Koch's Postulates Koch's Postulates Are Four Criteria Designed to Establish a Causative Relationship Between a Microbe and a Disease

Total Page:16

File Type:pdf, Size:1020Kb

Koch's Postulates Koch's Postulates Are Four Criteria Designed to Establish a Causative Relationship Between a Microbe and a Disease Koch's postulates Koch's postulates are four criteria designed to establish a causative relationship between a microbe and a disease. The postulates were formulated by Robert Koch and Friedrich Loeffler in 1884, based on earlier concepts described by Jakob Henle, and refined and published by Koch in 1890. Koch applied the postulates to describe the etiology of cholera and tuberculosis, but they have been controversially generalized to other diseases. These postulates were generated prior to understanding of modern concepts in microbial pathogenesis that cannot be examined using Koch's postulates, including viruses (which are obligate cellular parasites) or asymptomatic carriers. They have largely been supplanted by other criteria such as the Bradford Hill criteria for infectious disease causality in modern public health. The postulates Koch's postulates of disease. Koch's postulates are the following: 1. The microorganism must be found in abundance in all organisms suffering from the disease, but should not be found in healthy organisms. 2. The microorganism must be isolated from a diseased organism and grown in pure culture. 3. The cultured microorganism should cause disease when introduced into a healthy organism. 4. The microorganism must be reisolated from the inoculated, diseased experimental host and identified as being identical to the original specific causative agent. However, Koch abandoned the universalist requirement of the first postulate altogether when he discovered asymptomatic carriers of cholera and, later, of typhoid fever. Asymptomatic or subclinical infection carriers are now known to be a common feature of many infectious diseases, especially viruses such as polio, herpes simplex, HIV, and hepatitis C. As a specific example, all doctors and virologists agree that poliovirus causes paralysis in just a few infected subjects, and the success of the polio vaccine in preventing disease supports the conviction that the poliovirus is the causative agent. The second postulate may also be suspended for certain microorganisms or entities that cannot (at the present time) be grown in pure culture. Viruses also require host cells to grow and reproduce and therefore cannot be grown in pure cultures. The third postulate specifies "should", not "must", because as Koch himself proved in regard to both tuberculosis and cholera, not all organisms exposed to an infectious agent will acquire the infection. Noninfection may be due to such factors as general health and proper immune functioning; acquired immunity from previous exposure or vaccination; or genetic immunity, as with the resistance to malaria conferred by possessing at least one sickle cell allele. There are a few other exceptions to Koch's postulates. A single pathogen can cause several disease conditions. Additionally, a single disease condition can be caused by several different microorganisms. Some pathogens can not be cultured in the lab, and some pathogens only cause disease in the human species. In summary, an infectious agent that satisfies Koch's postulates has sufficient evidence to be classified as the infectious agent, but due to the postulates' shortcomings they are not strictly a necessary condition of an organism being the infectious agent responsible for a disease. History Koch's postulates were developed in the 19th century as general guidelines to identify pathogens that could be isolated with the techniques of the day. Even in Koch's time, it was recognized that some infectious agents were clearly responsible for disease even though they did not fulfill all of the postulates. Attempts to rigidly apply Koch's postulates to the diagnosis of viral diseases in the late 19th century, at a time when viruses could not be seen or isolated in culture, may have impeded the early development of the field of virology. Koch's postulates have been recognized as largely obsolete by epidemiologists since the 1950s.Therefore, while Koch's postulates retain historical importance and continue to inform the approach to microbiologic diagnosis, they are not routinely used to demonstrate causality. Koch's postulates have also influenced scientists who examine microbial pathogenesis from a molecular point of view. In the 1980s, a molecular version of Koch's postulates was developed to guide the identification of microbial genes encoding virulence factors. That HIV causes AIDS does not follow from Koch's postulates, which may have supported HIV/AIDS denialism. Also Oncoviruses causing cancers does not follow Koch's postulates. For the 21st century Koch’s postulates have played an important role in microbiology, yet they have major limitations. For example, Koch was well aware that in the case of cholera, the causal agent, Vibrio cholerae, could be found in both sick and healthy people, invalidating his first postulate. Furthermore, viral diseases were not yet discovered when Koch formulated his postulates, and there are many viruses that do not cause illness in all infected individuals, a requirement of the first postulate. Additionally, it was known through experimentation that H. pylori caused mild inflammation of the gastric lining when ingested. As evident as the inflammation was, it still did not immediately convince skeptics that H. pylori was associated with ulcers. Eventually, skeptics were silenced when a newly developed antibiotic treatment eliminated the bacteria and ultimately cured the disease. Contradictions and occurrences such as these have led many to believe that a fifth postulate may be required. If enacted, this postulate would state that sufficient microbial data should allow scientists to treat, cure, or prevent the particular disease. More recently, modern nucleic acid-based microbial detection methods have made Koch’s original postulates even less relevant. These nucleic acid-based methods make it possible to identify microbes that are associated with a disease, but in many cases the microbes are uncultivable. Also, nucleic acid-based detection methods are very sensitive, and they can often detect the very low levels of viruses that are found in healthy people without disease. The use of these new methods has led to revised versions of Koch’s postulates: Fredricks and Relman have suggested the following set of Koch’s postulates for the 21st century: 1. A nucleic acid sequence belonging to a putative pathogen should be present in most cases of an infectious disease. Microbial nucleic acids should be found preferentially in those organs or gross anatomic sites known to be diseased, and not in those organs that lack pathology. 2. Fewer, or no, copies of pathogen-associated nucleic acid sequences should occur in hosts or tissues without disease. 3. With resolution of disease, the copy number of pathogen-associated nucleic acid sequences should decrease or become undetectable. With clinical relapse, the opposite should occur. 4. When sequence detection predates disease, or sequence copy number correlates with severity of disease or pathology, the sequence-disease association is more likely to be a causal relationship. 5. The nature of the microorganism inferred from the available sequence should be consistent with the known biological characteristics of that group of organisms. 6. Tissue-sequence correlates should be sought at the cellular level: efforts should be made to demonstrate specific in situ hybridization of microbial sequence to areas of tissue pathology and to visible microorganisms or to areas where microorganisms are presumed to be located. 7. These sequence-based forms of evidence for microbial causation should be reproducible. These modifications are still controversial in that they do not account well for established disease associations, such as papillomavirus and cervical cancer, nor do they take into account prion diseases, which have no nucleic acid sequences of their own. Koch’s postulates in the 21st century For thousands of years, epidemics of contagious diseases were believed to be caused by the wrath of the gods, configuration of stars, or miasma. The association of specific microorganisms with disease came about as a consequence of the work of the German physician Robert Koch. He formulated a set of criteria that could be used to identify the pathogen responsible for a specific disease. These criteria came to be known as Koch’s postulates: 1. The organism must be regularly associated with the disease and its characteristic lesions. 2. The organism must be isolated from the diseased host and grown in culture. 3. The disease must be reproduced when a pure culture of the organism is introduced into a healthy, susceptible host. 4. The same organism must be reisolated from the experimentally infected host. Koch applied these criteria to show that anthrax, a common disease of cattle, was caused by the bacterium Bacillus anthracis, and that tuberculosis in humans was caused by a different bacterial species. His postulates provided a framework for proving the role of microbes in disease. As a consequence of his work, the study of infectious disease was placed on a secure scientific foundation, which ultimately made possible rational treatment and control. Despite the importance of Koch’s postulates in the development of microbiology, they have severe limitations, which even Koch realized. For example, he believed that cholera and leprosy were caused by microbes, but could not fulfill all four postulates. Furthermore, Koch knew that the putative agent of cholera, Vibrio cholerae, could be isolated from both sick and healthy people, invalidating postulate #2. The limitations of Koch’s criteria are even more obvious when we consider viral diseases, which were not yet discovered when the postulates were formulated. Thomas Rivers, who has been called the ‘father of modern virology’, wrote: ‘‘It is unfortunate that so many workers blindly followed the rules, because Koch himself quickly realized that in certain instances all the conditions could not be met. Thus, in regard to certain diseases, particularly those caused by viruses, the blind adherence to Koch’s postulates may act as a hindrance instead of an aid.’’ Many viruses do not cause illness in all infected individuals, a requirement of postulate #1.
Recommended publications
  • Medicine in 18Th and 19Th Century Britain, 1700-1900
    Medicine in 18th and 19th century Britain, 1700‐1900 The breakthroughs th 1798: Edward Jenner – The development of How had society changed to make medical What was behind the 19 C breakthroughs? Changing ideas of causes breakthroughs possible? vaccinations Jenner trained by leading surgeon who taught The first major breakthrough came with Louis Pasteur’s germ theory which he published in 1861. His later students to observe carefully and carry out own Proved vaccination prevented people catching smallpox, experiments proved that bacteria (also known as microbes or germs) cause diseases. However, this did not put an end The changes described in the Renaissance were experiments instead of relying on knowledge in one of the great killer diseases. Based on observation and to all earlier ideas. Belief that bad air was to blame continued, which is not surprising given the conditions in many the result of rapid changes in society, but they did books – Jenner followed these methods. scientific experiment. However, did not understand what industrial towns. In addition, Pasteur’s theory was a very general one until scientists begun to identify the individual also build on changes and ideas from earlier caused smallpox all how vaccination worked. At first dad bacteria which cause particular diseases. So, while this was one of the two most important breakthroughs in ideas centuries. The flushing toilet important late 19th C invention wants opposition to making vaccination compulsory by law about what causes disease and illness it did not revolutionise medicine immediately. Scientists and doctors where the 1500s Renaissance – flushing system sent waste instantly down into – overtime saved many people’s lives and wiped‐out first to be convinced of this theory, but it took time for most people to understand it.
    [Show full text]
  • Bradford Hill Criteria for Causal Inference Based on a Presentation at the 2015 ANZEA Conference
    Bradford Hill Criteria for Causal Inference Based on a presentation at the 2015 ANZEA Conference Julian​ King Director,​ Julian King & Associates – a member of the Kinnect Group www.julianking.co.nz​ | www.kinnect.co.nz 2015 We think we’re good at determining causality, but we suck at it One​ of the great At​ one level, this is an Unfortunately,​ though, the challenges in evaluation is everyday, common sense way we are wired does not determining whether the task. As a species we’ve predispose us to logical results we’re seeing are been making judgments thinking. We are inclined because of the program about causation for a to be led astray by all sorts we’re evaluating, some million years or so. of biases and heuristics. other influences out there in the big world, or random chance. The​ Kinnect Group www.kinnect.co.nz 2 Along came logic Eventually,​ after a very long time, we evolved into philosophers who invented formal logic. Thanks to scientific method, our species has recently triumphed to the extent that we now have cars that drive themselves and flying drones that deliver pizza (don’t confuse this with progress – we still suck at ethics but that’s a story for another day). 3 But we’re still not great at causation Over​ time, the rocket But​ deep down we’re still Such​ a rigid view is not science for dealing with biased, heuristical beings much use in the real causation has become and not very good at world, where there are all more sophisticated – a thinking things through.
    [Show full text]
  • Medical Bacteriology
    LECTURE NOTES Degree and Diploma Programs For Environmental Health Students Medical Bacteriology Abilo Tadesse, Meseret Alem University of Gondar In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education September 2006 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2006 by Abilo Tadesse, Meseret Alem All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. PREFACE Text book on Medical Bacteriology for Medical Laboratory Technology students are not available as need, so this lecture note will alleviate the acute shortage of text books and reference materials on medical bacteriology.
    [Show full text]
  • Molecular Pathological Epidemiology in Diabetes Mellitus and Risk of Hepatocellular Carcinoma
    Submit a Manuscript: http://www.wjgnet.com/esps/ World J Hepatol 2016 September 28; 8(27): 1119-1127 Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx ISSN 1948-5182 (online) DOI: 10.4254/wjh.v8.i27.1119 © 2016 Baishideng Publishing Group Inc. All rights reserved. REVIEW Molecular pathological epidemiology in diabetes mellitus and risk of hepatocellular carcinoma Chun Gao Chun Gao, Department of Gastroenterology, China-Japan logy and epidemiology, and investigates the relationship Friendship Hospital, Ministry of Health, Beijing 100029, China between exogenous and endogenous exposure factors, tumor molecular signatures, and tumor initiation, progres- Author contributions: Gao C conceived the topic, performed sion, and response to treatment. Molecular epidemiology research, retrieved concerned literatures and wrote the paper. broadly encompasses MPE and conventional-type mole- cular epidemiology. Hepatocellular carcinoma (HCC) Supported by Beijing NOVA Programme of Beijing Municipal is the third most common cause of cancer-associated Science and Technology Commission, No. Z13110.7000413067. death worldwide and remains as a major public health Conflict-of-interest statement: No conflict of interest. challenge. Over the past few decades, a number of epidemiological studies have demonstrated that diabetes Open-Access: This article is an open-access article which was mellitus (DM) is an established independent risk factor selected by an in-house editor and fully peer-reviewed by external for HCC. However, how DM affects the occurrence and
    [Show full text]
  • Foundations of Epidemiology
    66221_CH01_5398.qxd 6/19/09 11:16 AM Page 1 © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION CHAPTER 1 Foundations of Epidemiology OBJECTIVES After completing this chapter, you will be able to: ■ Define epidemiology. ■ Define descriptive epidemiology. ■ Define analytic epidemiology. ■ Identify some activities performed in epidemiology. ■ Explain the role of epidemiology in public health practice and individual decision making. ■ Define epidemic, endemic, and pandemic. ■ Describe common source, propagated, and mixed epidemics. ■ Describe why a standard case definition and adequate levels of reporting are important in epidemiologic investigations. ■ Describe the epidemiology triangle for infectious disease. ■ Describe the advanced epidemiology triangle for chronic diseases and behavioral disorders. ■ Define the three levels of prevention used in public health and epidemiology. ■ Understand the basic vocabulary used in epidemiology. 66221_CH01_5398.qxd 6/19/09 11:16 AM Page 2 © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION 2 CHAPTER 1 ■ Foundations of Epidemiology In recent years, the important role of epidemiology has become increasingly recognized. Epidemiology is a core subject required in public health and health education programs; it is a study that provides information about public health problems and the causes of those problems. This information is then used to improve the health and social conditions of people. Epidemiology has a population focus in that epidemiologic investigations are concerned with the collective health of the people in a community or population under study. In contrast, a clinician is concerned for the health of an individual. The clinician focuses on treating and caring for the patient, whereas the epidemiologist focuses on iden- tifying the source or exposure of disease, disability or death, the number of persons exposed, and the potential for further spread.
    [Show full text]
  • Molecular Pathological Epidemiology Gives Clues to Paradoxical Findings
    Molecular Pathological Epidemiology Gives Clues to Paradoxical Findings The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Nishihara, Reiko, Tyler J. VanderWeele, Kenji Shibuya, Murray A. Mittleman, Molin Wang, Alison E. Field, Edward Giovannucci, Paul Lochhead, and Shuji Ogino. 2015. “Molecular Pathological Epidemiology Gives Clues to Paradoxical Findings.” European Journal of Epidemiology 30 (10): 1129–35. https://doi.org/10.1007/ s10654-015-0088-4. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41392032 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP HHS Public Access Author manuscript Author Manuscript Author ManuscriptEur J Epidemiol Author Manuscript. Author Author Manuscript manuscript; available in PMC 2016 October 07. Published in final edited form as: Eur J Epidemiol. 2015 October ; 30(10): 1129–1135. doi:10.1007/s10654-015-0088-4. Molecular Pathological Epidemiology Gives Clues to Paradoxical Findings Reiko Nishiharaa,b,c, Tyler J. VanderWeeled,e, Kenji Shibuyac, Murray A. Mittlemand,f, Molin Wangd,e,g, Alison E. Fieldd,g,h,i, Edward Giovannuccia,d,g, Paul Lochheadi,j, and Shuji Oginob,d,k aDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Ave., Boston, Massachusetts 02115 USA bDepartment of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Boston, Massachusetts 02215 USA cDepartment of Global Health Policy, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan dDepartment of Epidemiology, Harvard T.H.
    [Show full text]
  • HIV and AIDS: a Module for Cnas and Hhas
    HIV AND AIDS: A Module for CNAs AND HHAs INTRODUCTION The human immunodeficiency virus (HIV) is a virus that is transmitted through sexual contact or contact with infected blood. HIV causes an illness called acquired immune deficiency syndrome - AIDS. AIDS was first diagnosed in New York City and San Francisco in 1981. However, there is evidence that HIV has actually been infecting people for many, many years before it was recognized and isolated cases of AIDS had occurred many years before the epidemic started. The cause of AIDS, HIV, was finally isolated in 1983. There are now over 33 million people in the world who are infected with HIV. A large number of them will develop AIDS, and AIDS is an enormous public health problem in the United States and worldwide. Modern medications have now allowed many people infected with HIV to avoid developing AIDS. However, there is no cure for HIV infection - the virus cannot be eliminated or eradicated - and there is still no vaccine available that can prevent the spread of HIV. Learning Break: Many people use the terms HIV and AIDS interchangeably, but it is important to remember that they are two different things. HIV is the virus that causes AIDS. AIDS is the disease - or group of diseases - that are caused by infection with HIV. Someone can be infected with HIV but not have AIDS. OBJECTIVES When the student has finished this module, he/she will be able to: 1. Identify a definition of HIV. 2. Identify a definition of AIDS. 3. Identify the basic defense mechanism the body uses against infections.
    [Show full text]
  • Colonization V. Infection
    Colonization vs Infection Colonization • The presence of microorganisms in or on a host with growth and multiplication but without tissue invasion or damage • Understanding this concept is essential in the planning and implantation of epidemiological studies in a healthcare infection prevention and control program Infection v. Colonization • Confusing colonization with infection can lead to spurious associations that may lead to expensive, ineffective, and time‐ consuming interventions Multi Drug‐Resistant Organisms Management in Long Term Care • Colonization may become infection when changes in the host Facilities Workshop occur Louisiana Office of Public Health Healthcare‐Associated Infections Program Objectives Colonization: Definition By the end of the presentation, attendees will be able to: • Colonization: presence of a microorganism on/in a host, with • Define colonization growth and multiplication of the organism, but without • Differentiate colonization from infections interaction between host and organism (no clinical expression, no immune response). • Apply appropriate laboratory test by common LTC infectious • agents Carrier: individual which is colonized + more • • Understand the necessity of communicating infectious status Subclinical or unapparent infection: presence of upon patient transfer microorganism and interaction between host and microorganism (sub clinical response, immune response). Often the term colonization is applied for relationship host‐ agent in which the immune response is difficult to elicit. • Contamination: Presence of a microorganism on a body surface or an inanimate object. 1 Colonization vs Infection Spectrum: No Exposure ‐ Exposure ‐ Colonization ‐ Carrier Infection ‐ Disease A carrier is an individual that harbors a specific microorganism Host + Infectious agent What is “Exposed” ? in the absence of discernible clinical disease and serve as a No foothold: Exposed Means of transmission: potential source of infection.
    [Show full text]
  • Epidemiological Causation Criteria
    Slide 1 © 2003 By Default! EpidemiologicalEpidemiological CausationCausation CriteriaCriteria James R. Coughlin, Ph.D. Coughlin & Associates Laguna Niguel, California [email protected] www.jrcoughlin-associates.com Meat Industry Research Conference Chicago, IL October 23, 2007 A Free sample background from www.awesomebackgrounds.com Slide 2 © 2003 By Default! DiscussionDiscussion TopicsTopics 1. Types of epidemiologic studies 2. Epidemiologic science and the media 3. Bradford Hill’s “Causation Criteria” 4. Statistical considerations 5.5. QuestionsQuestions toto askask whenwhen reviewingreviewing anan epidemiologicepidemiologic studystudy A Free sample background from www.awesomebackgrounds.com Slide 3 © 2003 By Default! Epidemiology Defined • Epi (upon) = demos (people) + ology (study of) • Historical - the study of epidemics of infectious disease • Modern - the study of the distribution and determinants of health and disease frequency in human populations • Epidemiology looks for patterns of disease (time, place, personal characteristics) A Free sample background from www.awesomebackgrounds.com Slide 4 © 2003 By Default! A Free sample background from www.awesomebackgrounds.com Slide 5 © 2003 By Default! A Free sample background from www.awesomebackgrounds.com Slide 6 © 2003 By Default! A Free sample background from www.awesomebackgrounds.com Slide 7 © 2003 By Default! A Free sample background from www.awesomebackgrounds.com Slide 8 © 2003 By Default! A Free sample background from www.awesomebackgrounds.com Slide 9 © 2003 By Default! Epidemiologic Science and the Media • Dramatically increased interest in health over the past decade • What we eat…or don’t eat…is always being linked to various diseases, especially obesity and cancer • Anxiety-provoking media headlines – • “Carcinogen-of-the-month” being the most scary to consumers • Dietary epi studies always seem to be contradicting each other • Lots of nutrition nonsense and “food faddism” out there • U.S.
    [Show full text]
  • Elements of Causal Inference
    Elements of Causal Inference Foundations and Learning Algorithms Adaptive Computation and Machine Learning Francis Bach, Editor Christopher Bishop, David Heckerman, Michael Jordan, and Michael Kearns, As- sociate Editors A complete list of books published in The Adaptive Computation and Machine Learning series appears at the back of this book. Elements of Causal Inference Foundations and Learning Algorithms Jonas Peters, Dominik Janzing, and Bernhard Scholkopf¨ The MIT Press Cambridge, Massachusetts London, England c 2017 Massachusetts Institute of Technology This work is licensed to the public under a Creative Commons Attribution- Non- Commercial-NoDerivatives 4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/ All rights reserved except as licensed pursuant to the Creative Commons license identified above. Any reproduction or other use not licensed as above, by any electronic or mechanical means (including but not limited to photocopying, public distribution, online display, and digital information storage and retrieval) requires permission in writing from the publisher. This book was set in LaTeX by the authors. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Names: Peters, Jonas. j Janzing, Dominik. j Scholkopf,¨ Bernhard. Title: Elements of causal inference : foundations and learning algorithms / Jonas Peters, Dominik Janzing, and Bernhard Scholkopf.¨ Description: Cambridge, MA : MIT Press, 2017. j Series: Adaptive computation and machine learning series
    [Show full text]
  • Introduction to Medical Microbiology Medical Microbiology: Is a Science of Studying Micro-Organisms That Are Associated with Human Disease
    Introduction to medical microbiology Medical Microbiology: is a science of studying micro-organisms that are associated with human disease. FIELDS OF Microbiology : 1- Medical microbiology: This field focuses on pathogens, diseases, and body defenses. Immunology, Virology, Bacteriology, Mycology, and Parasitology. 2- Industrial microbiology: This field focuses on the production of alcohol, enzymes, vitamins, and antibiotic. 3- Agricultural microbiology: This filed is concerned with Soil fertilization, nitrogen, carbon, sulfur, and phosphorous cycles, as well as plant disease. 4- Food microbiology: This field focuses on food poisoning, toxicity and spoilage. 5- Molecular microbiology: deals with molecular mechanisms and physiological processes of microbes and utilization in production of biotechnology products such as vaccines, and antibodies. 6- Sanitary microbiology: is a science based on the detection of risks associated with the production, manufacture and consumption of foods and water. It has been established that environment facts determine the survival, growing and inactivation of the microorganisms. 7- environmental microbiology: is the study of the composition and physiology of microbial communities in the environment. ** There are four classes of organisms that can cause disease: 1- Viruses: Their size < 0.3 microns in diameter, they are totally dependent on infected cells for replication. They cause intracellular infection. 2- Bacteria: Usually measure about one micron or more, multiply by binary fission, and they can cause intercellular or extracellular infection. 3- Fungi, these can be of two varieties: a- Yeasts are unicellular organisms measuring (2-20) microns. b- Molds are large multicellular organisms. 4- Parasites: these can be of two classes: a- Protozoa, these are unicellular organisms that vary in size, some are very small (about 3 microns) and can cause intercellular infection.
    [Show full text]
  • Integration of Molecular Pathology, Epidemiology and Social Science for Global Precision Medicine
    Expert Review of Molecular Diagnostics ISSN: 1473-7159 (Print) 1744-8352 (Online) Journal homepage: http://www.tandfonline.com/loi/iero20 Integration of molecular pathology, epidemiology and social science for global precision medicine Akihiro Nishi, Danny A Milner Jr, Edward L Giovannucci, Reiko Nishihara, Andy S Tan, Ichiro Kawachi & Shuji Ogino To cite this article: Akihiro Nishi, Danny A Milner Jr, Edward L Giovannucci, Reiko Nishihara, Andy S Tan, Ichiro Kawachi & Shuji Ogino (2015): Integration of molecular pathology, epidemiology and social science for global precision medicine, Expert Review of Molecular Diagnostics, DOI: 10.1586/14737159.2016.1115346 To link to this article: http://dx.doi.org/10.1586/14737159.2016.1115346 Published online: 04 Dec 2015. Submit your article to this journal Article views: 82 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=iero20 Download by: [University of California, San Francisco] Date: 31 December 2015, At: 13:21 Perspectives Integration of molecular pathology, epidemiology and social science for global precision medicine Expert Rev. Mol. Diagn. Early online, 1–13 (2015) Akihiro Nishi1,2, The precision medicine concept and the unique disease principle imply that each patient has Danny A Milner Jr3,4, unique pathogenic processes resulting from heterogeneous cellular genetic and epigenetic Edward L alterations and interactions between cells (including immune cells) and exposures, including Giovannucci5,6,7, dietary, environmental, microbial and lifestyle factors. As a core method field in population health science and medicine, epidemiology is a growing scientific discipline that can analyze Reiko Nishihara5,6,8,9, 9,10 disease risk factors and develop statistical methodologies to maximize utilization of big data Andy S Tan , on populations and disease pathology.
    [Show full text]