Cosmic Research

Total Page:16

File Type:pdf, Size:1020Kb

Cosmic Research 2 3 4 РЕФЕРАТ Отчет 463 с., 105 рис., 54 табл., 128 источн., 3 прил. Расчет орбит, гравитационные маневры, астероидная опасность, пилотируемые миссии, точки либрации. В отчете представлены промежуточные результаты по запланированным направлениям работ в рамках проекта. Отчет разбит на семь глав. Первая глава отчета посвящена проблеме, касающейся навигации космического аппарата с помощью измерительных средств, имеющихся на борту. Имеются в виду оптические приборы, используемые в стандартном режиме как датчики ориентации аппарата. Известно, что во многих космических миссиях эти приборы применялись также в качестве источников информации для определения орбитальных параметров полета. Во второй главе отчета дается краткое описание математического аппарата, разработанного для расчетов и оптимизации орбит перелета к астероидам, представляющим практически полный список околоземных астероидов. При этом значительное внимание уделяется решению проблемы обширности этого списка. Разработанный комплекс программ позволяет проводить оптимизацию по сумме скоростей отлета от Земли и подлета к астероиду. В данном отчете публикуются результаты расчетов, выполненных с помощью упомянутого комплекса. В приводимых таблицах приводятся гиперболические скорости отлета, а также даты отлета и прилета для интервала старта вплоть до 2030 года. Значительная часть исследований была посвящена вопросам исследования траекторий перелетов к планетам и астероидам с использованием гравитационных маневров у планет с выходом на орбиту около планет, используемых для гравитационного маневра. Было показано, что такой подход позволяет 5 значительно расширить число окон возможностей для миссий, использующих гравитационный маневры. В третьей главе отчета рассмотрены вопросы управления орбитальным движением аппаратов в окрестности солнечно – земных коллинеарных точек либрации. В качестве одного из таких способов рассмотрено управление группировкой аппаратов с помощью солнечного паруса с изменяемыми отражательными характеристиками. В четвертой главе отчета приводятся результаты традиционного способа коррекции орбиты аппарата, функционирующего в окрестности точки либрации, т.е. способ с использованием ракетного двигателя. Задача решалась в постановке, когда аппарат требуется удерживать вблизи номинальной орбиты. В пятой главе развиваются идеи, предложенные исследовательской группой Международной академии астронавтики и представленные в 2008 году на Международном конгрессе по астронавтике в Глазго. В качестве первых миссий предлагается обслуживание крупных космических телескопов на орбитах вокруг точек либрации Земля-Солнце либо поддержка исследований обратной стороны Луны с гало-орбиты вокруг L2 системы Земля-Луна. В шестой главе рассмотрен один из вариантов отклонения опасных астероидов для предотвращения их столкновения с Землей. Существо концепции заключается в сообщении малому астероиду сравнительно небольшого импульса скорости с тем, чтобы перевести его на траекторию к Земле, где за счет гравитационного маневра при пролете Земли этот астероид будет направлен на траекторию столкновения с опасным околоземным объектом. Рассмотрена задача Ламберта как основная составляющая проектирования траекторий с использованием гравитационных маневров. В работе дается ответ на вопрос, существуют ли астероиды в имеющемся в настоящее время каталоге, которые можно перевести на траекторию столкновения с Апофисом до ожидаемой его встречи с Землей. Получены результаты первого этапа отбора астероидов- снарядов. Рассмотрен процесс нахождения оптимальных орбит перелета космического аппарата, направляемого к астероиду-снаряду. Сравнение 6 различных малых астероидов как кандидатов на роль управляемых объектов требует достаточно надежных оценок необходимых затрат на коррекцию траектории. В этой главе рассмотрен вопрос оценки точности определения параметров орбиты малого астероида по результатам измерений. В седьмой главе представлен обзор результатов исследований, направленных на изучение возможностей осуществления миссии по обнаружению, автоматическому захвату и транспортировке в окрестность Земли околоземного астероида небольшого размера. Эти работы были проведены Keck Institute for Space Studies (KISS) и в них участвовал целый ряд американских и европейских научных и исследовательских центров (Ames Research Center, Glenn Research Center, Goddard Space Flight Center, Jet Propulsion Laboratory, Johnson Space Center, Langley Research Center, Калифорнийский технологический институт, Carnegie Mellon, Гарвардский университет, the Naval Postgraduate School, Калифорнийский университет в Лос-Анжелесе, Калифорнийский университет в Санта-Круз, Университет Южной Калифорнии, Arkyd Astronautics, Inc., The Planetary Society, the B612 Foundation, Институт взаимодействия человека и машины во Флориде). Эти исследования показывают, что около 2025 года будет возможно перемещение на высокую лунную орбиту околоземного астероида массой примерно 500 тонн. Идея эксплуатации естественных ресурсов астероидов насчитывает уже более сотни лет, но только сейчас начинают появляться технологии, способные воплотить эту идею практически. Возможность осуществления данной идеи обуславливается развитием трех ключевых факторов: возможности обнаружения и классификации достаточно большого числа околоземных астероидов, достаточно малых для захвата и транспортировки на Землю; возможности осуществить достаточно мощную для транспортировки астероида реактивную тягу за счет солнечной энергии; предполагаемое участие человека в освоении окололунного пространства в 2020-х годах сделает возможным разработку и осуществление доставки околоземных астероидов на Землю. 7 СОДЕРЖАНИЕ Перечень сокращений ................................................................................................... 13 ВВЕДЕНИЕ .................................................................................................................... 14 1 Разработка методов траекторных измерений космического базирования для орбит в окрестности коллинеарных точек либрации ........... 19 1.1 Навигация космических аппаратов методом покрытия Землей и Луной экваториальной области Галактики на примере наблюдений с космической лаборатории ИНТЕГРАЛ ................................ 19 1.2 Эволюция орбиты и затмение Землей центра Галактики ............................ 21 1.3 Покрытие центра Галактики диском Луны ................................................... 34 Выводы по главе 1 ......................................................................................................... 39 Список литературы к главе 1 ....................................................................................... 40 2 Разработка миссий к астероидам с выходом на орбиту в окрестности астероида ................................................................................................................ 41 2.1 Получение данных о векторах состояния Земли и астероидов ................... 41 2.2 Решение задачи Ламберта ............................................................................... 42 2.3 Поиск оптимальных орбит перелета .............................................................. 43 2.4 Проверка полученных решений ...................................................................... 44 2.5 Результаты ......................................................................................................... 45 2.5.1 Амуры ........................................................................................................ 45 2.5.2 Аполлоны ................................................................................................... 47 2.5.3 Атоны ......................................................................................................... 50 Выводы по главе 2 ......................................................................................................... 52 Список литературы по главе 2 ..................................................................................... 53 3 Разработка методов управления орбитальным движением для траекторий в окрестности точек либрации .................................................. 54 3.1 Возмущающие гравитационные силы ............................................................ 55 3.2 Негравитационное возмущение ...................................................................... 63 3.3 Управление группировкой XEUS посредством солнечных парусов .......... 65 3.4 Построение траектории движения космического аппарата в окрестности точки либрации L2 ................................................................... 69 3.4.1 Описание математической модели движения КА ................................. 70 3.4.2 Уравнения движения аппарата ................................................................ 71 3.4.3 Уравнения движения Луны ..................................................................... 72 8 3.4.4 Уравнения движения Солнца .................................................................. 72 3.4.5 Уравнения в вариациях для матрицы Φ ................................................ 72 3.4.6 Построение траектории движения КА ................................................... 73 3.5 Построение гало-орбиты в окрестности точки либрации L2 ...................... 75 3.6 Коррекция траектории КА ............................................................................... 79 Выводы по главе 3 ......................................................................................................... 85 Список литературы к главе 3 ......................................................................................
Recommended publications
  • Bennu: Implications for Aqueous Alteration History
    RESEARCH ARTICLES Cite as: H. H. Kaplan et al., Science 10.1126/science.abc3557 (2020). Bright carbonate veins on asteroid (101955) Bennu: Implications for aqueous alteration history H. H. Kaplan1,2*, D. S. Lauretta3, A. A. Simon1, V. E. Hamilton2, D. N. DellaGiustina3, D. R. Golish3, D. C. Reuter1, C. A. Bennett3, K. N. Burke3, H. Campins4, H. C. Connolly Jr. 5,3, J. P. Dworkin1, J. P. Emery6, D. P. Glavin1, T. D. Glotch7, R. Hanna8, K. Ishimaru3, E. R. Jawin9, T. J. McCoy9, N. Porter3, S. A. Sandford10, S. Ferrone11, B. E. Clark11, J.-Y. Li12, X.-D. Zou12, M. G. Daly13, O. S. Barnouin14, J. A. Seabrook13, H. L. Enos3 1NASA Goddard Space Flight Center, Greenbelt, MD, USA. 2Southwest Research Institute, Boulder, CO, USA. 3Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA. 4Department of Physics, University of Central Florida, Orlando, FL, USA. 5Department of Geology, School of Earth and Environment, Rowan University, Glassboro, NJ, USA. 6Department of Astronomy and Planetary Sciences, Northern Arizona University, Flagstaff, AZ, USA. 7Department of Geosciences, Stony Brook University, Stony Brook, NY, USA. 8Jackson School of Geosciences, University of Texas, Austin, TX, USA. 9Smithsonian Institution National Museum of Natural History, Washington, DC, USA. 10NASA Ames Research Center, Mountain View, CA, USA. 11Department of Physics and Astronomy, Ithaca College, Ithaca, NY, USA. 12Planetary Science Institute, Tucson, AZ, Downloaded from USA. 13Centre for Research in Earth and Space Science, York University, Toronto, Ontario, Canada. 14John Hopkins University Applied Physics Laboratory, Laurel, MD, USA. *Corresponding author. E-mail: Email: [email protected] The composition of asteroids and their connection to meteorites provide insight into geologic processes that occurred in the early Solar System.
    [Show full text]
  • Asteroid Retrieval Feasibility Study
    Asteroid Retrieval Feasibility Study 2 April 2012 Prepared for the: Keck Institute for Space Studies California Institute of Technology Jet Propulsion Laboratory Pasadena, California 1 2 Authors and Study Participants NAME Organization E-Mail Signature John Brophy Co-Leader / NASA JPL / Caltech [email protected] Fred Culick Co-Leader / Caltech [email protected] Co -Leader / The Planetary Louis Friedman [email protected] Society Carlton Allen NASA JSC [email protected] David Baughman Naval Postgraduate School [email protected] NASA ARC/Carnegie Mellon Julie Bellerose [email protected] University Bruce Betts The Planetary Society [email protected] Mike Brown Caltech [email protected] Michael Busch UCLA [email protected] John Casani NASA JPL [email protected] Marcello Coradini ESA [email protected] John Dankanich NASA GRC [email protected] Paul Dimotakis Caltech [email protected] Harvard -Smithsonian Center for Martin Elvis [email protected] Astrophysics Ian Garrick-Bethel UCSC [email protected] Bob Gershman NASA JPL [email protected] Florida Institute for Human and Tom Jones [email protected] Machine Cognition Damon Landau NASA JPL [email protected] Chris Lewicki Arkyd Astronautics [email protected] John Lewis University of Arizona [email protected] Pedro Llanos USC [email protected] Mark Lupisella NASA GSFC [email protected] Dan Mazanek NASA LaRC [email protected] Prakhar Mehrotra Caltech [email protected]
    [Show full text]
  • The Legal Guardianship of Animals.Pdf
    Edna Cardozo Dias Lawyer, PhD in Law, Legal Consultant and University Professor The Legal Guardianship of Animals Belo Horizonte - Minas Gerais 2020 © 2020 EDNA CARDOZO DIAS Editor Edna Cardozo Dias Final art Aderivaldo Sousa Santos Review Maria Celia Aun Cardozo, Edna The Legal Guardianship of Animals / — Edna Cardozo Dias: Belo Horizonte/Minas Gerais - 2020 - 3ª edition. 346 p. 1. I.Título. Printed in Brazil All rights reserved Requests for this work Internet site shopping: amazon.com.br and amazon.com. Email: [email protected] 2 EDNA CARDOZO DIAS I dedicate this book To the common mother of all beings - the Earth - which contains the essence of all that lives, which feeds us from all joys, in the hope that this work may inaugurate a new era, marked by a firm purpose to restore the animal’s dignity, and the human being commitment with an ethic of life. THE LEGAL GUARDIANSHIP OF A NIMALS 3 Appreciate Professor Arthur Diniz, advisor of my doctoral thesis, defended at the Federal University of Minas Gerais - UFMG, which was the first thesis on animal law in Brazil in February 2000, introducing this new branch of law in the academic and scientific world, starting the elaboration of a “Animal Rights Theory”. 4 EDNA CARDOZO DIAS Sumário Chapter 1 - PHILOSOPHY AND ANIMALS .................................................. 15 1.1 The Greeks 1.1.1 The Pre-Socratic 1.1.2 The Sophists 1.1.3 The Socratic Philosophy 1.1.4 Plato 1.1.5 Peripathetism 1.1.6 Epicureanism 1.1.7 The Stoic Philosophy 1.2 The Biblical View - The Saints and the Animals 1.2.1 St.
    [Show full text]
  • Near-Earth Asteroids Accessible to Human Exploration with High-Power Electric Propulsion
    AAS 11-446 NEAR-EARTH ASTEROIDS ACCESSIBLE TO HUMAN EXPLORATION WITH HIGH-POWER ELECTRIC PROPULSION Damon Landau* and Nathan Strange† The diverse physical and orbital characteristics of near-Earth asteroids provide progressive stepping stones on a flexible path to Mars. Beginning with cislunar exploration capability, the variety of accessible asteroid targets steadily increas- es as technology is developed for eventual missions to Mars. Noting the poten- tial for solar electric propulsion to dramatically reduce launch mass for Mars ex- ploration, we apply this technology to expand the range of candidate asteroid missions. The variety of mission options offers flexibility to adapt to shifting exploration objectives and development schedules. A robust and efficient explo- ration program emerges where a potential mission is available once per year (on average) with technology levels that span cislunar to Mars-orbital capabilities. Examples range from a six-month mission that encounters a 10-m object with 65 kW to a two-year mission that reaches a 2-km asteroid with a 350-kW system. INTRODUCTION In the wake of the schedule and budgetary woes that led to the cancellation of the Constella- tion Moon program, the exploration of near-Earth asteroids (NEAs) has been promoted as a more realizable and affordable target to initiate deep space exploration with astronauts.1,2 Central to the utility of NEAs in a progressive exploration program is their efficacy to span a path as literal stepping stones between cislunar excursions and the eventual human
    [Show full text]
  • Week 5: January 26-February 1, 2020
    5# Ice & Stone 2020 Week 5: January 26-February 1, 2020 Presented by The Earthrise Institute About Ice And Stone 2020 It is my pleasure to welcome all educators, students, topics include: main-belt asteroids, near-Earth asteroids, and anybody else who might be interested, to Ice and “Great Comets,” spacecraft visits (both past and Stone 2020. This is an educational package I have put future), meteorites, and “small bodies” in popular together to cover the so-called “small bodies” of the literature and music. solar system, which in general means asteroids and comets, although this also includes the small moons of Throughout 2020 there will be various comets that are the various planets as well as meteors, meteorites, and visible in our skies and various asteroids passing by Earth interplanetary dust. Although these objects may be -- some of which are already known, some of which “small” compared to the planets of our solar system, will be discovered “in the act” -- and there will also be they are nevertheless of high interest and importance various asteroids of the main asteroid belt that are visible for several reasons, including: as well as “occultations” of stars by various asteroids visible from certain locations on Earth’s surface. Ice a) they are believed to be the “leftovers” from the and Stone 2020 will make note of these occasions and formation of the solar system, so studying them provides appearances as they take place. The “Comet Resource valuable insights into our origins, including Earth and of Center” at the Earthrise web site contains information life on Earth, including ourselves; about the brighter comets that are visible in the sky at any given time and, for those who are interested, I will b) we have learned that this process isn’t over yet, and also occasionally share information about the goings-on that there are still objects out there that can impact in my life as I observe these comets.
    [Show full text]
  • Driving White Dwarf Metal Pollution Through Unstable Eccentric Periodic Orbits Kyriaki I
    A&A 629, A126 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935996 & c ESO 2019 Astrophysics Driving white dwarf metal pollution through unstable eccentric periodic orbits Kyriaki I. Antoniadou1 and Dimitri Veras2,3,? 1 NaXys, Department of Mathematics, University of Namur, 8 Rempart de la Vierge, 5000 Namur, Belgium e-mail: [email protected] 2 Department of Physics, University of Warwick, Coventry CV4 7AL, UK 3 Centre for Exoplanets and Habitability, University of Warwick, Coventry CV4 7AL, UK Received 31 May 2019 / Accepted 4 August 2019 ABSTRACT Context. Planetary debris is observed in the atmospheres of over 1000 white dwarfs, and two white dwarfs are now observed to contain orbiting minor planets. Exoasteroids and planetary core fragments achieve orbits close to the white dwarf through scattering with major planets. However, the architectures that allow for this scattering to take place are time-consuming to explore with N-body simulations lasting ∼1010 yr; these long-running simulations restrict the amount of phase space that can be investigated. Aims. Here we use planar and three-dimensional (spatial) elliptic periodic orbits, as well as chaotic indicators through dynamical stability maps, as quick scale-free analytic alternatives to N-body simulations in order to locate and predict instability in white dwarf planetary systems that consist of one major and one minor planet on very long timescales. We then classify the instability according to ejection versus collisional events. Methods. We generalized our previous work by allowing eccentricity and inclination of the periodic orbits to increase, thereby adding more realism but also significantly more degrees of freedom to our architectures.
    [Show full text]
  • Basic Astronomy Labs
    Astronomy Laboratory Exercise 31 The Magnitude Scale On a dark, clear night far from city lights, the unaided human eye can see on the order of five thousand stars. Some stars are bright, others are barely visible, and still others fall somewhere in between. A telescope reveals hundreds of thousands of stars that are too dim for the unaided eye to see. Most stars appear white to the unaided eye, whose cells for detecting color require more light. But the telescope reveals that stars come in a wide palette of colors. This lab explores the modern magnitude scale as a means of describing the brightness, the distance, and the color of a star. The earliest recorded brightness scale was developed by Hipparchus, a natural philosopher of the second century BCE. He ranked stars into six magnitudes according to brightness. The brightest stars were first magnitude, the second brightest stars were second magnitude, and so on until the dimmest stars he could see, which were sixth magnitude. Modern measurements show that the difference between first and sixth magnitude represents a brightness ratio of 100. That is, a first magnitude star is about 100 times brighter than a sixth magnitude star. Thus, each magnitude is 100115 (or about 2. 512) times brighter than the next larger, integral magnitude. Hipparchus' scale only allows integral magnitudes and does not allow for stars outside this range. With the invention of the telescope, it became obvious that a scale was needed to describe dimmer stars. Also, the scale should be able to describe brighter objects, such as some planets, the Moon, and the Sun.
    [Show full text]
  • Spectral Properties of Binary Asteroids Myriam Pajuelo, Mirel Birlan, Benoit Carry, Francesca Demeo, Richard Binzel, Jérôme Berthier
    Spectral properties of binary asteroids Myriam Pajuelo, Mirel Birlan, Benoit Carry, Francesca Demeo, Richard Binzel, Jérôme Berthier To cite this version: Myriam Pajuelo, Mirel Birlan, Benoit Carry, Francesca Demeo, Richard Binzel, et al.. Spectral prop- erties of binary asteroids. Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P - Oxford Open Option A, 2018, 477 (4), pp.5590-5604. 10.1093/mnras/sty1013. hal-01948168 HAL Id: hal-01948168 https://hal.sorbonne-universite.fr/hal-01948168 Submitted on 7 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MNRAS 00, 1 (2018) doi:10.1093/mnras/sty1013 Advance Access publication 2018 April 24 Spectral properties of binary asteroids Myriam Pajuelo,1,2‹ Mirel Birlan,1,3 Benoˆıt Carry,1,4 Francesca E. DeMeo,5 Richard P. Binzel1,5 and Jer´ omeˆ Berthier1 1IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universites,´ UPMC Univ Paris 06, Univ. Lille, France 2Seccion´ F´ısica, Departamento de Ciencias, Pontificia Universidad Catolica´ del Peru,´ Apartado 1761, Lima, Peru´ 3Astronomical Institute of the Romanian Academy, 5 Cutitul de Argint, 040557 Bucharest, Romania 4Observatoire de la Coteˆ d’Azur, UniversiteC´ oteˆ d’Azur, CNRS, Lagrange, France 5Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA Accepted 2018 April 16.
    [Show full text]
  • A R T O F R E S I L I E N
    Art of Resilience NEO _Aster_2090-2092___2019-04-10-00-53-37-75 TITLE NEO_2034_2019-04-10-00-55-51-305 (NEO: Near Earth Object) APPROACH Visualizations of Big Data - data art as an emerging form of science communication: Superforecasting: The Art and Science of Prediction; visualizing the risk posed by potential Earth impacts. WHAT Photographic 3D render from an artscience datavisualization dealing with the prediction of potential asteroid impacts on Earth. TECHNIQUE Custom predictive software and code made in openFrameworks in C++ (see addendum) to generate an accurate datavisualization and predictions of bolide events based on data from NASA and KAGGLE. The computation of Earth impact probabilities for near- Earth objects is a complex process requiring sophisticated mathematical techniques. PROCESS The datavisualizations resulted in svg. and obj. files which allows 3D model export, 3D printing and lasercutting techniques. For the Art of Resilience a photographic 3D render was selected by the artist for this exhibition. ART OF RESILIENCE On the 18th of december 2018 an asteroid some ten metres across detonated with an explosive energy ten times greater than the bomb dropped on Hiroshima. The shock wave shattered windows of almost 7200 buildings. Nearly 1500 people were injured. Although astronomers have managed to locate 93% of the extremely dangerous asteroids, nobody saw it coming. Can art contribute to save the Earth from future threats the means of super forecasting and increase our resilience in regards to potential future asteroid impacts? ARTISTIC STATEMENT Artists often channel the future; seeing patterns before they form and putting them in their work, so that later, in hindsight, the work explodes like a time bomb.
    [Show full text]
  • 2014 in Review the Year in Prophecy
    2014 in Review The Year in Prophecy Ron Graff 1 Copyright © 2015 by Ron Graff Scripture taken from the New King James Version®. Copyright © 1982 by Thomas Nelson, Inc. Prophecy Central 8166 Vinmar Court Alta Loma, CA, 91701 2 Dedicated to: This Year’s Million-Plus Visitors to Prophecy Central Preface Then the Pharisees and Sadducees came, and testing Him asked that He would show them a sign from heaven. 2 He answered and said to them, ―When it is evening you say, ‗It will be fair weather, for the sky is red‘; 3 and in the morning, ‗It will be foul weather today, for the sky is red and threatening.‘ Hypocrites! You know how to discern the face of the sky, but you cannot discern the signs of the times. – Matthew 16:1-3 Jesus expected the spiritual leaders of His generation to know the prophecies and recognize that He was the Messiah. They should have realized that He was fulfilling those predictions. Most of those Pharisees and Sadducees never did recognize the truth about Him. It is the same way today. It’s time for Christians to recognize the signs of the times and do what they can to lead others to Christ while there is still an opportunity! This book is a summary of major developments during 2014 that are of interest to prophecy students. Most of the information in this report has come from news stories and quotations from the daily updates on the Prophecy Central1 3 web site. There are more than one hundred different sections on the site that deal with the various topics that we cover.
    [Show full text]
  • A Fireball and Potentially Hazardous Binary Near-Earth Asteroid
    The Astronomical Journal, 159:47 (13pp), 2020 February https://doi.org/10.3847/1538-3881/ab4e1b © 2020. The American Astronomical Society. All rights reserved. A Fireball and Potentially Hazardous Binary Near-Earth Asteroid (164121) 2003 YT1 Toshihiro Kasuga1,2 , Mikiya Sato3, Masayoshi Ueda3, Yasunori Fujiwara3, Chie Tsuchiya1, and Jun-ichi Watanabe1 1 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan; [email protected] 2 Department of Physics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan 3 The Nippon Meteor Society, Japan Received 2019 August 5; revised 2019 October 10; accepted 2019 October 13; published 2020 January 13 Abstract We present a fireball detected in the night sky over Kyoto, Japan on UT 2017 April 28 at 15hms 58 19 by the SonotaCo Network. The absolute visual magnitude is Mv=−4.10±0.42 mag. Luminous light curves obtain a meteoroid mass of m=29±1 g, corresponding to the size of as=2.7±0.1 cm. Orbital similarity assessed by D-criterions (see DSH=0.0079) has identified a likely parent, the binary near-Earth asteroid (164121) 2003 YT1. The suggested binary formation process is a Yarkovsky–O’Keefe–Radzievskii–Paddack-driven rotational disintegration. The asynchronous state indicates the age of <104 yr, near or shorter than the upper limit to meteoroid stream lifetime. We examine potential dust production mechanisms for the asteroid, including rotational instability, resurfacing, impact, photoionization, radiation pressure sweeping, thermal fracture, and sublimation of ice. We find some of them capable of producing the meteoroid-scale particles.
    [Show full text]
  • Charge Transfer Reactions
    Space Sci Rev (2010) 157: 57–91 DOI 10.1007/s11214-010-9720-5 Charge Transfer Reactions Konrad Dennerl Received: 29 July 2010 / Accepted: 15 November 2010 / Published online: 11 December 2010 © The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Charge transfer, or charge exchange, describes a process in which an ion takes one or more electrons from another atom. Investigations of this fundamental process have accompanied atomic physics from its very beginning, and have been extended to astrophys- ical scenarios already many decades ago. Yet one important aspect of this process, i.e. its high efficiency in generating X-rays, was only revealed in 1996, when comets were discov- ered as a new class of X-ray sources. This finding has opened up an entirely new field of X-ray studies, with great impact due to the richness of the underlying atomic physics, as the X-rays are not generated by hot electrons, but by ions picking up electrons from cold gas. While comets still represent the best astrophysical laboratory for investigating the physics of charge transfer, various studies have already spotted a variety of other astrophysical loca- tions, within and beyond our solar system, where X-rays may be generated by this process. They range from planetary atmospheres, the heliosphere, the interstellar medium and stars to galaxies and clusters of galaxies, where charge transfer may even be observationally linked to dark matter. This review attempts to put the various aspects of the study of charge trans- fer reactions into a broader historical context, with special emphasis on X-ray astrophysics, where the discovery of cometary X-ray emission may have stimulated a novel look at our universe.
    [Show full text]