ABM Clinical Protocol #29: Iron, Zinc, and Vitamin D Supplementation During Breastfeeding

Total Page:16

File Type:pdf, Size:1020Kb

ABM Clinical Protocol #29: Iron, Zinc, and Vitamin D Supplementation During Breastfeeding BREASTFEEDING MEDICINE Volume 13, Number 6, 2018 ABM Protocol ª Mary Ann Liebert, Inc. DOI: 10.1089/bfm.2018.29095.snt ABM Clinical Protocol #29: Iron, Zinc, and Vitamin D Supplementation During Breastfeeding Sarah N. Taylor and The Academy of Breastfeeding Medicine A central goal of The Academy of Breastfeeding Medicine is the development of clinical protocols, free from commercial interest or influence, for managing common medical problems that may impact breastfeeding success. These protocols serve only as guidelines for the care of breastfeeding mothers and infants and do not delineate an exclusive course of treatment or serve as standards of medical care. Variations in treatment may be appropriate according to the needs of an individual patient. uman milk is designed to deliver comprehensive improved outcomes and, therefore, is not recommended. Hnutrition through the first 6 months of age and com- (LOE IB) plementary nutrition through the early years. However, micronutrient supplementation may be appropriate, espe- Vitamin D cially when a mother is deficient or an infant has special needs such as prematurity. In contemporary high- and low- The breastfeeding infant should receive vitamin D sup- resource settings, concern has been raised regarding iron, plementation shortly after birth in doses of 10–20 lg/day zinc, and vitamin D status of human milk-fed infants. This (400–800 IU/day) (LOE IB). This supplement should be protocol reviews the available evidence regarding iron, zinc, cholecalciferol, vitamin D3, because of superior absorption and vitamin D supplementation of the breastfeeding dyad. unless a vegetable source such as ergocaliferol vitamin D2,is Quality of evidence (levels of evidence [LOE] IA, IB, IIA, desired (LOE IIA). Randomized trials demonstrate that safe IIB, III, and IV) is provided and based on levels of evidence vitamin D supplementation may be provided to a nursing used for the National Guidelines Clearing House.1 From mother to achieve healthy vitamin D status in her breast- currently available evidence, recommendations are provided feeding infant, when there is objection or contraindication to and areas for future study are identified. A brief summary of direct infant supplementation. A maternal dose of 160 lg/day recommendations is presented first, followed by more in- (6,400 IU/day) is suggested. depth discussion of the three micronutrients. Iron Recommendations Downloaded by 192.31.255.3 from www.liebertpub.com at 02/28/19. For personal use only. Background section Iron Iron is a mineral critical to infant somatic growth and Iron supplementation is not required for the non-anemic neurodevelopment. It is most commonly recognized for its breastfeeding mother. Iron supplementation to the 4-month- role in iron-deficiency anemia, but it importantly has direct old full-term, exclusively breastfed infant is associated with effects on brain maturation. Iron deficiency during infancy is improved hematological indices. However, the long-term associated with poor cognitive and behavioral outcomes that benefit of improved hematologic indices at 4–6 months is not may persist after iron repletion. Therefore, ensuring adequate known. If iron supplementation is given before 6 months, it iron stores in infancy is essential. should be given as a 1 mg/kg/day distinct iron supplement Infants born at term have transplacentally acquired hepatic until iron-fortified cereals (7–7.5 mg ferrous sulfate/day) or iron stores that are mobilized and utilized over the first 4–6 other iron-rich foods such as meat, tofu, beans, and others are months. Preterm infants, term infants born growth-restricted, initiated at 6 months of age with other complementary foods. and infants born to mothers with iron deficiency during (LOE IB) pregnancy may have smaller iron stores. The iron in human milk has high bioavailability (*50%) to complement the Zinc infant’s iron stores.2 Research has investigated whether these Zinc supplementation, above dietary intake, to the lactat- two sources, fetal accretion and human milk iron concen- ing mother or breastfeeding infant is not associated with tration, provide adequate supply and for how long this supply Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut. 398 ABM PROTOCOL 399 alone is adequate. Studies have also examined the role of Large randomized controlled trials have examined iron iron-containing or fortified complementary foods in pro- supplementation at 4–9 months of age. Some studies have tecting iron stores, especially in the second half of the first specifically compared iron initiation at 4 or 6 months. Others year when the fetal supply is diminished. have compared iron drops and iron-fortified foods. In one Iron is a pro-oxidant and some studies have shown sup- study of 609 infants in Thailand, both iron and zinc supple- plemental iron to negatively affect immune function. In fact, mentation were evaluated with initiation at 4–6 months. In- iron may mitigate the antipathogenic actions of human fants receiving 10 mg iron as iron sulfate (with or without milk.3–5 zinc) exhibited significantly higher hemoglobin and ferritin Iron-deficiency anemia is diagnosed by abnormal hema- concentrations at 6 months of therapy compared with infants tological values. Studies of iron supplementation in infants receiving only zinc or placebo. When controlling for gender have used serum iron, ferritin, iron binding capacity, mean and birth weight, infants receiving iron had significantly corpuscular volume (MCV), and hemoglobin as indicators of higher Ponderal weight growth and weight-for-length z-score sufficient iron to avoid the risk of anemia. Other potential (LOE IB).9 markers of adequate iron supplementation include anthro- One double-blinded randomized placebo-controlled pemetric growth and neurodevelopment. Randomized con- trial, occurring in Honduras and Sweden, evaluated iron trolled trials (LOE IB) of iron supplementation to the supplementation alone. In this study, 232 near-exclusive or lactating mother or to the infant have included serum and exclusively breastfeeding infants at 4 months of age were milk iron concentrations, ferritin and iron binding capacity, randomized to receive (1) placebo until 9 months of age, hematologic indices, growth, and neurodevelopment as out- (2) placebo for 4–6 months followed by iron (1 mg/kg/day) comes. for 6–9 months, or (3) iron (1 mg/kg/day) until at least There are few studies investigating iron supplementation 9 months.10,11 The primary aim, to detect a difference in directly to the breastfeeding mother to support infant iron hemoglobin, was demonstrated for the infants receiving iron status. One study recruited 168 healthy, nonanemic mothers supplementation starting at 4 months. When iron supple- in the first 10–20 postnatal days if they planned to exclusively mentation started at 6 months, the infants in Honduras breastfeed for at least 4 months. These mothers were ran- demonstrated significantly higher hemoglobin while the domized to receive 80 mg elemental iron daily or placebo. No Swedish infants did not (LOE IB).11 In evaluation of growth, difference was seen in maternal or infant iron studies, rate of the Swedish infants supplemented with iron had significantly iron-deficiency anemia, or infant growth. In the intervention lower length and head circumference gains than those infants group, both mother and infant had significantly increased receiving placebo from 4 to 9 months (LOE IB).10 In Hon- serum iron binding capacity but the significance of this single duras, a negative effect on linear growth was evident at 4–6 difference is not known (LOE IB).6 months only among iron-sufficient infants (with an initial Hb When evaluating the evidence of direct infant supplemen- ‡110 g/L). In addition, in both sites, iron supplementation tation, it is necessary to consider the age at which supple- increased the likelihood of diarrhea among iron-sufficient mentation occurred—in the first 4 months, starting at 4–6 infants. months, or starting at 6 months of age. Two small randomized The question as to whether iron should be provided as a controlled trials have evaluated iron supplementation initi- daily or weekly dose has been evaluated by one randomized ated before 4 months of age. The first study included 77 term trial without study blinding. No difference in iron deficiency breastfed infants who were randomized to receive either 7.5 mg or iron-deficiency anemia was observed with ferrous sulfate elemental iron as ferrous sulfate or placebo from 1 to 6 months suspension dosed at 1 mg/kg daily, 7 mg/kg weekly, versus of age (LOE IB).7 At 6 months, the supplemented group had no supplement provided to breastfeeding infants at 4–10 significantly higher hemoglobin (124 versus 116 g/L) and months of age (n = 79) (LOE IB).12 MCV (81 versus 77 fL). Forty-six of the 77 study subjects had Studies of whether iron should be provided as a distinct Downloaded by 192.31.255.3 from www.liebertpub.com at 02/28/19. For personal use only. neurodevelopmental assessment at 12–18 months; the inter- dose or instead through fortified cereal are open-label studies. vention group exhibited higher Bayley psychomotor develop- In 2004 in Honduras, 4-month-old, exclusively breastfeeding ment indexes and visual acuity. No significant differences were infants were randomized to iron-fortified cereal or no cereal seen in mental development indices. until 6 months of age (LOE IB).13 In this study, infants who A second study of early iron supplementation specifically exhibited anemia at study initiation (58% of the iron-fortified focused on the term low birth weight (<2,500 g) infant. group and 47% of exclusively breastfeeding group) also re- Healthy infants (n = 62) who were predominantly breastfed ceived iron drops. Of the infants who were not anemic at study at 50–80 days were randomized to iron 3 mg/kg/day (25 mg initiation, those receiving iron-fortified cereal had signifi- Fe/mL ferric ammonia citrate) or placebo for 8 weeks (LOE cantly higher hemoglobin and lower prevalence of anemia IB).8 Infant hemoglobin levels were significantly higher in than those exclusively breastfed.
Recommended publications
  • A New Occurrence of Terrestrial Native Iron in the Earth's Surface
    geosciences Article A New Occurrence of Terrestrial Native Iron in the Earth’s Surface: The Ilia Thermogenic Travertine Case, Northwestern Euboea, Greece Christos Kanellopoulos 1,2,* ID , Eugenia Valsami-Jones 3,4, Panagiotis Voudouris 1, Christina Stouraiti 1 ID , Robert Moritz 2, Constantinos Mavrogonatos 1 ID and Panagiotis Mitropoulos 1,† 1 Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15784 Athens, Greece; [email protected] (P.V.); [email protected] (C.S.); [email protected] (C.M.); [email protected] (P.M.) 2 Section of Earth and Environmental Sciences, University of Geneva, Rue des Maraichers 13, 1205 Geneva, Switzerland; [email protected] 3 School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; [email protected] 4 Department of Earth Sciences, Natural History Museum London, Cromwell Road, London SW7 5BD, UK * Correspondence: [email protected] † Professor Panagiotis Mitropoulos has passed away in 2017. Received: 6 April 2018; Accepted: 23 July 2018; Published: 31 July 2018 Abstract: Native iron has been identified in an active thermogenic travertine deposit, located at Ilia area (Euboea Island, Greece). The deposit is forming around a hot spring, which is part of a large active metallogenetic hydrothermal system depositing ore-bearing travertines. The native iron occurs in two shapes: nodules with diameter 0.4 and 0.45 cm, and angular grains with length up to tens of µm. The travertine laminae around the spherical/ovoid nodules grow smoothly, and the angular grains are trapped inside the pores of the travertine.
    [Show full text]
  • Stoichiometry: the Reaction of Iron with Copper(II) Sulfate
    CEAC 103 GENERAL CHEMISTRY Experiment 2 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate Purpose: To enhance the understanding of stoichiometry, a reaction between iron and copper (II) sulfate solution will be conducted. This will help you to differentiate limiting and excess reactant in a chemical reaction. Finally the theoretical and percent yield of this reaction will be calculated. Theory Stoichiometry is the measurement of quantitative relationships in chemical formulas and equations. In this experiment stoichiometric principles will be used to obtain the appropriate equation between the reaction of iron metal and copper(II) sulfate solution. After the reaction is taking place, the formation of metallic copper, which is seen precipitating as a finely divided reddish-orange powder will be observed. This reaction is one of the example of single substitution reaction in which one element “displaces” from a compound by another element. The element which has ability of displacing other element from compound is said to be “more active” than the displaced metal. In this experiment, iron is more active than copper. Two distinct forms of iron are present, namely Fe2+ and Fe3+. Stoichiometric principles will be used to determine which reaction is more dominant compared to other one by examining the reaction between iron and copper (II) sulfate solution. If Fe2+ is formed, then equation (1) is dominant, while equation (2) will be selected if Fe3+ is formed. This can be determined 1 according to mole ratio of copper to iron. If the moles of copper is equal to the moles of iron, then equation (1) has taken place.
    [Show full text]
  • Iron –Carbon Phase Diagram
    IRON –CARBON PHASE DIAGRAM CB.EN.P2MFG15018 Definition of structures: Various phases that appear on the Iron- Carbon equilibrium phase diagram are as under: • Austenite • Ferrite • Pearlite • Cementite • Martensite • Ledeburite Definition of structures: Austenite is an interstitial solid solution of Carbon dissolved in (F.C.C.) iron. Maximum solubility is 2.0 % C at 1130°C. High formability, most of heat treatments begin with this single phase. It is normally not stable at room temperature. But, under certain conditions it is possible to obtain austenite at room temperature. Austenite Average properties are: Tensile strength = 150,000 psi; Elongation = 10 percent in 2 in.; Hardness = Rockwell C 40, approx; and toughness = high Definition of structures: Ferrite is known as α solid solution. It is an interstitial solid solution of a small amount of carbon dissolved in α (BCC) iron. stable form of iron below 912 deg.C. The maximum solubility is 0.025 % C at 723C and it dissolves only 0.008 % C at room temperature. It is the softest structure that appears on the diagram. Ferrite Average properties are: Tensile strength = 40,000 psi; Elongation = 40 % in 2 in; Hardness > Rockwell C 0 or > Rockwell B 90 Definition of structures: Pearlite is the eutectoid mixture containing 0.80 % C and is formed at 723°C on very slow cooling. It is a very fine platelike or lamellar mixture of ferrite and cementite. The white ferritic background or matrix contains thin plates of cementite (dark). Pearlite Average properties are: Tensile strength = 120,000 psi; Elongation = 20 % in 2 in.; Hardness = Rockwell C20, BHN-300 Definition of structures: Cementite or iron carbide, is very hard, brittle intermetallic compound of iron & carbon, as Fe3C, contains 6.67 % C.
    [Show full text]
  • Why We Need to Assure Adequacy of Zinc
    Aunt Cathy’s Guide to Nutrition: Sanford Nutrition Therapy Dept. 1/15 Thinking about Clinical/Medical Nutrition Issues and Applications of RDAs, RDI, DRIs, ULS, AIs, etc.: Why We Need to Assure Adequacy of Zinc (from the series “How Am I Supposed to Remember All This Stuff?!”) Aunt Cathy Cathy Breedon PhD, RD, CSP, FADA, FAND Clinical and Metabolic Nutrition Specialist / Prenatal/Pediatric Nutrition Specialist Sanford Medical Center, and Clinical Associate Professor UND School of Medicine, Fargo, ND • Zinc is a necessary mineral cofactor needed for over 200 enzymes to work. • Not having enough screws stuff up a LOT. • What kinds of things won’t work well if zinc is inadequate? Read on … 1 Memory Tricks for ZINC Many people remember things best if they also see pictures, so here are some pictures identifying some specific places in the body for which zinc is absolutely essential. Other folks remember things best if they hear them … so if you are one of those people, be sure to read the descriptor for each function of zinc out loud. The Zinc Story: “Zinco” (Zorro’s more irritating cousin) has just marked the places where people need zinc for their bodies to operate. Just picture the fellow on the left to remember that zinc is needed all over the body. It is a co-factor for over 200 enzymes! In other words … I dare you to name a body part that is not dependent on adequacy of zinc! Here are some specific places where he marked things with a Z for Zinc: Zinc is need to make DNA So Zinc is needed And Zinc is needed to to make new cells for babies
    [Show full text]
  • Adverse Health Effects of Heavy Metals in Children
    TRAINING FOR HEALTH CARE PROVIDERS [Date …Place …Event …Sponsor …Organizer] ADVERSE HEALTH EFFECTS OF HEAVY METALS IN CHILDREN Children's Health and the Environment WHO Training Package for the Health Sector World Health Organization www.who.int/ceh October 2011 1 <<NOTE TO USER: Please add details of the date, time, place and sponsorship of the meeting for which you are using this presentation in the space indicated.>> <<NOTE TO USER: This is a large set of slides from which the presenter should select the most relevant ones to use in a specific presentation. These slides cover many facets of the problem. Present only those slides that apply most directly to the local situation in the region. Please replace the examples, data, pictures and case studies with ones that are relevant to your situation.>> <<NOTE TO USER: This slide set discusses routes of exposure, adverse health effects and case studies from environmental exposure to heavy metals, other than lead and mercury, please go to the modules on lead and mercury for more information on those. Please refer to other modules (e.g. water, neurodevelopment, biomonitoring, environmental and developmental origins of disease) for complementary information>> Children and heavy metals LEARNING OBJECTIVES To define the spectrum of heavy metals (others than lead and mercury) with adverse effects on human health To describe the epidemiology of adverse effects of heavy metals (Arsenic, Cadmium, Copper and Thallium) in children To describe sources and routes of exposure of children to those heavy metals To understand the mechanism and illustrate the clinical effects of heavy metals’ toxicity To discuss the strategy of prevention of heavy metals’ adverse effects 2 The scope of this module is to provide an overview of the public health impact, adverse health effects, epidemiology, mechanism of action and prevention of heavy metals (other than lead and mercury) toxicity in children.
    [Show full text]
  • Iron in Minnesota's Ground Water
    Iron in Minnesota’s Ground Water Environmental Outcomes Division Ground Water May 1999 Monitoring & Assessment What is iron? is soil beneath metal recyclers. However, Program Iron is a chemical element that is widely despite these high concentrations, only distributed in geologic materials. Iron is small quantities of iron are likely to leach slowly released from soil and rocks to to the ground water. ground water. What is considered a safe level of iron The fate of iron in ground water depends in ground water? on the form of iron present. Under The Secondary Maximum Contaminant reducing conditions, ferrous iron (FeII or Level (SMCL) for iron is 0.30 mg/L. Fe+2) occurs. Under oxidizing This standard is not based on human conditions, ferric iron (FeIII or Fe3+) health effects. Iron stains plumbing dominates. Concentrations of ferrous fixtures and clothing. The SMCL is iron in ground or surface water may be based on the concentration of dissolved more than 1 mg/L (part per million). iron in ground water. Ferric iron, although relatively insoluble, forms complexes with other chemicals or How is iron distributed in Minnesota with suspended material. ground water? Iron exceeded the SMCL of 0.30 mg/L What are sources of iron in ground in about 70 percent of the wells sampled water? in the Ground Water Monitoring and Most iron in Minnesota’s ground water Assessment Program (GWMAP) occurs naturally. Iron exists at high statewide baseline network of 954 wells. concentrations in many types of rocks. The concentration of dissolved iron will Concentrations may be as high as 40,000 be smaller since samples were not mg/kg (parts per million) in igneous filtered.
    [Show full text]
  • Iron in Drinking-Water
    WHO/SDE/WSH/03.04/08 English only Iron in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality __________________ Originally published in Guidelines for drinking-water quality, 2nd ed. Vol. 2. Health criteria and other supporting information. World Health Organization, Geneva, 1996. © World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The World Health Organization does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damages incurred as a result of its use.
    [Show full text]
  • Removal of Heavy Metals and Metalloids from Water Using Drinking Water Treatment Residuals As Adsorbents: a Review
    minerals Review Removal of Heavy Metals and Metalloids from Water Using Drinking Water Treatment Residuals as Adsorbents: A Review Magdalena Wołowiec 1,*, Małgorzata Komorowska-Kaufman 2 , Alina Pruss 2 , Grzegorz Rzepa 1 and Tomasz Bajda 1,* 1 Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland 2 Institute of Environmental Engineering, Poznan University of Technology, Faculty of Civil and Environmental Engineering, ul. Berdychowo 4, 60-965 Pozna´n,Poland * Correspondence: [email protected] (M.W.); [email protected] (T.B.); Tel.: +48-500-032-026 (M.W.); +48-12-617-52-32 (T.B.) Received: 18 June 2019; Accepted: 13 August 2019; Published: 14 August 2019 Abstract: Heavy metal contamination is one of the most important environmental issues. Therefore, appropriate steps need to be taken to reduce heavy metals and metalloids in water to acceptable levels. Several treatment methods have been developed recently to adsorb these pollutants. This paper reviews the ability of residuals generated as a by-product from the water treatment plants to adsorb heavy metals and metalloids from water. Water treatment residuals have great sorption capacities due to their large specific surface area and chemical composition. Sorption capacity is also affected by sorption conditions. A survey of the literature shows that water treatment residuals may be a suitable material for developing an efficient adsorbent for the removal of heavy metals and metalloids from water. Keywords: adsorption; arsenic; pollutants; water treatment sludges 1. Introduction Heavy metals are a group of trace elements that include metals and metalloids, such as arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, tin, and zinc.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • Iron Deficiency Anemia: Evaluation and Management MATTHEW W
    Iron Deficiency Anemia: Evaluation and Management MATTHEW W. SHORT, LTC, MC, USA, and JASON E. DOMAGALSKI, MAJ, MC, USA Madigan Healthcare System, Tacoma, Washington Iron deficiency is the most common nutritional disorder worldwide and accounts for approxi- mately one-half of anemia cases. The diagnosis of iron deficiency anemia is confirmed by the findings of low iron stores and a hemoglobin level two standard deviations below normal. Women should be screened during pregnancy, and children screened at one year of age. Supple- mental iron may be given initially, followed by further workup if the patient is not responsive to therapy. Men and postmenopausal women should not be screened, but should be evaluated with gastrointestinal endoscopy if diagnosed with iron deficiency anemia. The underlying cause should be treated, and oral iron therapy can be initiated to replenish iron stores. Paren- teral therapy may be used in patients who cannot tolerate or absorb oral preparations. (Am Fam Physician. 2013;87(2):98-104. Copyright © 2013 American Academy of Family Physicians.) ▲ Patient information: ron deficiency anemia is diminished red causes of microcytosis include chronic A handout on iron defi- blood cell production due to low iron inflammatory states, lead poisoning, thalas- ciency anemia, written by 1 the authors of this article, stores in the body. It is the most com- semia, and sideroblastic anemia. is available at http://www. mon nutritional disorder worldwide The following diagnostic approach is rec- aafp.org/afp/2013/0115/ I and accounts for approximately one-half of ommended in patients with anemia and is p98-s1.html. Access to anemia cases.1,2 Iron deficiency anemia can outlined in Figure 1.2,6-11 A serum ferritin level the handout is free and unrestricted.
    [Show full text]
  • Enghandbook.Pdf
    785.392.3017 FAX 785.392.2845 Box 232, Exit 49 G.L. Huyett Expy Minneapolis, KS 67467 ENGINEERING HANDBOOK TECHNICAL INFORMATION STEELMAKING Basic descriptions of making carbon, alloy, stainless, and tool steel p. 4. METALS & ALLOYS Carbon grades, types, and numbering systems; glossary p. 13. Identification factors and composition standards p. 27. CHEMICAL CONTENT This document and the information contained herein is not Quenching, hardening, and other thermal modifications p. 30. HEAT TREATMENT a design standard, design guide or otherwise, but is here TESTING THE HARDNESS OF METALS Types and comparisons; glossary p. 34. solely for the convenience of our customers. For more Comparisons of ductility, stresses; glossary p.41. design assistance MECHANICAL PROPERTIES OF METAL contact our plant or consult the Machinery G.L. Huyett’s distinct capabilities; glossary p. 53. Handbook, published MANUFACTURING PROCESSES by Industrial Press Inc., New York. COATING, PLATING & THE COLORING OF METALS Finishes p. 81. CONVERSION CHARTS Imperial and metric p. 84. 1 TABLE OF CONTENTS Introduction 3 Steelmaking 4 Metals and Alloys 13 Designations for Chemical Content 27 Designations for Heat Treatment 30 Testing the Hardness of Metals 34 Mechanical Properties of Metal 41 Manufacturing Processes 53 Manufacturing Glossary 57 Conversion Coating, Plating, and the Coloring of Metals 81 Conversion Charts 84 Links and Related Sites 89 Index 90 Box 232 • Exit 49 G.L. Huyett Expressway • Minneapolis, Kansas 67467 785-392-3017 • Fax 785-392-2845 • [email protected] • www.huyett.com INTRODUCTION & ACKNOWLEDGMENTS This document was created based on research and experience of Huyett staff. Invaluable technical information, including statistical data contained in the tables, is from the 26th Edition Machinery Handbook, copyrighted and published in 2000 by Industrial Press, Inc.
    [Show full text]
  • Glossary Definitions
    TC 9-524 GLOSSARY ACRONYMS AND ABBREVIATIONS TC - Training Circular sd - small diameter TM - Technical Manual Id - large diameter AR - Army Regulation ID - inside diameter DA - Department of the Army TOS- Intentional Organization for Standardization RPM - revolutions per minute LH - left hand SAE - Society of Automotive Engineers NC - National Coarse SFPM - surface feet per minute NF - National Fine tpf -taper per foot OD - outside diameter tpi taper per inch RH - right hand UNC - Unified National Coarse CS - cutting speed UNF - Unified National Fine AA - aluminum alloys SF -standard form IPM - feed rate in inches per minute Med - medical FPM - feet per minute of workpiece WRPM - revolutions per minute of workpiece pd - pitch diameter FF - fraction of finish tan L - tangent angle formula WW - width of wheel It - length of taper TT - table travel in feet per minute DEFINITIONS abrasive - natural - (sandstone, emery, corundum. accurate - Conforms to a standard or tolerance. diamonds) or artificial (silicon carbide, aluminum oxide) material used for making grinding wheels, Acme thread - A screw thread having a 29 degree sandpaper, abrasive cloth, and lapping compounds. included angle. Used largely for feed and adjusting screws on machine tools. abrasive wheels - Wheels of a hard abrasive, such as Carborundum used for grinding. acute angle - An angle that is less than 90 degrees. Glossary - 1 TC 9-524 adapter - A tool holding device for fitting together automatic stop - A device which may be attached to various types or sizes of cutting tools to make them any of several parts of a machine tool to stop the interchangeable on different machines.
    [Show full text]