Appendix Glossary of Terms

Total Page:16

File Type:pdf, Size:1020Kb

Appendix Glossary of Terms Appendix Glossary of Terms Baked Core: A core which has been A heated for a sufficient time and temperature Abrasion: The displacement and/or to produce the desired physical properties. detachment of metallic particles from a Baked Strength: Compressive, shear, surface as a consequence of being exposed to tensile or transverse strength of a molded flowing solids, fluids or gases. sand mixture when baked at a temperature Aging: A change in properties of metals above 230 oF (110 oC) and then cooled to and alloys that occurs slowly at room room temperature. temperature and will proceed rapidly at Base Plate: A plate to which the pattern higher temperatures. The change in properties assemblies are attached and to which a flask is often, but not always, due to a phase is subsequently attached to form the mold change (precipitation), but never involves a container. change in chemical composition of the metal Blow Holes: 1) Holes in the head plate or or alloy. blow plate of a core-blowing machine Alloy: A substance having metallic through which sand is blown from the properties and composed of two or more reservoir into the core box. 2) Irregular chemical elements of which at least one is shaped cavities with smooth walls produced metal. Usually possesses qualities different in a casting when gas is entrapped during from those of the components. mold filling. The gas sources may be air, Angle Testing (UT): A method of binder decomposition products or gases ultrasonic testing using shear waves dissolved in the molten steel. introduced from the surface of the material at Blow Plate: The plate containing the core approximately 45 degrees. sand entrance holes or blow holes used in Apparent Contraction: The net open-face core boxes. contraction of a casting dimension due to true Blower, Core or Mold: A device using air metal contraction, mold wall movement, and pressure to fill a core box or flask with sand. restraint during solidification and cooling. Boss: A projection of circular cross- As Cast: Referring to metal which has not section on a casting. Usually intended for received finishing (beyond gate removal or drilling and tapping for attaching parts. sandblasting), or treatment of any kind Bracket: Strengthening strip, rib, or including heat treatment after casting. (See projection on a casting. Usually used to Finishing). prevent hot tearing. Breakoff Notch: A thinner section of a B gate or riser to facilitate clean breaking-off Backing Board (backing plate): A second during the cleaning process. bottom board on which molds are opened. 143 144 Rapid Tooling Guidelines For Sand Casting Brinell Hardness: The value of hardness Casting Layout: A check of dimensions of a metal on an arbitrary scale representing against applicable drawings and kg/mm2, determined by measuring the specifications. diameter of the impression made by a ball of Chaplet: Metal support that holds a core given diameter applied under a known load. in place within a mold; molten metal Values are expressed in Brinell Hardness solidifies around the chaplet and fuses it into Numbers, BHN the finished casting. Buckle: 1) Bulging of a large flat face of Cheek: The intermediate section of a a casting; in investment casting, caused by flask that is used between the cope and the dip coat peeling from the pattern. 2) An drag when molding a shape requires more indentation in a casting, resulting from than one parting plane. expansion of the sand, may be termed the Chill (External): Metal, graphite, or start of an expansion defect. carbon blocks that are incorporated into the Burnishing: Developing a smooth finish mold or core to locally increase the rate of on a metal by tumbling or rubbing with a heat removal during solidification and reduce polishing tool. shrinkage defects. Chill (Internal): A metallic device/insert C in molds or cores at the surface of a casting or CAD: Computer Aided Design. within the mold to increase the rate of heat CAE: Computer Aided Engineering. removal, induce directional solidification and CAM: Computer Aided Manufacturing. reduce shrinkage defects. The internal chill CNC: Computer numerical control. may then become a part of the casting. Carbide: A compound of carbon with one Cleaning: The removal of gates, runners, or more metallic elements. and risers from the rough casting, This term Carbon: Element occurring as diamond also involves any hand finishing such as and as graphite. Carbon reduces many metals grinding or blasting. from their oxides when heated with the latter, CMM: Coordinate Measuring Machine. and small amounts of carbon greatly affect CNC Machine Tools: Computer the properties of iron. Numerical Controlled Machine Tools. Carbon Dioxide Process (Silicate Cold-Box Process: 1) Any core binder Process, Schmidt-Philipp Process): A process process that uses a gas or vaporized catalyst for hardening molds or cores in which carbon to cure a coated sand while it is in contact dioxide gas is blown through dry clay-free with the core box at room temperature. silica sand to precipitate silica in the form of Collapsibility: The requirement that a a gel from the sodium silicate binder. sand mixture break down under the pressures Carburizing: A form of case hardening and temperatures developed during casting, in that produces a carbon gradient inward from order to avoid hot tears or facilitate the the surface, enabling the surface layer to be separation of the sand and the casting. hardened by either quenching directly from Compressive Strength (Yield): The the carburizing temperature or by cooling to maximum stress in compression that can be room temperature, then reaustenitizing and withstood without plastic deformation or quenching. failure. Casting: The metal shape, exclusive of Conductivity (Thermal): The quantity of gates and risers, that is obtained as a result of heat that flows through a material measured pouring metal into a mold. in heat units per unit time per unit of cross- Appendix Glossary of Terms 145 sectioned area per unit of length, (electrical) Core Float: A casting defect caused by the quantity of electricity that is transferred core movement towards the cope surface of through a material of known cross-section the mold, as a result of core buoyancy in and length. liquid steel, resulting in a deviation from the Contraction: The volume change intended wall thickness. occurring in metals and alloys on Core Prints: Portions of a pattern that solidification and cooling to room locate and anchor the core in the proper temperature. position in the mold. Convection: The motion in a fluid Core Rod: A wire or rod of steel used to resulting from the differences in density. In reinforce and stiffen the core. heat transmission, this meaning has been Core Setting Jig/Gage: A device used to extended to include both forced and natural help position a core in the mold. motion or circulation. Core Shooter: A device using low air Cooling Curve: A curve showing the pressure to fluidize the sand mix which is relationship between time and temperature released quickly in such a way as to force it during the solidification and cooling of a into a core box. metal sample. Since most phase changes Core Vents: 1) Holes made in the core for involve evolution or absorption of heat, there the escape of gas. 2) A metal screen or slotted may be abrupt changes in the slope of the piece used to form the vent passage in the curve. core box employed in a core-blowing Conduction: The transmission of heat, machine. 3) A wax product, round or oval in sound, etc., by the transferring of energy from form, used to form the vent passage in a core. one particle to another. Corrosion: 1) Gradual chemical or Cope: Upper or topmost section of a electrochemical attack on a metal by flask, mold, or pattern. atmosphere, moisture, or other agents. 2) Coping Out: The extension of sand of the Chemical attack of furnace linings by gases, cope downward into the drag, where it takes slags, ashes, or other fluxes occurring in an impression of a pattern. various melting practices. Core: A separate part of the mold, made Cover Core: A core set in place during of sand and cured, which is used to create the ramming of a mold to cover and complete openings and various shaped cavities in the a cavity partly formed by the withdrawal of a casting. loose part of the pattern. Also used to form Core Assembly: Putting together a core part or all of the cope surface of the mold made of a number of sections. cavity. A core placed over another core to Core Arbor: An iron framework create a flat parting fine. embedded in a large core to stiffen it and for Cracking Strip: A fin of metal molded on convenience in handling. the surface of a casting to prevent hot tearing. Core Extruder: A special shell-core- Critical Cooling Rate: minimum rate of making machine that produces a continuous continuous cooling just enough to prevent length of cores, usually of cylindrical cross- undesired transformations. section. Crystallization: The formation of crystals Core Filler: Material used in place of by the atoms assuming definite positions in sand in the interiors of large cores--coke, the crystal lattice, e.g. when a metal cinder, sawdust, etc., usually added to aid solidifies. collapsibility. 146 Rapid Tooling Guidelines For Sand Casting D ways: bilateral tolerance, unilateral tolerance Datum Plane: In layout and machining and limit dimensions. operations, the reference plane from which Direct AIM™ (ACES Injection dimensions are measured in the perpendicular Molding): This is a new "soft/bridge tooling" direction. process which quickly and inexpensively Datum Points: In layout and machining builds prototype parts using a variety of operations, the reference points that define engineering thermoplastics in a very short the datum plane from which dimensions are time without the need for production tooling.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Drag Force Calculation
    DRAG FORCE CALCULATION “Drag is the component of force on a body acting parallel to the direction of relative motion.” [1] This can occur between two differing fluids or between a fluid and a solid. In this lab, the drag force will be explored between a fluid, air, and a solid shape. Drag force is a function of shape geometry, velocity of the moving fluid over a stationary shape, and the fluid properties density and viscosity. It can be calculated using the following equation, ퟏ 푭 = 흆푨푪 푽ퟐ 푫 ퟐ 푫 Equation 1: Drag force equation using total profile where ρ is density determined from Table A.9 or A.10 in your textbook A is the frontal area of the submerged object CD is the drag coefficient determined from Table 1 V is the free-stream velocity measured during the lab Table 1: Known drag coefficients for various shapes Body Status Shape CD Square Rod Sharp Corner 2.2 Circular Rod 0.3 Concave Face 1.2 Semicircular Rod Flat Face 1.7 The drag force of an object can also be calculated by applying the conservation of momentum equation for your stationary object. 휕 퐹⃗ = ∫ 푉⃗⃗ 휌푑∀ + ∫ 푉⃗⃗휌푉⃗⃗ ∙ 푑퐴⃗ 휕푡 퐶푉 퐶푆 Assuming steady flow, the equation reduces to 퐹⃗ = ∫ 푉⃗⃗휌푉⃗⃗ ∙ 푑퐴⃗ 퐶푆 The following frontal view of the duct is shown below. Integrating the velocity profile after the shape will allow calculation of drag force per unit span. Figure 1: Velocity profile after an inserted shape. Combining the previous equation with Figure 1, the following equation is obtained: 푊 퐷푓 = ∫ 휌푈푖(푈∞ − 푈푖)퐿푑푦 0 Simplifying the equation, you get: 20 퐷푓 = 휌퐿 ∑ 푈푖(푈∞ − 푈푖)훥푦 푖=1 Equation 2: Drag force equation using wake profile The pressure measurements can be converted into velocity using the Bernoulli’s equation as follows: 2Δ푃푖 푈푖 = √ 휌퐴푖푟 Be sure to remember that the manometers used are in W.C.
    [Show full text]
  • Chapter 4: Immersed Body Flow [Pp
    MECH 3492 Fluid Mechanics and Applications Univ. of Manitoba Fall Term, 2017 Chapter 4: Immersed Body Flow [pp. 445-459 (8e), or 374-386 (9e)] Dr. Bing-Chen Wang Dept. of Mechanical Engineering Univ. of Manitoba, Winnipeg, MB, R3T 5V6 When a viscous fluid flow passes a solid body (fully-immersed in the fluid), the body experiences a net force, F, which can be decomposed into two components: a drag force F , which is parallel to the flow direction, and • D a lift force F , which is perpendicular to the flow direction. • L The drag coefficient CD and lift coefficient CL are defined as follows: FD FL CD = 1 2 and CL = 1 2 , (112) 2 ρU A 2 ρU Ap respectively. Here, U is the free-stream velocity, A is the “wetted area” (total surface area in contact with fluid), and Ap is the “planform area” (maximum projected area of an object such as a wing). In the remainder of this section, we focus our attention on the drag forces. As discussed previously, there are two types of drag forces acting on a solid body immersed in a viscous flow: friction drag (also called “viscous drag”), due to the wall friction shear stress exerted on the • surface of a solid body; pressure drag (also called “form drag”), due to the difference in the pressure exerted on the front • and rear surfaces of a solid body. The friction drag and pressure drag on a finite immersed body are defined as FD,vis = τwdA and FD, pres = pdA , (113) ZA ZA Streamwise component respectively.
    [Show full text]
  • A New Occurrence of Terrestrial Native Iron in the Earth's Surface
    geosciences Article A New Occurrence of Terrestrial Native Iron in the Earth’s Surface: The Ilia Thermogenic Travertine Case, Northwestern Euboea, Greece Christos Kanellopoulos 1,2,* ID , Eugenia Valsami-Jones 3,4, Panagiotis Voudouris 1, Christina Stouraiti 1 ID , Robert Moritz 2, Constantinos Mavrogonatos 1 ID and Panagiotis Mitropoulos 1,† 1 Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15784 Athens, Greece; [email protected] (P.V.); [email protected] (C.S.); [email protected] (C.M.); [email protected] (P.M.) 2 Section of Earth and Environmental Sciences, University of Geneva, Rue des Maraichers 13, 1205 Geneva, Switzerland; [email protected] 3 School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; [email protected] 4 Department of Earth Sciences, Natural History Museum London, Cromwell Road, London SW7 5BD, UK * Correspondence: [email protected] † Professor Panagiotis Mitropoulos has passed away in 2017. Received: 6 April 2018; Accepted: 23 July 2018; Published: 31 July 2018 Abstract: Native iron has been identified in an active thermogenic travertine deposit, located at Ilia area (Euboea Island, Greece). The deposit is forming around a hot spring, which is part of a large active metallogenetic hydrothermal system depositing ore-bearing travertines. The native iron occurs in two shapes: nodules with diameter 0.4 and 0.45 cm, and angular grains with length up to tens of µm. The travertine laminae around the spherical/ovoid nodules grow smoothly, and the angular grains are trapped inside the pores of the travertine.
    [Show full text]
  • Stoichiometry: the Reaction of Iron with Copper(II) Sulfate
    CEAC 103 GENERAL CHEMISTRY Experiment 2 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate Purpose: To enhance the understanding of stoichiometry, a reaction between iron and copper (II) sulfate solution will be conducted. This will help you to differentiate limiting and excess reactant in a chemical reaction. Finally the theoretical and percent yield of this reaction will be calculated. Theory Stoichiometry is the measurement of quantitative relationships in chemical formulas and equations. In this experiment stoichiometric principles will be used to obtain the appropriate equation between the reaction of iron metal and copper(II) sulfate solution. After the reaction is taking place, the formation of metallic copper, which is seen precipitating as a finely divided reddish-orange powder will be observed. This reaction is one of the example of single substitution reaction in which one element “displaces” from a compound by another element. The element which has ability of displacing other element from compound is said to be “more active” than the displaced metal. In this experiment, iron is more active than copper. Two distinct forms of iron are present, namely Fe2+ and Fe3+. Stoichiometric principles will be used to determine which reaction is more dominant compared to other one by examining the reaction between iron and copper (II) sulfate solution. If Fe2+ is formed, then equation (1) is dominant, while equation (2) will be selected if Fe3+ is formed. This can be determined 1 according to mole ratio of copper to iron. If the moles of copper is equal to the moles of iron, then equation (1) has taken place.
    [Show full text]
  • UNIT – 4 FORCES on IMMERSED BODIES Lecture-01
    1 UNIT – 4 FORCES ON IMMERSED BODIES Lecture-01 Forces on immersed bodies When a body is immersed in a real fluid, which is flowing at a uniform velocity U, the fluid will exert a force on the body. The total force (FR) can be resolved in two components: 1. Drag (FD): Component of the total force in the direction of motion of fluid. 2. Lift (FL): Component of the total force in the perpendicular direction of the motion of fluid. It occurs only when the axis of the body is inclined to the direction of fluid flow. If the axis of the body is parallel to the fluid flow, lift force will be zero. Expression for Drag & Lift Forces acting on the small elemental area dA are: i. Pressure force acting perpendicular to the surface i.e. p dA ii. Shear force acting along the tangential direction to the surface i.e. τ0dA (a) Drag force (FD) : Drag force on elemental area = p dAcosθ + τ0 dAcos(90 – θ = p dAosθ + τ0dAsinθ Hence Total drag (or profile drag) is given by, Where �� = ∫ � cos � �� + ∫�0 sin � �� = pressure drag or form drag, and ∫ � cos � �� = shear drag or friction drag or skin drag (b) Lift0 force (F ) : ∫ � sin � ��L Lift force on the elemental area = − p dAsinθ + τ0 dA sin(90 – θ = − p dAsiθ + τ0dAcosθ Hence, total lift is given by http://www.rgpvonline.com �� = ∫�0 cos � �� − ∫ p sin � �� 2 The drag & lift for a body moving in a fluid of density at a uniform velocity U are calculated mathematically as 2 � And �� = � � � 2 � Where A = projected area of the body or�� largest= � project� � area of the immersed body.
    [Show full text]
  • Iron –Carbon Phase Diagram
    IRON –CARBON PHASE DIAGRAM CB.EN.P2MFG15018 Definition of structures: Various phases that appear on the Iron- Carbon equilibrium phase diagram are as under: • Austenite • Ferrite • Pearlite • Cementite • Martensite • Ledeburite Definition of structures: Austenite is an interstitial solid solution of Carbon dissolved in (F.C.C.) iron. Maximum solubility is 2.0 % C at 1130°C. High formability, most of heat treatments begin with this single phase. It is normally not stable at room temperature. But, under certain conditions it is possible to obtain austenite at room temperature. Austenite Average properties are: Tensile strength = 150,000 psi; Elongation = 10 percent in 2 in.; Hardness = Rockwell C 40, approx; and toughness = high Definition of structures: Ferrite is known as α solid solution. It is an interstitial solid solution of a small amount of carbon dissolved in α (BCC) iron. stable form of iron below 912 deg.C. The maximum solubility is 0.025 % C at 723C and it dissolves only 0.008 % C at room temperature. It is the softest structure that appears on the diagram. Ferrite Average properties are: Tensile strength = 40,000 psi; Elongation = 40 % in 2 in; Hardness > Rockwell C 0 or > Rockwell B 90 Definition of structures: Pearlite is the eutectoid mixture containing 0.80 % C and is formed at 723°C on very slow cooling. It is a very fine platelike or lamellar mixture of ferrite and cementite. The white ferritic background or matrix contains thin plates of cementite (dark). Pearlite Average properties are: Tensile strength = 120,000 psi; Elongation = 20 % in 2 in.; Hardness = Rockwell C20, BHN-300 Definition of structures: Cementite or iron carbide, is very hard, brittle intermetallic compound of iron & carbon, as Fe3C, contains 6.67 % C.
    [Show full text]
  • Copper Alloys
    THE COPPER ADVANTAGE A Guide to Working With Copper and Copper Alloys www.antimicrobialcopper.com CONTENTS I. Introduction ............................. 3 PREFACE Conductivity .....................................4 Strength ..........................................4 The information in this guide includes an overview of the well- Formability ......................................4 known physical, mechanical and chemical properties of copper, Joining ...........................................4 as well as more recent scientific findings that show copper has Corrosion ........................................4 an intrinsic antimicrobial property. Working and finishing Copper is Antimicrobial ....................... 4 techniques, alloy families, coloration and other attributes are addressed, illustrating that copper and its alloys are so Color ..............................................5 adaptable that they can be used in a multitude of applications Copper Alloy Families .......................... 5 in almost every industry, from door handles to electrical circuitry to heat exchangers. II. Physical Properties ..................... 8 Copper’s malleability, machinability and conductivity have Properties ....................................... 8 made it a longtime favorite metal of manufacturers and Electrical & Thermal Conductivity ........... 8 engineers, but it is its antimicrobial property that will extend that popularity into the future. This guide describes that property and illustrates how it can benefit everything from III. Mechanical
    [Show full text]
  • Chapter 4: Immersed Body Flow [Pp
    MECH 3492 Fluid Mechanics and Applications Univ. of Manitoba Fall Term, 2017 Chapter 4: Immersed Body Flow [pp. 445-459 (8e), or 374-386 (9e)] Dr. Bing-Chen Wang Dept. of Mechanical Engineering Univ. of Manitoba, Winnipeg, MB, R3T 5V6 When a viscous fluid flow passes a solid body (fully-immersed in the fluid), the body experiences a net force, F, which can be decomposed into two components: a drag force F , which is parallel to the flow direction, and • D a lift force F , which is perpendicular to the flow direction. • L The drag coefficient CD and lift coefficient CL are defined as follows: FD FL CD = 1 2 and CL = 1 2 , (112) 2 ρU A 2 ρU Ap respectively. Here, U is the free-stream velocity, A is the “wetted area” (total surface area in contact with fluid), and Ap is the “planform area” (maximum projected area of an object such as a wing). In the remainder of this section, we focus our attention on the drag forces. As discussed previously, there are two types of drag forces acting on a solid body immersed in a viscous flow: friction drag (also called “viscous drag”), due to the wall friction shear stress exerted on the • surface of a solid body; pressure drag (also called “form drag”), due to the difference in the pressure exerted on the front • and rear surfaces of a solid body. The friction drag and pressure drag on a finite immersed body are defined as FD,vis = τwdA and FD, pres = pdA , (113) ZA ZA Streamwise component respectively.
    [Show full text]
  • Hydraulics Manual Glossary G - 3
    Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B.
    [Show full text]
  • Alloys: Making an Alloy
    Inspirational chemistry 21 Alloys: making an alloy Index 2.3.1 2 sheets In this experiment, students make an alloy (solder) from tin and lead and compare its properties to those of pure lead. Equipment required Per pair or group of students: ■ About 2 g lead ■ About 2 g tin ■ Crucible ■ Pipe clay triangle ■ Bunsen, tripod and heatproof mat ■ Spatula ■ Carbon powder – 1 spatula per student ■ Tongs ■ 2 sand trays or sturdy metal lids ■ Sand ■ Access to a balance ■ Eye protection. Health and safety The most likely incident in this experiment is a student burning themselves so warn them that the equipment will be hot. Pouring molten metal can be hazardous if you are not sure how to use tongs correctly – it would be worth demonstrating how to use them safely. Some tongs in schools do not grip well. Every pair must be checked before the start of the experiment. Eye protection should be worn. Lead is a toxic metal. If it is heated for too long or too high above its melting point it could start to give off fumes. Ensure that the laboratory is well ventilated, warn students against breathing in the fumes given off by their sample during the experiment and tell them to heat the metals no longer than is necessary to get them to melt. 22 Inspirational chemistry Results Hardness testing should show clearly that the alloy is harder than the pure lead. The alloy can be used to scratch the lead convincingly. The lead does not leave a mark on the alloy. (Students may need to be reminded how to do this simple test – just try to scratch one metal with the other.) The density of the alloy should be less than that of the lead, but this test is fairly subjective.
    [Show full text]
  • Why We Need to Assure Adequacy of Zinc
    Aunt Cathy’s Guide to Nutrition: Sanford Nutrition Therapy Dept. 1/15 Thinking about Clinical/Medical Nutrition Issues and Applications of RDAs, RDI, DRIs, ULS, AIs, etc.: Why We Need to Assure Adequacy of Zinc (from the series “How Am I Supposed to Remember All This Stuff?!”) Aunt Cathy Cathy Breedon PhD, RD, CSP, FADA, FAND Clinical and Metabolic Nutrition Specialist / Prenatal/Pediatric Nutrition Specialist Sanford Medical Center, and Clinical Associate Professor UND School of Medicine, Fargo, ND • Zinc is a necessary mineral cofactor needed for over 200 enzymes to work. • Not having enough screws stuff up a LOT. • What kinds of things won’t work well if zinc is inadequate? Read on … 1 Memory Tricks for ZINC Many people remember things best if they also see pictures, so here are some pictures identifying some specific places in the body for which zinc is absolutely essential. Other folks remember things best if they hear them … so if you are one of those people, be sure to read the descriptor for each function of zinc out loud. The Zinc Story: “Zinco” (Zorro’s more irritating cousin) has just marked the places where people need zinc for their bodies to operate. Just picture the fellow on the left to remember that zinc is needed all over the body. It is a co-factor for over 200 enzymes! In other words … I dare you to name a body part that is not dependent on adequacy of zinc! Here are some specific places where he marked things with a Z for Zinc: Zinc is need to make DNA So Zinc is needed And Zinc is needed to to make new cells for babies
    [Show full text]