Starch and Dextrin Based Adhesives Is the Basic Use of a Specialchem - May 12, 2004 Sealant?

Total Page:16

File Type:pdf, Size:1020Kb

Starch and Dextrin Based Adhesives Is the Basic Use of a Specialchem - May 12, 2004 Sealant? Trends & Innovations Materials & Solutions Training & Education Channels Community Pulse Open Innovation New s Editorials R&D Highlights Patent Watch Articles Market Reports Industry Events Glossary Newsletters Thomas Schroeder 8 8 Share 0 Like 1 0 More According to you, what Starch and Dextrin Based Adhesives is the basic use of a SpecialChem - May 12, 2004 sealant? Edward M. Petrie, Member of SpecialChem Technical Expert Team. To form a protection barrier Introduction To seal two substrates Raw Materials together Manufacture of Starch Adhesive To fill gaps or holes Manufacture of Dextrin Adhesives Additives and Modifiers Common Applications and Formulations Introduction An extremely large and well-known class of adhesives is based on starch and These play a very large part in industrial Article - Trends in Plastic Surface dextrin. Modifications to Improve Adhesion production, especially the packaging industry. Starch and dextrin are principally used for bonding paper products. Most corrugated boxboard for making cartons is bonded with starch based adhesives, and other porous substrates can be easily joined with these Article - Carbon Nanotubes Improve Conductivity of Adhesives versatile adhesives. Article - Formulating w ith Starch and dextrin adhesives are readily available, low in cost, and easy to apply from water dispersion. They are considered to be Polyurethane Prepolymers the least expensive class of paper packaging adhesive. Formulated starch and dextrin adhesives can be applied hot or cold. These adhesives are generally provided to the end-user as powder and mixed with water prior to use to form a relatively thick paste. Starch and dextrin cure by the loss of moisture. Since these adhesives cure to a thermosetting structure, they have excellent heat resistance. Another significant advantage is their very slow curing rate allowing ample assembly time. Disadvantages include poor Article moisture resistance and mold growth. Keeping Low -isocyanate Emission Polyurethane Adhesives Flow ing Although starch and dextrin have been used as adhesives for many decades, there are several important reasons why these natural Exploiting VAE Technology offers adhesives will not be entirely replaced by synthetic products. The following advantages ensure that they continue to fill particular Water-based Adhesive Advantage 1 niches in the market place. Starch and Dextrin Based Adhesives Availability is good and cost is relatively low SEBS for High Performance Hot Quality is stable Melts Good adhesion to cellulose and many porous substrates POSS – Nanoreinforcement of Insoluble in oils and fats Structural Adhesives Non-toxic and biodegradable Heat resistant This article will review the raw materials that go into starch and dextrin adhesives, the methods of adhesive manufacture, and the additives that are commonly used in formulations for improvement of specific properties. Finally, the common applications and formulations of starch and based adhesives will be reviewed. dextrin Opinion Space - Do you think that starch and dextrin based-adhesives w ill play a larger part in the future of Adesives & Sealants industry? Raw materials Share your opinion now on this hot Both starch and dextrin (dextrin is starch which is processed further) are considered carbohydrate polymers, and they come from topic w ith other basically the same sources. Starch is a natural polymer, a polysaccharide, derived from the seeds, roots, and leaves of plants. Only SpecialChem4Adhesives members! a few plants yield starch in sufficient quantity to be economical. These are corn, wheat, potato, rice, tapioca, and sago. The quality of the starch must be high to produce high quality adhesives. Starch is made up of two molecules: amylose and amylopectin. Amylose consists of long helical chains, and amylopectin has a branched structure. Starch does not have a uniform composition. Its molecular structure and amylose / amylopectin ratio vary according to plant source. Thus, the processing characteristics and end properties will vary similarly. The most important methods of differentiation between starches are the molecular weight of the amylose fraction and the ratio of amylose to amylopectin. While amylopectin can be supplied in cold water soluble form, amylose is insoluble. Amylose can be dissolved with strong alkali, by cooking with formaldehyde, or by cooking in water at 150-160 °C under pressure. Upon cooling or neutralization such amylose dispersions will form firm gels at concentrations higher than 2% and precipitate at concentrations lower than 2%. Amylose fractions are never truly soluble in water and in time will form crystalline aggregates by hydrogen bonding - a process known as retrogradation or setback. Retrogradation is the cause of viscosity instability in certain starch based adhesives. The amylopectin is more soluble and less prone to retrogradation. The percent of amylose in various starches and their resulting properties are summarized in Table 1. Corn Wheat Rice Tapioca Potato Sago Source Seed Seed Seed Root Root Pith Granule Diameter, Microns 5-26 3-35 3-8 5-35 15-100 10-70 Gelation Temp, °C 62-72 58-64 68-78 49-70 59-68 60-67 Amylose, % 28 25 19 20 25 26 Amylose, % 28 25 19 20 25 26 Table 1: Properties of Commercial Starches Most starches contain 20-30% by weight of amylose although certain specialty types can have as little as 0% or as high as 80%. Because of the amylose fraction, starch suspended in cold water is essentially unable to act as an adhesive because the starch is so tightly bound in crystalline regions. These granules must be opened through processing to obtain adhesive bonding. Manufacture of Starch Adhesive Heating in water is the simplest method of breaking up the starch granules. On heating in water, starch granules first swell and then burst open with a resulting thickening of the suspension. The temperature at which this thickening of the suspension occurs is called the gelation temperature. For most starches in pure water, gelation occurs between 57 and 72°C (see Table 1). In this form the starch is not a true solution but a colloidal suspension. The heating process can take one of two forms. In the first, salts (usually the chlorides of metals such as calcium, magnesium, and zinc) are added to a suspension of the starch in water, and the adhesive is produced by control of the temperature and the time of stirring. In the second and primary method, caustic soda is added to the starch suspension and later on in the process the product is neutralized with acids. The starch paste now has a high viscosity and acts as an adhesive. If the concentration of the starch is above 7% then the cooked paste is very viscous and difficult to pump. Above 15% starch solids content, the cooked paste forms an immobile rubbery mass on cooling. Suspensions with a higher amylose / amylopectin ratio will have a higher viscosity. Pregelation starch is produced by physical modification of the starch to impart the ability to form a paste easily in cold water. The process consists of heating the starch slurry to a temperature above the gelation temperature and then quickly drying the starch before retardation can occur. The main process equipment used is a heated-drum drier or hot roll. Unmodified starches, such as produced by the steps outlined above, are in powder form (pregelation) or high viscosity, low solids content pastes which do not show a stable viscosity with time. Therefore, several treatments have been developed to provide liquid adhesives that are not subject to retrogradation and have a viscosity and rheology more suitable for many applications. These treatment methods include: alkali treatment, acid treatment, and oxidation. The gelation temperature can be lowered by the addition of an alkali, such as sodium hydroxide, to the starch suspension. If sufficient alkali is added, the starch can be induced to gel at room temperature. Acid modification of starch is achieved by heating the starch at 49-54°C with small amounts of aqueous mineral acid, followed by neutralization with a base. This tends to give a much thinner solution at the same solids content when compared to unmodified starch. Starches prepared in this manner are often known as thin-boiling or high-fluidity starches. Acid modification is often used when applications require higher solids content but a controlled, lower viscosity. Oxidization of starch is usually obtained by treatment with aqueous alkaline hypochlorite. A starch suspension at pH 8-10 is treated with hypochlorite (5-10% Cl based on starch) for a long enough time to produce the desired viscosity. Acid is liberated during the reaction, so base must be added to maintain the pH for optimum reactivity. Dried oxidized starch is generally whiter than unmodified starch. Because of the low color, they are often used for the sizing and coating of printing papers. These oxidized or chlorinated starches behave similarly to acid modified starches. However, the oxidized starch has greater tack and adhesive character and, thus, is often used in adhesive applications. The Stein-Hall Process The first major commercial process for producing starch adhesives was the Stein-Hall Process. This was introduced in the 1930s for the purpose of producing an adhesive for corrugated boxes. [2] The Stein-Hall system combines the properties of an 8-9% cooked starch paste and a 25% starch slurry in a two-component, two-container process as indicated in Table 2. Sodium hydroxide is used to lower the gelation temperature and borax to increase the tack. Crosslinkers and special starches may be used to impart water- resistance. To 400 lbs w ater add w ith mixing, 100 lbs corn starch follow ed by 17 lbs caustic soda in 3 gal w ater. Upper Tank (Carrier Starch) Heat w ith live steam to 71°C, agitate 15 min and then dilute w ith 500 lbs of cold w ater Lower Tank (Suspended To 1520 lbs w ater add 17 lbs borax, allow to dissolve 2-3 mins and add 500-600 lbs starch and suspend Starch) uniformly.
Recommended publications
  • Reducing Sugars Are Determined by Reaction of a Water Soluble Portion of the Sample with an Excess of Standard Copper Sulfate In
    SUGAR.02-1 REDUCING SUGARS (Schoorl Method) PRINCIPLE Reducing sugars are determined by reaction of a water soluble portion of the sample with an excess of standard copper sulfate in alkaline tartrate (Fehling's) solution under controlled conditions of time, temperature, reagent concentration and composition, so that the amount of copper reduced is proportional to the amount of reducing sugars in the sample analyzed. In this adaptation of Schoorl's method (Note 1) the reducing sugar concentration expressed as dextrose, is estimated by iodometric determination of the unreduced copper remaining after reaction. SCOPE This method was designed specifically for steepwater, water soluble dextrins and maltodextrins and is applicable to other carbohydrates, such as low DE glucose syrups and solids (Note 2). Dextrins are modified starches prepared from starch by heat treatment in the dry state with or without the addition of small quantities of reagents. The method is not recommended for samples above 30 DE, since it tends to give higher results as the relationship of reduced copper with respect to reducing sugars becomes less linear at the higher DE's. SAFETY Follow Good Laboratory Practices throughout. MEDIA AND REGEANTS 1. Fehling’s Solution (Note 1) A. Dissolve 34.64 g of reagent grade crystalline copper sulfate pentahydrate in purified water and dilute to 500-mL volume. B. Dissolve 173 g of reagent grade potassium sodium tartrate tetrahydrate and 50 g of reagent grade sodium hydroxide in purified water and dilute to 500-mL volume. Let stand overnight. If precipitation is present, filter through glass wool prior to use. Analytical Methods of the Member Companies of the Corn Refiners Association, Inc.
    [Show full text]
  • Food and Nutrition Board Committee on Food Chemicals Codex
    Institute of Medicine Food and Nutrition Board Committee on Food Chemicals Codex Revised Monograph - Dextrin Please send comments to the Committee on Food Chemicals Codex, National Academy of Sciences, FO 3042, 2101 Constitution Avenue, N.W., Washington, DC 20418 or email them to [email protected]. All comments must be received by December 15, 1996, for consideration for the First Supplement. ______________________________________________________________________________ June 13, 1996 Dextrin INS: 1400 CAS: [9004-53-9] DESCRIPTION Dextrin is partially hydrolyzed starch converted by heat alone, or by heating in the presence of suitable food-grade acids and buffers, from any of several grain- or root-based unmodified native starches (e.g., corn, waxy maize, high amylose, milo, waxy milo, potato, arrowroot, wheat, rice, tapioca, sago, etc.). The products thus obtained occur as free-flowing white, yellow, or brown powders and consist chiefly of polygonal, rounded, or oblong or truncated granules. They are partially to completely soluble in water. Functional Use in Foods Thickener; colloidal stabilizer; binder; surface-finishing agent. REQUIREMENTS Labeling Indicate the presence of sulfur dioxide if the residual concentration is greater than 10 mg/kg. Identification Suspend about 1 g of the sample in 20 mL of water, and add a few drops of iodine TS. A dark blue to reddish brown color is produced. Chloride Not more than 0.2%. Crude Fat Not more than 1.0%. Heavy Metals (as Pb) Not more than 0.002%. Lead Not more than 1 mg/kg. Loss on Drying Not more than 13.0%. Protein Not more than 1.0%. Reducing Sugars Not more than 18.0% (expressed as D-glucose), calculated on the dried basis.
    [Show full text]
  • Glucose-Galactose Malabsorption J
    Arch Dis Child: first published as 10.1136/adc.42.226.592 on 1 December 1967. Downloaded from Arch. Dis. Childh., 1967, 42, 592. Glucose-galactose Malabsorption J. M. ABRAHAM, B. LEVIN, V. G. OBERHOLZER, and ALEX RUSSELL* From Queen Elizabeth Hospitalfor Children, Hackney Road, London E.2 Primary disaccharidase deficiency is a well-known electrolytaemia. On the 16th day, therefore, feeds cause of diarrhoea in infancy. The offending were changed to Nutramigen without improvement, and disaccharide appears in the stool after ingestion due 9 days later this was substituted by Velactin. Both of to the absence in the intestinal mucosa of the appro- these low-lactose preparations contain, in addition to protein, large amounts of dextrin and starch, and priate splitting enzyme. A much rarer cause of Nutramigen also includes maltose, while Velactin also has diarrhoea in this period is a failure of absorption of glucose and sucrose. All these carbohydrates on the monosaccharides, glucose and galactose, in the digestion give rise to glucose. The diarrhoea now presence of histologically normal mucosa and full decreased and the stools became less liquid; but disaccharidase activity. The clinical and bio- there was no weight gain (Fig. 1) and glucose was still chemical picture of this newly-described entity is present in the stools. After 12 days on this regime, an characteristic. Watery diarrhoea, with glucose extensive rash developed on the buttocks and groins, and/or galactose in the stools, develops within three with stomatitis (Fig. 2), anaemia, hypokalaemia, and days of milk feeding and continues as long as the hyperchloraemic acidosis (Na 138, K 2-4, Cl 112, standard bicarbonate 13*7 mEq/l.).
    [Show full text]
  • Low Fructose Diet
    Low Fructose Diet What is Fructose? Fructose is a natural sugar found in fruit, fruit juices, honey, and agave syrup. It is also found in some vegetables and wheat products in another form called fructans (fructose sugars in a long chain). High fructose corn syrup (HFCS) is another form of fructose commonly used in processed foods. What is Fructose Intolerance? Fructose intolerance, also called dietary fructose intolerance or fructose malabsorption, happens when a person cannot properly absorb normal amounts of fructose (>25 grams per meal). What are common symptoms? Unabsorbed fructose that reaches the large intestine can be fermented (converted into gas) by bacteria causing symptoms like abdominal pain, gas, belching, and bloating. Unabsorbed fructose can also pull water back into the colon, increasing gut motility and causing diarrhea. Less common symptoms of fructose intolerance can include reflux, depression, fatigue, brain fog, headache, weight loss, and sugar cravings. How is Fructose Intolerance diagnosed? Anyone can develop fructose intolerance, but it is more common among individuals with irritable bowel syndrome (IBS) or other gastrointestinal disorders. A Hydrogen Breath Test is used to diagnosis fructose intolerance. An abnormal (positive) test indicates the need for a low fructose diet. What is a Low Fructose Diet? A low fructose diet reduces the amount of fructose consumed by limiting or avoiding foods with excess fructose (foods that contain more than half of their natural sugar as fructose), foods with high fructose (more than 3 grams), and foods that are a significant source of fructans (chains of fructose). How long does this diet need to be followed? A low fructose diet should be followed until symptoms improve, typically 2-6 weeks.
    [Show full text]
  • Candyrific Item Ingredients
    Candyrific Item Ingredients Production Candy Ingredients Allergens Vegetarian Storage Location Banana Shaped Dextrose DEXTROSE, MALTODEXTRIN, ANTICAKING AGENT (MAGNESIUM STEARATE), ACID (MALIC ACID, CITRIC ACID), MAY CONTAIN TRACES OF China yes store in a cool dry place (ZED) ARTIFICIAL FLAVOR AND ARTIFICIAL COLOR (FD & C YELLOW NO. 5), GLAZING AGENTS (CARNAUBA WAX). SOY Chupa Chups - * Produced in a plant that Sugar, Glucose Syrup, Citric Acid, Malic Acid, Artificial Flavor, Fruit Juice Concentrate, Beetroot Red. Mexico no store in a cool dry place Fruit Flavor uses milk, wheat and soy. Chupa Chups - * Produced in a plant that Sugar, Corn Syrup, Dry Whey (Milk), Chocolate Liquor, Artificial Flavors Mexico no store in a cool dry place Choco Banana Flavor uses milk, wheat and soy. SUGAR, CORN SYRUP, WATER, NATURAL FLAVORS (NATURAL GRAPE FLAVOR, NATURAL LEMON FLAVOR, NATURAL None. Cool Pop China yes store in a cool dry place STRAWBERRY FLAVOR), NATURAL COLORS (GRAPE SKIN EXTRACT, TURMERIC, COCHINEAL). **Have allergen chart.** Dextrose, Glucose (Corn Syrup), Citric Acid, Calcium Stearate, Tapioca Dextrin, Confectioner's Glaze (Shellac), Store in cool, Dry place. Dextrose Carnauba Wax, Artificial Flavors and Artificial Colors (FD & C Red No. 40, FD & C Yellow No.5 (Tartrazine), FD & C Canada May contain Soy. no Temperature 15-25C. (Sweet Maple) Yellow No. 6, FD & C Blue No. 1, Titanium Dioxide). May contain traces of soy. Humidity: Max 50% SUGAR, DEXTROSE, CORN SYRUP (GLUCOSE), CHEWING GUM BASE, GUM ARABIC, TAPIOCA DEXTRIN, CONFECTIONER'S GLAZE (SHELLAC), CARNAUBA WAX, CORN STARCH, ARTIFICIAL FLAVORS AND ARTIFICIAL COLORS Contains Tartrazine. Gumball Canada yes store in a cool dry place (FD & C RED NO.40, FD & C BLUE NO.1, FD & C YELLOW NO.5 (TARTRAZINE), FD & C YELLOW NO.6, FD & C RED NO.3, May contain Soy.
    [Show full text]
  • Biochemistry Introductory Lecture Dr
    Biochemistry Introductory lecture Dr. Munaf S. Daoud Carbohydrates (CHO) Definition: Aldehyde or Ketone derivatives of the higher polyhydric alcohols or compounds which yield these derivatives on hydrolysis. Classification: (mono, di, oligo, poly) saccharide. Monosaccharides: Can be classified as trioses, tetroses, pentoses, hexoses and heptoses depending upon the number of carbon atoms, and as aldoses or ketoses, depending upon whether they have an aldehyde or ketone group. Aldehyde (-CHO) Aldoses Ketone (-C=O) Ketoses Polysaccharides (glycans): Homopolysaccharides (homoglycans): e.g. starch, glycogen, inulin, cellulose, dextrins, dextrans. Heteropolysaccharides (heteroglycans): e.g. mucopolysaccharides (MPS) or glycosaminoglycans. Function of CHO: 1) Chief source of energy (immediate and stored energy). 2) Constituent of compound lipids and conjugated protein. 3) Structural element like cellulose. 4) Drugs like cardiac glycosides and antibodies. 5) Lactating mammary gland (Lactose in milk). 6) Synthesis of other substances like fatty acids, cholesterol, amino acids…etc. by their degradation products. 7) Constituent of mucopolysaccharides. 1 1) Stereo-isomerism Stereo-isomers: D-form, L-form 2) Optical isomers (optical activity) Enantiomers: dextrorotatory (d or + sign) Levorotatory (l or – sign) Racemic (d l) 3) Cyclic structures or open chain 4) Anomers and Anomeric carbon OH on carbon number 1, if below the plane then its -form, if above the plane then -form. Mutarotation: the changes of the initial optical rotation that takes place
    [Show full text]
  • Starch and Schardinger Dextrins: I. Complexes with Hydrophobic Compounds; II
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1962 Starch and Schardinger dextrins: I. Complexes with hydrophobic compounds; II. Higher Schardinger dextrin homologs Arden Orion Pulley Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons Recommended Citation Pulley, Arden Orion, "Starch and Schardinger dextrins: I. Complexes with hydrophobic compounds; II. Higher Schardinger dextrin homologs " (1962). Retrospective Theses and Dissertations. 2071. https://lib.dr.iastate.edu/rtd/2071 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 62—4173 microfilmed exactly as received PULLEY, Arden Orion, 1934- STARCH AND SCHARDINGER DEXTRINS. I. COM­ PLEXES WITH HYDROPHOBIC COMPOUNDS. II. HIGHER SCHARDINGER DEXTRIN HOMO LOGS. Iowa State University of Science and Technology Ph.D., 1962 Chemistry, biological University Microfilms, Inc., Ann Arbor, Michigan STARCH AND SCHARDINGER DEXTRINS T ^ A7l/rT>T WVTÏPI T.TTmrr TTtmn A^TTAn I* OI n /-wwr^x. II. HIGHER SCHARDINGER DEXTRIN HOMOLOGS by Arden Orion Pulley A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Biochemistry Approved; Signature was redacted for privacy. •ge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Dear of Graduate/Qollege Iowa State University Of Science and Technology Ames, Iowa 1962 ii TABLE OF CONTENTS Page PART I.
    [Show full text]
  • Symbiosis in Thermophilic Cellulose Fermentation
    No. 4151 May 21, 1949 NATURE 805 Fermentation products (gm. per 100 gm. cellulose (or dextrose)) whom the normal homozygous condition is not decomposed expected. Added cellulose : 10 gm. per litre medium. R. PICKFORD Added dextrose : 20 gm. per litre medium. w. c = pure culture of cellulose-fermenting bacterium. Psychology Department, 8 = pure culture of dextrose fermenter producing butyric acid. University, III = pure culture of dextrose fermenter producing lactic acid. Glasgow, W.2. Nov. 2. Culture --c --8 III / c+s c+8+III 1 Pickford, R. W., Nature, 153, 409 (1944). Incubation time (days) 10 6 4 1 s 6 Carbohydrate source cellu- dex- cellu- cellu- • Pickford, R. W., Nature, 159, 606 (1947). lose trose trose lose lose • de Vries, HI., Genaica, 24, 199 (1948). Carbohydrate fer- 'Ford, E. B., "GenetiCll for Medical Students" , 151 (1946). mented (%) 40 ·1 wo ·o 83·1 70·1 I 100·0 • Pickford, R. W., Nature, 162, 684 (1948). Fermentation products: (gm. per 100 gm. fermented carbo- 'Pickford, R. W., Nature, 153, 656 (1944). hydrate) Ethanol 16•0 I 14·8 ' 8•9 13•7 15·0 'Pickford, R. W., J. Psychol., 21, 153 (1949). Formic acid 5·4 5·4 I 4·8 1-1 1·7 Acetic acid 19·1 10·4 3·9 42·2 29·0 Butyric acid 0·0 2 ·5 0·0 14·2 30·0 Lactic acid 43·1 52 ·5 73·6 9 ·6 4·8 Reducing substance Symbiosis in Thermophilic Cellulose calculated as dex- trose 11·7 -- 0·0 0·0 Fermentation I AN elective culture of anaerobic thermophilic cellulose bacteria was examined by plating with When the cellulose medium is inoculated with potato infusion agar, to which 0·04 per cent sodium type c and also type 8, or types 8 and III together, thioglycollate was added.
    [Show full text]
  • Tapioca Dextrin As an Alternative Carrier in the Spray Drying of Fruit Juices—A Case Study of Chokeberry Powder
    foods Article Tapioca Dextrin as an Alternative Carrier in the Spray Drying of Fruit Juices—A Case Study of Chokeberry Powder Jolanta Gawałek 1,* and Ewa Domian 2 1 Institute of Food Technology of Plant Origin, Pozna´nUniversity of Life Sciences, Wojska Polskiego 31, 60-624 Pozna´n,Poland 2 Department of Food Engineering and Process Management, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel./Fax: +48-61-848-73-14 Received: 27 July 2020; Accepted: 13 August 2020; Published: 15 August 2020 Abstract: This paper analyses the semi-industrial process of spray drying chokeberry juice with carbohydrate polymers used as a carrier. Tapioca dextrin (Dx) was proposed and tested as an alternative carrier and it was compared with maltodextrin carriers (MDx), which are the most common in industrial practice. The influence of selected process parameters (carrier type and content, inlet air temperature, atomiser speed) on the characteristics of dried chokeberry powder was investigated. The size and microstructure of the powder particles, the bulk and apparent density, porosity, flowability, yield and bioactive properties were analysed. In comparison with MDx, the Dx carrier improved the handling properties, yield and bioactive properties. An increase in the Dx carrier content improved the phenolic content, antioxidant capacity, flowability and resulted in greater yield of the powder. An increase in the drying temperature increased the size of particles and improved powder flowability but it also caused a greater loss of the phenolic content and antioxidant capacity. The rotary atomizer speed had the most significant effect on the bioactive properties of obtained powders, which increased along with its growth.
    [Show full text]
  • Health Benefits of Prebiotic Dietary Fiber JENNIFER ERICKSON, Phd, RD
    4/16/2018 Health Benefits of Prebiotic Dietary Fiber JENNIFER ERICKSON, PhD, RD Objectives Provide some background on dietary fiber To define the term "prebiotic dietary fiber" To discuss potential health effects of prebiotic dietary fibers To identify food sources of prebiotic dietary fibers Dietary Fiber “Dietary fiber is the edible parts of plants or analogous carbohydrates that are resistant to digestion and absorption in the human small intestine… Dietary fiber includes polysaccharides, oligosaccharides, lignin, and associated plant substances.” AACC 1 4/16/2018 Dietary Fiber Soluble Insoluble Beta glucans Cellulose Wheat dextrin Lignin Psyllium Inulin Dietary Fiber Viscous Non-viscous Pectins Polydextrose B-glucans Wheat dextrin Psyllium Inulin Dietary Fiber Fermentable Non-Fermentable Wheat dextrin Cellulose Beta-glucans Lignin Guar gum Inulin 2 4/16/2018 Health Benefits of Dietary Fiber 430 BC Hippocrates documented the effect of coarse wheat compared to refined wheat on regularity of bowel movements. Health Benefits of Dietary Fiber Cardiovascular disease Glycemic control Laxation Appetite control/ Body weight Cancer Prebiotic effects Consumption of fibers in US Fiber recommendations: 14g/1000 calories 25g/day for adult females 38g/day for adult males Average intakes are approximately 17g/day Only 5% of the population meets the Adequate Intake! JAND. 2015;115:1861-1870. 3 4/16/2018 Major Sources of Dietary Fiber Nutrients 2015, 7(2), 1119-1130. The new Nutrition Facts Panel will affect dietary
    [Show full text]
  • Carbohydrate Polymers As Adhesives
    In: Pizzi, A.; MittaI, K. L., eds. Handbook of adhesive technology. New York: Marcel Dekker, Inc.; 1994. Chapter 15. 15 Carbohydrate Polymers as Adhesives Melissa G. D. Baumann and Anthony H. Conner Forest Products Laboratory, USDA-Forest Service, Madison, Wisconsin I. INTRODUCTION Carbohydrates in the form of polysaccharides are readily available from all plants, the exoskeletons of various marine animals, and some microorganisms. Because up to three- fourths of the dry weight of plants consists of polysaccharides, it is not surprising that many polysaccharides are readily available at low cost. Polysaccharides, especially from plant sources, have served a variety of uses in human history, ranging from basic necessities, such as food, clothing, and fuel, to paper and adhesives. Three major carbohydrate polymers are readily obtained from biomass and are commercially available. These polysaccharides are cellulose, starch, and gums. The use of each of these types of carbohydrate polymers in and for adhesives is discussed in this chapter. Il. ADHESIVES FROM CELLULOSE Cellulose is the principal structural material in the cell wall of all plants and is also found in algae, bacteria, and animals (tunicates). Approximately 10” tons of cellulose is formed each year, this puts cellulose among the most important renewable resources in the world [1]. A. Cellulose Structure Cellulose is a homopolymer of b- D - anhydroglucopyranose monomeric units that are linked via ether linkages between C-1 of one monomeric unit and C-4 of the adjacent monomeric unit (Fig. I). As illustrated, every other monomeric unit is rotated approx- imately 180° about the long axis of the cellulose chain when compared to its two neighboring monomeric units.
    [Show full text]
  • Combustible Dust Poster
    Combustible Dust Does your company or firm process any of these products or materials in powdered form? If your company or firm processes any of these products or materials, there is potential for a “Combustible Dust” explosion. Agricultural Products Cottonseed Soybean dust Chemical Dusts Epoxy resin Egg white Garlic powder Spice dust Adipic acid Melamine resin Milk, powdered Gluten Spice powder Anthraquinone Melamine, molded Milk, nonfat, dry Grass dust Sugar (10x) Ascorbic acid (phenol-cellulose) Soy flour Green coffee Sunflower Calcium acetate Melamine, molded Starch, corn Hops (malted) Sunflower seed dust Calcium stearate (wood flour and Starch, rice Lemon peel dust Tea Carboxy-methylcellulose mineral filled phenol- Starch, wheat Lemon pulp Tobacco blend Dextrin formaldehyde) Sugar Linseed Tomato Lactose (poly) Methyl acrylate Sugar, milk Locust bean gum Walnut dust Lead stearate (poly) Methyl acrylate, Sugar, beet Malt Wheat flour Methyl-cellulose emulsion polymer Tapioca Oat flour Wheat grain dust Paraformaldehyde Phenolic resin Whey Oat grain dust Wheat starch Sodium ascorbate (poly) Propylene Wood flour Olive pellets Xanthan gum Sodium stearate Terpene-phenol resin Onion powder Sulfur Urea-formaldehyde/ Agricultural Dusts Parsley (dehydrated) Carbonaceous Dusts cellulose, molded Alfalfa Peach Charcoal, activated Metal Dusts (poly) Vinyl acetate/ Apple Peanut meal and skins Charcoal, wood Aluminum ethylene copolymer Beet root Peat Coal, bituminous Bronze (poly) Vinyl alcohol Carrageen Potato Coke, petroleum Iron carbonyl (poly)
    [Show full text]