Both-Bone Forearm Fracture with Distal Radioulnar Joint Dislocation

Total Page:16

File Type:pdf, Size:1020Kb

Both-Bone Forearm Fracture with Distal Radioulnar Joint Dislocation A Case Report & Literature Review Both-Bone Forearm Fracture With Distal Radioulnar Joint Dislocation Michael K. Ryan, MD, Brendan J. MacKay, MD, and Nirmal C. Tejwani, MD and a concomitant ipsilateral DRUJ dislocation, and we review Abstract the literature on this uncommon injury pattern. Both-bone forearm fractures, also known as The patient provided written informed consent for print concomitant diaphyseal radius and ulna frac- and electronic publication of this case report. tures, and distal radioulnar joint (DRUJ) disloca- tions are each uncommon injuries in adult upper Case Report extremity trauma. DRUJ dislocations are more A 38-year-old man with no past medical history presented to often associated with radial shaft (Galeazzi) the emergency department after being thrown from a motor- fractures. In this article, we report the case of cycle. On arrival, he reported bilateral upper extremity pain. a patient who sustained a both-bone forearm Physical examination revealed closed deformities of the left fracture and DRUJ dislocation, and we review forearm and right wrist. Radiographs of the left upper extrem- the literature on this unique injury pattern. ity showed mid-diaphyseal radius and ulna fractures and a DRUJ dislocation (Figure 1). Radiographs of the right upper extremity showed a comminuted radial styloid fracture and widening of the scapholunate interval with dorsal interca- iaphyseal forearm fractures are relatively rare in or- lated segment instability deformity of the carpus. Both upper thopedic trauma, accounting for only 0.9% of all frac- extremity injuries were acceptably reduced and splinted. The 1 AJO Dtures. Both-bone forearm fractures, also known as patient also had a left-side subarachnoid hematoma, which concomitant diaphyseal radius and ulna fractures, are even was stable on serial computed tomography without contrast. more uncommon, comprising 21.7% of diaphyseal forearm After the patient was medically stabilized, the fractures fractures.1 Distal radioulnar joint (DRUJ) dislocations occur were surgically repaired. Radius and ulna were reduced and infrequently as well. Investigators have cited a 6% to 55% in- compression-plated through separate incisions. After stable cidence of DRUJ dislocations associated with diaphyseal radius fixation was achieved, intraoperative elbow range of motion fractures,DO and the rate is higher forNOT fractures closer to the distal (ROM) wasCOPY full, with 90° of supination and pronation. On radial articular surface.2,3 physical examination, the DRUJ was stable with the forearm in Both conditions have similar mechanisms of injury including neutral, pronation, and supination. Postoperative radiographs falls, blunt trauma, sports, and motor vehicle accidents. Inde- showed well-reduced radius, ulna fractures, and DRUJ. A long pendently, the 2 injury patterns have been thoroughly described arm splint was placed with the wrist in supination. in the literature, but there are only isolated reports—most recently Figure 1. Lateral (A) and oblique (B) radiographs of left forearm show shortened, rotated, and displaced in 19754—of concomi- diaphyseal fractures of radius and ulna. (C) Posteroanterior radiograph of left wrist shows distal radioulnar tant both-bone forearm joint dislocation, joint widening, and distal displacement of ulna. (D) Lateral radiograph of left wrist shows dorsal dislocation of distal ulna. (E) Oblique radiograph of left wrist. fractures and ipsilateral DRUJ dislocations. In A B C D E these reports, the infor- mation on fracture pat- terns, treatments, and functional outcomes is limited. In this article, we re- port the case of a both- bone forearm fracture Authors’ Disclosure Statement: The authors report no actual or potential conflict of interest in relation to this article. E30 The American Journal of Orthopedics® May 2013 www.amjorthopedics.com A Case Report & Literature Review For 6 weeks, the patient wore a functional brace on forearm perfect alignment, no loss of length, no DRUJ subluxation, no and elbow to keep the forearm in supination. Eleven weeks limitation in elbow or wrist function, and no limitation in after surgery, radiographs showed healing fractures and a well- pronation or supination. reduced DRUJ. At most recent follow-up (6 months), forearm There is no definitive explanation for the low incidence and wrist had limited ROM, elbow had full ROM, and there of both-bone forearm fractures concomitant with ipsilateral was radiographic evidence of fracture healing and a stable DRUJ dislocations. DRUJ dislocations in Galeazzi fractures oc- DRUJ (Figure 2). cur more often when the radial shaft fracture occurs within 7.5 cm of the radial articular surface (55%), compared with Discussion fractures proximal to this point (6%).3 Both-bone forearm DRUJ dislocations co-occurring with diaphyseal radius frac- fractures occur most often in the proximal and middle thirds tures have been recognized for nearly 200 years, but it was not of the forearm (82% and 72%, respectively).8 Therefore, the until 1949 that Knight and Purvis5 first proximal-to-distal decrease in the in- described a both-bone forearm fracture cidence of diaphyseal shaft fractures is co-occurring with an ipsilateral DRUJ A B accompanied by an increase in the inci- dislocation. The authors reported on 100 dence of DRUJ dislocations. This may be cases of both-bone forearm fractures—41 the result of biomechanical differences managed with closed reduction and in these injury patterns. splinting in supination and the other 59 Mikić4 and Hughston9 separately de- managed with open reduction and dif- scribed the path of force transmission in ferent internal fixation techniques—and Galeazzi fractures as originating in the found unsatisfactory outcomes in 71% of hand, traveling through the radius, con- those treated closed and in 40% to 85% of tinuing through the interosseous mem- those treated with open reduction inter- brane, and exiting at the triangular fibro- nal fixation (ORIF). They also noted that, cartilage complex. Mikić used a variation though axial subluxation of the DRUJ was of this theory to explain both-bone fore- Figure 2. Six months after surgery, common in both-bone forearm fractures posteroanteriorAJO (A) and lateral (B) radio- arm fractures concomitant with ipsilater- secondary to radial shortening, DRUJ in- graphs of left forearm show interval heal- al DRUJ dislocations. He postulated that stability and pain seldom occurred, unless ing of radius and ulna fractures. the same force causing Galeazzi fractures there was volar or dorsal dislocation of the also propagates through the ulna, causing radius or ulna. mechanical failure. In 1963, Albert and colleagues6 reported DRUJ dislocation However, Rettig and Raskin2 stated that different mecha- in association with a 1- or 2-bone diaphyseal fracture in 7 of nisms are involved in diaphyseal fractures of the distal third of 60DO forearm fracture cases, but gaveNOT no other pertinent details. the radius andCOPY diaphyseal fractures of the middle and proximal In 1967, Vesely7 conducted a comprehensive review of the thirds. Fractures of the distal third (ie, within 7.5 cm of the DRUJ and identified 201 cases of forearm injuries managed midarticular surface) are “high-impact hyperextension frac- over a 5-year period. These included distal radius fractures and tures [resulting] in a direct continuum of injury through the isolated joint dislocations without fracture. Thirteen of these in- triangular fibrocartilage complex and the interosseous mem- juries were mid-diaphyseal both-bone fractures, and 6 of these brane,” whereas forearm fractures beyond 7.5 cm from the 13 had associated ipsilateral DRUJ dislocations. The authors did midarticular surface (moving more proximally) result from not report details regarding management or outcomes. an “indirect pronation force with incomplete soft-tissue dis- In 1975, Mikić4 evaluated 125 Galeazzi or Galeazzi-type ruption.” Independent of the mechanism involved in these fractures managed over a 10-year period. Mikić coined the injury patterns, the interosseous membrane plays a vital role term Galeazzi-type fracture to describe a both-bone forearm frac- in the function, stability, and force dissipation of the forearm. ture with an associated ipsilateral DRUJ dislocation. Twenty- Any disruption in this membrane places excessive loads on five of these injuries were both-bone forearm fractures with either the DRUJ or the proximal radioulnar joint and makes concomitant ipsilateral DRUJ dislocations. Four of these 25 it vulnerable. were unsuccessfully managed with closed reduction and cast- Both-bone forearm fractures and Galeazzi fractures histori- ing, and the other 21 were managed with a variety of surgical cally have been managed with a variety of methods. Initially, techniques. Forty-five percent of the surgical cases had poor the technique of closed manipulation and immobilization was outcomes (ie, pain, deformity, nonunion, shortening, or angu- advocated for management of both-bone forearm fractures, as lation of the radius; DRUJ dislocation; pronation or supination surgical intervention often yielded high rates of infection, de- limitation of >45°; and excessively restricted elbow or wrist layed union, malunion, and residual DRUJ instability.5,10 When function). The authors reported 3 excellent outcomes, all in surgical techniques and implants improved, attitudes shifted cases managed with radioulnar transfixation using Kirsch- toward making operative fixation the primary treatment, as ner wires.
Recommended publications
  • Ulna Length and Mid-Upper
    Ulna length is an estimation of height. It is not an accurate measure of height Ulna length should be used only when: o It is not possible to measure height or to obtain height by recall OR o Recalled height does not match patients appearance ① To measure ulna length – Complete Women Men this once, on admission Ulna Under 65 years Ulna Under 65 Ensure the patients left arm is bare length 65 & over length 65 years years from palm to elbow (cm) years (cm) & over Ask the patient Approximate Approximate to cross their height (metres) height (metres) left arm across 32.0 1.84 1.84 32.0 1.94 1.87 their chest 31.5 1.83 1.83 31.5 1.93 1.86 (as in this 31.0 1.81 1.81 31.0 1.91 1.84 picture) 30.5 1.80 1.79 30.5 1.89 1.82 30.0 1.79 1.78 30.0 1.87 1.81 Measure between the point of the 29.5 1.77 1.76 29.5 1.85 1.79 elbow (olecranon process) and the 29.0 1.76 1.75 29.0 1.84 1.78 midpoint of the prominent bone of 28.5 1.75 1.73 28.5 1.82 1.76 the wrist (styloid process) 28.0 1.73 1.71 28.0 1.80 1.75 Record ulna length on MUST chart 27.5 1.72 1.70 27.5 1.78 1.73 27.0 1.70 1.68 27.0 1.76 1.71 ② To find estimated height from ulna 26.5 1.69 1.66 26.5 1.75 1.70 length – Complete this once, on 26.0 1.68 1.65 26.0 1.73 1.68 admission 25.5 1.66 1.63 25.5 1.71 1.67 Follow a.
    [Show full text]
  • Sports Medicine Examination Outline
    Sports Medicine Examination Content I. ROLE OF THE TEAM PHYSICIAN 1% A. Ethics B. Medical-Legal 1. Physician responsibility 2. Physician liability 3. Preparticipation clearance 4. Return to play 5. Waiver of liability C. Administrative Responsibilities II. BASIC SCIENCE OF SPORTS 16% A. Exercise Physiology 1. Training Response/Physical Conditioning a.Aerobic b. Anaerobic c. Resistance d. Flexibility 2. Environmental a. Heat b.Cold c. Altitude d.Recreational diving (scuba) 3. Muscle a. Contraction b. Lactate kinetics c. Delayed onset muscle soreness d. Fiber types 4. Neuroendocrine 5. Respiratory 6. Circulatory 7. Special populations a. Children b. Elderly c. Athletes with chronic disease d. Disabled athletes B. Anatomy 1. Head/Neck a.Bone b. Soft tissue c. Innervation d. Vascular 2. Chest/Abdomen a.Bone b. Soft tissue c. Innervation d. Vascular 3. Back a.Bone b. Soft tissue c. Innervation 1 d. Vascular 4. Shoulder/Upper arm a. Bone b. Soft tissue c. Innervation d. Vascular 5. Elbow/Forearm a. Bone b. Soft tissue c. Innervation d. Vascular 6. Hand/Wrist a. Bone b. Soft tissue c. Innervation d. Vascular 7. Hip/Pelvis/Thigh a. Bone b. Soft tissue c. Innervation d. Vascular 8. Knee a. Bone b. Soft tissue c. Innervation d. Vascular 9. Lower Leg/Foot/Ankle a. Bone b. Soft tissue c. Innervation d. Vascular 10. Immature Skeleton a. Physes b. Apophyses C. Biomechanics 1. Throwing/Overhead activities 2. Swimming 3. Gait/Running 4. Cycling 5. Jumping activities 6. Joint kinematics D. Pharmacology 1. Therapeutic Drugs a. Analgesics b. Antibiotics c. Antidiabetic agents d. Antihypertensives e.
    [Show full text]
  • Surgical Treatment of Traumatic Cervical Facet Dislocation
    DOI: 10.1590/0004-282X20160078 VIEW AND REVIEW Surgical treatment of traumatic cervical facet dislocation: anterior, posterior or combined approaches? Deslocamentos facetários cervicais traumáticos: abordagem anterior, posterior ou combinada? Catarina C. Lins1, Diego T. Prado2, Andrei F. Joaquim1,3 ABSTRACT Surgical treatment is well accepted for patients with traumatic cervical facet joint dislocations (CFD), but there is uncertainty over which approach is better: anterior, posterior or combined. We performed a systematic literature review to evaluate the indications for anterior and posterior approaches in the management of CFD. Anterior approaches can restore cervical lordosis, and cause less postoperative pain and less wound problems. Posterior approaches are useful for direct reduction of locked facet joints and provide stronger fixation from a biomechanical point of view. Combined approaches can be used in more complex cases. Although both anterior and posterior approaches can be used interchangeably, there are some patients who may benefit from one of them over the other, as discussed in this review. Surgeons who treat cervical spine trauma should be able to perform both procedures as well as combined approaches to adequately manage CFD and improve patients’ final outcomes. Keywords: spine; dislocations; bones fractures; surgery. RESUMO O tratamento dos deslocamentos facetários cervicais traumáticos (DFC) é preferencialmente cirúrgico, conforme a literatura pertinente, mas há dúvidas quanto a melhor forma de abordagem da coluna: anterior, posterior ou combinada. Realizamos revisão sistemática para avaliar as indicações da abordagem anterior e da posterior nos DFC. A abordagem anterior permite restaurar a lordose cervical, com menor dor no pós-operatório e menos problemas relacionados a ferida cirúrgica.
    [Show full text]
  • S41598-020-78754-9.Pdf
    www.nature.com/scientificreports OPEN Acromioclavicular and sternoclavicular joint dislocations indicate severe concomitant thoracic and upper extremity injuries in severely injured patients M. Sinan Bakir1,2*, Rolf Lefering3, Lyubomir Haralambiev1,2, Simon Kim1, Axel Ekkernkamp1,2, Denis Gümbel1,2 & Stefan Schulz‑Drost2,4,5 Preliminary studies show that clavicle fractures (CF) are known as an indicator in the severely injured for overall injury severity that are associated with relevant concomitant injuries in the thorax and upper extremity. In this regard, little data is available for the rarer injuries of the sternoclavicular and acromioclavicular joints (SCJ and ACJ, respectively). Our study will answer whether clavicular joint injuries (CJI), by analogy, have a similar relevance for the severely injured. We performed an analysis from the TraumaRegister DGU (TR‑DGU). The inclusion criterion was an Injury Severity Score (ISS) of at least 16. In the TR‑DGU, the CJI were registered as one entity. The CJI group was compared with the CF and control groups (those without any clavicular injuries). Concomitant injuries were distinguished using the Abbreviated Injury Scale according to their severity. The inclusion criteria were met by n = 114,595 patients. In the case of CJI, n = 1228 patients (1.1%) were found to be less severely injured than the controls in terms of overall injury severity. Compared to the CF group (n = 12,030; 10.5%) with higher ISS than the controls, CJI cannot be assumed as an indicator for a more severe trauma; however, CF can. Concomitant injuries were more common for severe thoracic and moderate upper extremity injuries than other body parts for CJI.
    [Show full text]
  • Table 9-10 Ligaments of the Wrist and Their Function
    Function and Movement of the Hand 283 Table 9-10 Ligaments of the Wrist and Their Function Extrinsic Ligaments Function Palmar radiocarpal Volarly stabilizes radius to carpal bones; limits excessive wrist extension Dorsal radiocarpal Dorsally stabilizes radius to carpal bones; limits excessive wrist flexion Ulnar collateral Provides lateral stability of ulnar side of wrist between ulna and carpals Radial collateral Provides lateral stability of radial side of wrist between radius and carpals Ulnocarpal complex and articular Stabilizes and helps glide the ulnar side of wrist; stabilizes distal disk (or triangular fibrocartilage radioulnar joint complex) Intrinsic Ligaments Palmar midcarpal Forms and stabilizes the proximal and distal rows of carpal bones Dorsal midcarpal Forms and stabilizes the proximal and distal rows of carpal bones Interosseous Intervenes between each carpal bone contained within its proximal or distal row Accessory Ligament Transverse carpal Stabilizes carpal arch and contents of the carpal tunnel Adapted from Hertling, D., & Kessler, R. (2006). Management of common musculoskeletal disorders: Physical therapy principles and methods. Philadelphia, PA: Lippincott, Williams & Wilkins.; Oatis, C. A. (2004). Kinesiology: The mechanics and pathomechanics of human movement. Philadelphia, PA: Lippincott, Williams & Wilkins.; Weiss, S., & Falkenstein, N. (2005). Hand rehabilitation: A quick reference guide and review. St. Louis, MO: Mosby Elsevier. The radial and ulnar collateral ligaments provide lateral and medial support, respectively, to the wrist joint. The ulnocarpal complex is more likely to be referred to as the triangular fibro- cartilage complex (TFCC) and includes the articular disk of the wrist. The TFCC is the major stabilizer of the distal radioulnar joint (DRUJ) and can tear after direct compressive force such as a fall on an outstretched hand.
    [Show full text]
  • Dislocation of the Proximal Tibiofibular Joint, Do Not Miss It
    BMJ Case Reports: first published as 10.1136/bcr-2014-207875 on 1 December 2015. Downloaded from Rare disease CASE REPORT Dislocation of the proximal tibiofibular joint, do not miss it Alexander FY van Wulfften Palthe, Linda Musters, Remko JA Sonnega, Hans A van der Sluijs Department of Orthopaedic SUMMARY TREATMENT Surgery, VU University Medical We present a case of a 45-year-old woman with a right After intra-articular infiltration of anaesthetic in the Center, Amsterdam, fi fi fi The Netherlands proximal tibio bular dislocation she sustained after a fall proximal tibio bular joint, the bular head was during roller skating. Anteroposterior and lateral reduced by direct manipulation in anterior to pos- Correspondence to radiographs confirmed the diagnosis; there were no terior direction with the knee in 90° of flexion. Dr Hans A van der Sluijs, other injuries. The dislocation was reduced by direct A radiograph following reduction showed an [email protected] manipulation after intra-articular infiltration, in our anatomical proximal tibiofibular joint (figure 2). Accepted 4 November 2015 emergency department. The patient was treated with a The patient was discharged with a long leg cast, long, non-weight bearing leg cast for 1 week. After non-weight bearing. 4 weeks, she had no pain and a full range of motion of the knee. OUTCOME AND FOLLOW-UP After 1 week, the cast was removed and the patient started with protected weight bearing. After BACKGROUND 4 weeks, she was able to bear full weight, and had a fi A traumatic dislocation of the proximal tibio bular full range of motion and no pain.
    [Show full text]
  • The Appendicular Skeleton Appendicular Skeleton
    THE SKELETAL SYSTEM: THE APPENDICULAR SKELETON APPENDICULAR SKELETON The primary function is movement It includes bones of the upper and lower limbs Girdles attach the limbs to the axial skeleton SKELETON OF THE UPPER LIMB Each upper limb has 32 bones Two separate regions 1. The pectoral (shoulder) girdle (2 bones) 2. The free part (30 bones) THE PECTORAL (OR SHOULDER) GIRDLE UPPER LIMB The pectoral girdle consists of two bones, the scapula and the clavicle The free part has 30 bones 1 humerus (arm) 1 ulna (forearm) 1 radius (forearm) 8 carpals (wrist) 19 metacarpal and phalanges (hand) PECTORAL GIRDLE - CLAVICLE The clavicle is “S” shaped The medial end articulates with the manubrium of the sternum forming the sternoclavicular joint The lateral end articulates with the acromion forming the acromioclavicular joint THE CLAVICLE PECTORAL GIRDLE - CLAVICLE The clavicle is convex in shape anteriorly near the sternal junction The clavicle is concave anteriorly on its lateral edge near the acromion CLINICAL CONNECTION - FRACTURED CLAVICLE A fall on an outstretched arm (F.O.O.S.H.) injury can lead to a fractured clavicle The clavicle is weakest at the junction of the two curves Forces are generated through the upper limb to the trunk during a fall Therefore, most breaks occur approximately in the middle of the clavicle PECTORAL GIRDLE - SCAPULA Also called the shoulder blade Triangular in shape Most notable features include the spine, acromion, coracoid process and the glenoid cavity FEATURES ON THE SCAPULA Spine -
    [Show full text]
  • Bone Limb Upper
    Shoulder Pectoral girdle (shoulder girdle) Scapula Acromioclavicular joint proximal end of Humerus Clavicle Sternoclavicular joint Bone: Upper limb - 1 Scapula Coracoid proc. 3 angles Superior Inferior Lateral 3 borders Lateral angle Medial Lateral Superior 2 surfaces 3 processes Posterior view: Acromion Right Scapula Spine Coracoid Bone: Upper limb - 2 Scapula 2 surfaces: Costal (Anterior), Posterior Posterior view: Costal (Anterior) view: Right Scapula Right Scapula Bone: Upper limb - 3 Scapula Glenoid cavity: Glenohumeral joint Lateral view: Infraglenoid tubercle Right Scapula Supraglenoid tubercle posterior anterior Bone: Upper limb - 4 Scapula Supraglenoid tubercle: long head of biceps Anterior view: brachii Right Scapula Bone: Upper limb - 5 Scapula Infraglenoid tubercle: long head of triceps brachii Anterior view: Right Scapula (with biceps brachii removed) Bone: Upper limb - 6 Posterior surface of Scapula, Right Acromion; Spine; Spinoglenoid notch Suprspinatous fossa, Infraspinatous fossa Bone: Upper limb - 7 Costal (Anterior) surface of Scapula, Right Subscapular fossa: Shallow concave surface for subscapularis Bone: Upper limb - 8 Superior border Coracoid process Suprascapular notch Suprascapular nerve Posterior view: Right Scapula Bone: Upper limb - 9 Acromial Clavicle end Sternal end S-shaped Acromial end: smaller, oval facet Sternal end: larger,quadrangular facet, with manubrium, 1st rib Conoid tubercle Trapezoid line Right Clavicle Bone: Upper limb - 10 Clavicle Conoid tubercle: inferior
    [Show full text]
  • Trapezius Origin: Occipital Bone, Ligamentum Nuchae & Spinous Processes of Thoracic Vertebrae Insertion: Clavicle and Scapul
    Origin: occipital bone, ligamentum nuchae & spinous processes of thoracic vertebrae Insertion: clavicle and scapula (acromion Trapezius and scapular spine) Action: elevate, retract, depress, or rotate scapula upward and/or elevate clavicle; extend neck Origin: spinous process of vertebrae C7-T1 Rhomboideus Insertion: vertebral border of scapula Minor Action: adducts & performs downward rotation of scapula Origin: spinous process of superior thoracic vertebrae Rhomboideus Insertion: vertebral border of scapula from Major spine to inferior angle Action: adducts and downward rotation of scapula Origin: transverse precesses of C1-C4 vertebrae Levator Scapulae Insertion: vertebral border of scapula near superior angle Action: elevates scapula Origin: anterior and superior margins of ribs 1-8 or 1-9 Insertion: anterior surface of vertebral Serratus Anterior border of scapula Action: protracts shoulder: rotates scapula so glenoid cavity moves upward rotation Origin: anterior surfaces and superior margins of ribs 3-5 Insertion: coracoid process of scapula Pectoralis Minor Action: depresses & protracts shoulder, rotates scapula (glenoid cavity rotates downward), elevates ribs Origin: supraspinous fossa of scapula Supraspinatus Insertion: greater tuberacle of humerus Action: abduction at the shoulder Origin: infraspinous fossa of scapula Infraspinatus Insertion: greater tubercle of humerus Action: lateral rotation at shoulder Origin: clavicle and scapula (acromion and adjacent scapular spine) Insertion: deltoid tuberosity of humerus Deltoid Action:
    [Show full text]
  • Bilateral Carpometacarpal Joint Dislocations of the Thumb Changhoon Jeong, MD, Hyoung-Min Kim, MD, Sang-Uk Lee, MD, Il-Jung Park, MD
    Case Report Clinics in Orthopedic Surgery 2012;4:246-248 • http://dx.doi.org/10.4055/cios.2012.4.3.246 Bilateral Carpometacarpal Joint Dislocations of the Thumb Changhoon Jeong, MD, Hyoung-Min Kim, MD, Sang-Uk Lee, MD, Il-Jung Park, MD Department of Orthopaedic Surgery, Bucheon St. Mary’s Hospital, The Catholic University of Korea School of Medicine, Bucheon, Korea A traumatic carpometacarpal joint dislocation of the thumb accounts for less than 1% of all hand injuries. Optimal treatment strategies for this injury are still a subject of debate. In this article, we report a case of bilateral thumb carpometacarpal joint dis- locations: a unique combination of injuries. We believe our case is the second report of bilateral carpometacarpal joint dislocation regarding the thumb in English literature. It was successfully treated with closed reduction and percutaneous K-wires fixation on one side, and an open reduction and reconstruction of the ligament on the other side. Keywords: Bilateral, Carpometacarpal joint, Dislocation, Thumb A carpometacarpal joint (CMCJ) of the thumb is impor- a result of a motorbike accident. At the time of impact, tant for the function of the thumb and in the performance he was firmly grasping the handlebars with both hands. regarding strong pinch and grasp. The dislocation of the A physical examination revealed severe tenderness and CMCJ in the thumb accounts for less than 1% of all hand dorsal prominence at the CMCJ regarding both thumbs. injuries.1) Mechanical instability for the CMCJ of the There were no neurovascular injuries or skin lesions. The thumb is an important factor, which may lead to articu- radiographs showed dorsal dislocation of the CMCJ for lar degeneration of the joint and thus interfere with the both thumbs with a tiny fracture fragment in the right normal function of the hand.
    [Show full text]
  • 2.0 Mm LCP Distal Ulna Plate TG
    2.0 mm LCP Distal Ulna Plate. For capital and subcapital fractures of the ulna. Technique Guide Table of Contents Introduction 2.0 mm LCP Distal Ulna Plate 2 Indications 4 Surgical Technique Clinical Examples 5 Approach 6 Reduce Fracture and Position Plate 7 Fix Plate Distally 9 Adjust Length and Complete Fixation 11 Closure 13 Implant Removal 13 Product Information Implants 14 Instruments 16 IMPORTANT: This device has not been evaluated for safety and compatibility in the MR environment. This device has not been tested for heating or migration in the MR environment. Image intensifier control Synthes 2.0 mm LCP Distal Ulna Plate. For capital and subcapital fractures of the ulna. The distal ulna is an essential component of the distal radioulnar joint, which helps provide rotation to the forearm. The distal ulnar surface is also an important platform for stability of the carpus and, beyond it, the hand. Unstable fractures of the distal ulna therefore threaten both movement and stability of the wrist. The size and shape of the distal ulna, combined with the overlying mobile soft tissues, make application of standard implants difficult. The 2.0 mm LCP Distal Ulna Plate is specifically designed for use in fractures of the distal ulna. Features – Pointed hooks and locking screws in the head – Anatomically precontoured – Angular stability 2 Synthes 2.0 mm LCP Distal Ulna Plate Technique Guide Narrow plate design, low screw-plate profile, rounded edges and polished surface are designed to minimize irritation of overlying soft tissue Pointed hooks
    [Show full text]
  • Degloving and Severe Upper Extremity Injuries in Motor Vehicle Crashes Involving Partial Ejection"
    "Degloving and Severe Upper Extremity Injuries in Motor Vehicle Crashes Involving Partial Ejection" Seattle CIREN University of Washington, Harborview Medical Center, Seattle WA Kaufman R., Blanar L., Bulger E. –Seattle CIREN, UW, HMC Lipira A., Friedrickson J. – Harborview Medical Center Mastrioanni S., Nelson M. –Seattle CIREN Upper Extremity (UE) Partial Ejection in Motor Vehicle Crashes (MVC) • Noted as an ‘arm‐ or hand‐out‐ window’ phenomenon • Upper extremity partial ejection in MVCs can result in contact to exterior objects, including the ground in rollovers, which can result in severe degloving type injuries • These severe injuries result in devastating and long‐lasting consequences J Trauma Acute Care Surg. 2013 Feb;74(2):687‐91. Vehicle factors and outcomes associated with hand‐out‐window motor vehicle collisions. Bakker A1, Moseley J, Friedrich J. Partial Ejection Mitigation • Seatbelts are 99.8% effective at preventing complete ejections, but only 38% effective in preventing partial ejections in rollover crashes • Side‐curtain airbags (SABs) can reduced and mitigated risk of partial ejection • BUT, most partial ejection research focuses on head or thoracic injuries • Partial ejection of the upper extremity (UE) remains a highly morbid mechanism of upper extremity injury in motor vehicle collisions References: 1. Bakker, A., Moseley, J. & Friedrich, J. Vehicle factors and outcomes associated with hand‐out‐window motor vehicle collisions. Journal of Trauma and Acute Care Surgery 74, 687–691 (2013). 2. Ball, C. G., Rozycki, G. S. & Feliciano, D. V. Upper Extremity Amputations After Motor Vehicle Rollovers. The Journal of Trauma: Injury, Infection, and Critical Care 67, 410–412 (2009). 3. Nikitins, M.
    [Show full text]