyrup1,*, Natalie C. Stagnitti1, Mackenzie J. Perpetua1 and Siu Wah Wong-Deyrup2 1Department of Chemistry and Biochemistry, Siena College, Loudonville, NY 12309, 2The RNA Institute and Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA Abstract Traditional Chinese medicine (TCM) was the primary source of medical treatment for the people inhabiting East Asia for thousands of years. These ancient practices have incorporated a wide variety of materia medica including plants, animals and minerals. As modern sciences, including natural products chemistry, emerged, there became increasing efforts to explore the chemistry of this materia medica to find molecules responsible for their traditional use. Insects, including beetles have played an important role in TCM. In our survey of texts and review articles on TCM materia medica, we found 48 species of beetles from 34 genera in 14 different families that are used in TCM. This review covers the chemistry known from the beetles used in TCM, or in cases where a species used in these practices has not been chemically studied, we discuss the chemistry of closely related beetles. We also found several documented uses of beetles in Traditional Korean Medicine (TKM), and included them where appropriate. There are 129 chemical constituents of beetles discussed. Key Words: Beetle, Traditional Chinese Medicine, Traditional Korean Medicine, Coleoptera, Chemical defense, Secondary metabolites INTRODUCTION toms. There are several guiding philosophies and treatment modalities including acupuncture, moxibustion, and qi gong Traditional Chinese Medicine (TCM) is widely used both in- (Liu and Liu, 2009; Fung and Linn, 2015; National Center for side China and beyond its borders.
    [Show full text]
  • Upregulation of Kruppel-Like Factor 4 Gene Expression by Allomyrina Dichotoma Hemolymph in the INS-1 Pancreatic Β-Cells
    Biomedical Science Letters 2020, 26(1): 37~41 Brief Communication https://doi.org/10.15616/BSL.2020.26.1.37 eISSN : 2288-7415 Upregulation of Kruppel-like Factor 4 Gene expression by Allomyrina dichotoma Hemolymph in the INS-1 Pancreatic β-cells Kisang Kwon1,*, Hyun-Woo Suh1,*, Hong Geun Kim2,* and O-Yu Kwon1,†,** 1Department of Anatomy & Cell Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea 2Research Center for Endangered Species, National Institute of Ecology, Yeongyang 36531, Korea The hemolymph of Korean rhinoceros Allomyrina dichotoma consists of blood and lymph in which various kinds of proteins function physiologically. We have previously demonstrated that A. dichotoma hemolymph has the potential to treatment and prevent diabetes through activating transcription factor 3-gene (ATF3) regulation. In this study, we investigate the expression of Kruppel-like factor 4 (KLF4) in A. dichotoma hemolymph-treated INS-1 pancreatic β-cells. The new findings show that A. dichotoma hemolymph, which upregulates KLF4 gene expression in a dose-dependent and time- dependent manner. In addition, hemolymph combine with mild endoplasmic reticulum (ER) stress, which also differentially regulates KLF4 gene expression. These results may provide insights to KLF4 gene-related disease therapies through KLF4 gene regulation. Key Words: Allomyrina dichotoma, Hemolymph, Kruppel-like factor 4 (KLF4) Recently, Food and Agriculture Organization of the United al., 1996; Yoshikawa et al., 1999; Sagisaka et al., 2001; Nations (FAO) reported that edible insects such as grass- Chung et al., 2014; Kim et al., 2015; Kim et al., 2016). In hoppers (Sphenarium purpurascens), crickets (Gryllus addition, our previous study has shown that hemolymph of bimaculatus), mealworms (Tenebrio molitor), and buffalo A.
    [Show full text]
  • Literature Cited in Chrysomela from 1979 to 2003 Newsletters 1 Through 42
    Literature on the Chrysomelidae From CHRYSOMELA Newsletter, numbers 1-42 October 1979 through June 2003 (2,852 citations) Terry N. Seeno, Past Editor The following citations appeared in the CHRYSOMELA process and rechecked for accuracy, the list undoubtedly newsletter beginning with the first issue published in 1979. contains errors. Revisions will be numbered sequentially. Because the literature on leaf beetles is so expansive, Adobe InDesign 2.0 was used to prepare and distill these citations focus mainly on biosystematic references. the list into a PDF file, which is searchable using standard They were taken directly from the publication, reprint, or search procedures. If you want to add to the literature in author’s notes and not copied from other bibliographies. this bibliography, please contact the newsletter editor. All Even though great care was taken during the data entering contributors will be acknowledged. Abdullah, M. and A. Abdullah. 1968. Phyllobrotica decorata DuPortei, Cassidinae) em condições de laboratório. Rev. Bras. Entomol. 30(1): a new sub-species of the Galerucinae (Coleoptera: Chrysomelidae) with 105-113, 7 figs., 2 tabs. a review of the species of Phyllobrotica in the Lyman Museum Collec- tion. Entomol. Mon. Mag. 104(1244-1246):4-9, 32 figs. Alegre, C. and E. Petitpierre. 1982. Chromosomal findings on eight species of European Cryptocephalus. Experientia 38:774-775, 11 figs. Abdullah, M. and A. Abdullah. 1969. Abnormal elytra, wings and other structures in a female Trirhabda virgata (Chrysomelidae) with a Alegre, C. and E. Petitpierre. 1984. Karyotypic Analyses in Four summary of similar teratological observations in the Coleoptera. Dtsch. Species of Hispinae (Col.: Chrysomelidae).
    [Show full text]
  • Horn Performance Differences Across Rhinoceros Beetle
    insects Article Variation in an Extreme Weapon: Horn Performance Differences across Rhinoceros Beetle (Trypoxylus dichotomus) Populations Benjamin Buchalski 1, Eric Gutierrez 1, Douglas Emlen 2 , Laura Lavine 3 and Brook Swanson 1,* 1 Biology Department, Gonzaga University, Spokane, WA 99258, USA; [email protected] (B.B.); [email protected] (E.G.) 2 Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; [email protected] 3 Department of Entomology, Washington State University, Pullman, WA 99164, USA; [email protected] * Correspondence: [email protected] Received: 24 September 2019; Accepted: 3 October 2019; Published: 15 October 2019 Abstract: Japanese rhinoceros beetle (Trypoxylus dichotomus) males have exaggerated head horns that they use as weapons in combat over reproductive opportunities. In these contests, there is an advantage to having a longer horn, and there seems to be little cost to horn exaggeration. However, populations vary in the amount of horn exaggeration across this widespread species. Here, we examine four populations and quantify scaling and functional morphology of the horn. We then measure force production by the horn system in a combat-relevant movement. We find that not only does horn length vary among populations, but allometry of lever mechanics and force production varies in a complex way. For instance, some beetle populations make relatively long horns, but exert relatively low forces. Other populations make shorter horns and produce higher forces during fights. We suggest that this performance variation could be associated with differences in the intensity or type of sexual selection across the species. Keywords: allometry; sexual selection; force production; armament 1.
    [Show full text]
  • Contribution to the Knowledge of the Clytrini of the Eastern
    European Journal of Taxonomy 481: 1–37 ISSN 2118-9773 https://doi.org/10.5852/ejt.2018.481 www.europeanjournaloftaxonomy.eu 2018 · Bezděk J. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:DED86A3A-76F3-499A-A655-3B9B2A5EF345 Contribution to the knowledge of the Clytrini of the Eastern Mediterranean, the Near East and the Arabian Peninsula, with descriptions of four new species (Coleoptera: Chrysomelidae: Cryptocephalinae) Jan BEZDĚK 1,* 1 Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University in Brno, Zemědělská 1, CZ–613 00 Brno, Czech Republic. * Corresponding author: [email protected] 1 urn:lsid:zoobank.org:author:668F3A35-3E6E-40F3-9F06-356EEB50E45F Abstract. Four new species of the tribe Clytrini Kirby, 1837, Labidostomis bcharrensis sp. nov. (Lebanon), Tituboea friedmani sp. nov. (Israel), Tituboea harteni sp. nov. (United Arab Emirates) and Tituboea radeki sp. nov. (Yemen, Oman), and the formerly unknown females of Labidostomis damavandensis Rapilly, 1984 and Saudiclytra wittmeri Medvedev, 1979 are described. The following new synonyms are proposed: Coptocephala coptocephaloides (Lacordaire, 1848) = Coptocephala furthi Medvedev, 1992 syn. nov., Labidostomis rufa (Waltl, 1838) = Labidostomis rufa (Lacordaire, 1848) syn. nov., Tituboea olivieri (Lacordaire, 1848) = Tituboea femoralis Medvedev, 1962 syn. nov., Saudiclytra wittmeri (Medvedev, 1979) = Saudiclytra spinifemorata Medvedev, El Torkey & Al Dhafer, 2014 syn. nov. A neotype is designated for Clythra (Tituboea) olivieri Lacordaire, 1848. Tituboea decemguttata Walker, 1871 is considered as nomen dubium. The variability of the elytral pattern of Afrophthalma arabica (Bryant, 1957) is delimited. New country records and comments on distribution of Clytrini species from the eastern Mediterranean, the Near East and the Arabian Peninsula are presented.
    [Show full text]