GJ 273: on the Formation, Dynamical Evolution and Habitability of a Planetary System Hosted by an M Dwarf at 3.75 Parsec

Total Page:16

File Type:pdf, Size:1020Kb

GJ 273: on the Formation, Dynamical Evolution and Habitability of a Planetary System Hosted by an M Dwarf at 3.75 Parsec Astronomy & Astrophysics manuscript no. dinev_gj273 c ESO 2020 June 18, 2020 GJ 273: On the formation, dynamical evolution and habitability of a planetary system hosted by an M dwarf at 3.75 parsec Francisco J. Pozuelos1; 2;y, Juan C. Suárez3; 4, Gonzalo C. de Elía5; 6, Zaira M. Berdiñas7, Andrea Bonfanti1; 10, Agustín Dugaro5; 6, Michaël Gillon2, Emmanuël Jehin1, Maximilian N. Günther8; 9, Valérie Van Grootel1, Lionel J. Garcia2, Antoine Thuillier1; 11, Laetitia Delrez1; 2, and Jose R. Rodón4 1 Space sciences, Technologies & Astrophysics Research (STAR) Institute, Université de Liège, 4000 Liège, Belgium 2 EXOTIC Lab, UR Astrobiology, AGO Department, University of Liège, 4000 Liège, Belgium 3 Dpt. Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain 4 Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, 18008, Granada, Spain 5 Instituto de Astrofísica de La Plata, La Plata , Argentina 6 Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata. LaPlata, Argentina 7 Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile, Casilla 36-D 8 Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cam- bridge, MA 02139, USA 9 Juan Carlos Torres Fellow 10 Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria 11 Observatoire de Paris, 61 Avenue de l’Observatoire 75014 Paris, France y e-mail: [email protected] Received ; accepted ABSTRACT Context. Planets orbiting low-mass stars such as M dwarfs are now considered a cornerstone in the search for life-harbouring planets. GJ 273 is a planetary system orbiting an M dwarf only 3.75 pc away, composed of two confirmed planets, GJ 273b and GJ 273c, and two promising candidates, GJ 273d and GJ 273e. Planet GJ 273b resides in the habitable zone. Currently, due to a lack of observed planetary transits, only the minimum masses of the planets are known: Mb sin ib=2.89 M⊕,Mc sin ic=1.18 M⊕,Md sin id=10.80 M⊕, and Me sin ie=9.30 M⊕. Despite being an interesting system, the GJ 273 planetary system is still poorly studied. Aims. We aim at precisely determine the physical parameters of the individual planets, in particular to break the mass–inclination degeneracy to accurately determine the mass of the planets. Moreover, we present thorough characterisation of planet GJ 273b in terms of its potential habitability. Methods. First, we explored the planetary formation and hydration phases of GJ 273 during the first 100 Myr. Secondly, we analysed the stability of the system by considering both the two- and four-planet configurations. We then performed a comparative analysis between GJ 273 and the Solar System, and searched for regions in GJ 273 which may harbour minor bodies in stable orbits, i.e. main asteroid belt and Kuiper belt analogues. Results. From our set of dynamical studies, we obtain that the four-planet configuration of the system allows us to break the mass– inclination degeneracy. From our modelling results, the masses of the planets are unveiled as: 2:89 ≤ Mb ≤ 3:03 M⊕, 1:18 ≤ Mc ≤ 1:24 M⊕, 10:80 ≤ Md ≤ 11:35 M⊕ and 9:30 ≤ Me ≤ 9:70 M⊕. These results point to a system likely composed of an Earth-mass planet, a super-Earth and two mini-Neptunes. From planetary formation models, we determine that GJ 273b was likely an efficient water captor while GJ 273c is probably a dry planet. We found that the system may have several stable regions where minor bodies might reside. Collectively, these results are used to comprehensively discuss the habitability of GJ 273b. Key words. GJ 273 – M dwarfs – Planetary systems – Planetary dynamics – Tides – Minor-body reservoir analogues – Habitability 1. Introduction a rate of at least one planet per star (e. g., Bonfils et al. 2013; Dressing & Charbonneau 2013, 2015; Tuomi et al. 2014). This arXiv:2006.09403v1 [astro-ph.EP] 16 Jun 2020 In the last decade, interest in planetary systems around M-type fact is also highlighted by the number of dedicated surveys tar- stars has significantly grown. The scientific interest is twofold. geting M dwarfs, notably in the search of rocky planets in their On one side, M-type stars are the most abundant star type in habitable zones (HZs). Some examples are the SPECULOOS the Solar neighbourhood, and indeed the Universe (see e. g., (Gillon 2018; Burdanov et al. 2018; Delrez et al. 2018; Je- Henry et al. 1994; Chabrier & Baraffe 2000; Winters et al. 2015). hin et al. 2018), CARMENES (Quirrenbach et al. 2010; Rein- However, their physical properties are poorly known since they ers et al. 2018), and MEarth (Nutzman & Charbonneau 2008) are generally quite faint, as compared with other stellar types, projects. and have only recently become the cornerstone in the detec- More interestingly, the huge number of M-type stars has tion of low-mass planets. Indeed, recent studies based on radial– significantly increased the chances of finding Earth-mass rocky velocity (RV) and transit photometry surveys have hinted at the planets in temperate orbits, i.e. within the host star’s HZ. Never- high occurrence of low-mass planets orbiting M dwarfs, with theless, planets in the HZs of M dwarfs are close to the star and Article number, page 1 of 20 A&A proofs: manuscript no. dinev_gj273 thus are generally exposed to intense radiation and magnetic ful- etary parameters and the general system architecture, while in gurations. Whether a planet can remain habitable in the presence Section 5 we explore the similarities of GJ 273 with the Solar of UV and X-ray flares is still a matter of debate: while a single System while searching for minor-body reservoir analogues. In flare probably does not compromise a planet’s habitability, plan- Section 6, we discuss on the habitability of planet GJ 273b, and ets orbiting M dwarfs may suffer frequent and strong flares at finally, in Section 7 we present our conclusions. younger ages (Armstrong et al. 2016). Among all the planets discovered so far orbiting M dwarfs, some of the most interesting are also the closest to Earth. One 2. Formation and evolution of the planetary system such example is the temperate Earth-mass planet orbiting Prox- GJ 273: N-body experiments ima Centauri-b, which is located only 1.2 pc away (Anglada- In the present section, we analyse the processes of formation and Escudé et al. 2016), while the seven Earth-size planets orbit- evolution of the planetary system GJ 273 using N-body simula- ing the TRAPPIST-1 system at a distance of 12.1 pc, where at tions. To do this, we first describe the properties of the proto- least three of them are in the HZ (Gillon et al. 2016, 2017) are planetary disk and then determine the physical and orbital initial equally tantalizing. In this context, GJ 273 is a highly interesting conditions to be used in our model. Then, we define the differ- M dwarf (also known as Luyten’s star) hosting a multi-planet ent scenarios to be modelled and finally, we discuss the results system, which is one of the closest stars to the Sun located at obtained from our N-body experiments. only 3.75 pc (Gatewood 2008). Compared with other M-type stars, GJ 273 is a bright star (9.87 Vmag, Koen et al. 2010), with a main-sequence spectral 2.1. Protoplanetary disk: properties type of M3.5V (Hawley et al. 1996), which shows a small pro- −1 An important parameter that determines the distribution of the jected rotational velocity (v sin i < 2:5 kms , Browning et al. material in a protoplanetary disk is the surface density. The gas- 2010). In the work by Astudillo-Defru et al. (2017b), the au- surface density profile Σg(R) adopted in the present research is thors made use of a data set of 280 RVs measured with HARPS given by (mounted on ESO’s 3.5-m La Silla telescope in Chile) which !−γ covered 12 years of intense monitoring of GJ 273. Astudillo- R 2−γ −(R=Rc) Defru et al. (2017b) reported the presence of two short-period Σg(R) = Σ0g e ; (1) R planets, GJ 273b and GJ 273c, with minimum masses of 2.89 c and 1.18 M⊕ and orbital periods of 18.6 and 4.7 d, respectively. where R is the radial coordinate in the disk mid-plane, Σ0g a nor- Planet GJ 273b was shown to be located in the HZ of GJ 273, malization constant, Rc the characteristic radius, and γ an expo- which along with its close proximity to Earth, sparked interest nent that determines the density gradient. At the same way, the in this particular system. In addition, in the recent study pre- solid-surface density profile Σs(R) is written by sented by Tuomi et al. (2019) the authors made use of a data !−γ R 2−γ set that combined HARPS, HIRES (Keck), PFS (Subaru) and −(R=Rc) Σs(R) = Σ0sηice e ; (2) APF (Lick), for a total of 466 RVs measurements, and fully Rc confirmed the existence of the two planets previously detected by Astudillo-Defru et al. (2017b) and suggested the presence of where Σ0s is a normalization constant and parameter ηice repre- two extra planets at larger heliocentric distances: GJ 273d with a sents the change in the amount of solid material due to the con- minimum mass of 10.8 M⊕ and an orbital period of 413.9 d, and densation of water beyond the snow line, which is assumed to be GJ 273e with a minimum mass of 9.3 M⊕ and an orbital period initially located at Rice.
Recommended publications
  • The Search for Another Earth – Part II
    GENERAL ARTICLE The Search for Another Earth – Part II Sujan Sengupta In the first part, we discussed the various methods for the detection of planets outside the solar system known as the exoplanets. In this part, we will describe various kinds of exoplanets. The habitable planets discovered so far and the present status of our search for a habitable planet similar to the Earth will also be discussed. Sujan Sengupta is an 1. Introduction astrophysicist at Indian Institute of Astrophysics, Bengaluru. He works on the The first confirmed exoplanet around a solar type of star, 51 Pe- detection, characterisation 1 gasi b was discovered in 1995 using the radial velocity method. and habitability of extra-solar Subsequently, a large number of exoplanets were discovered by planets and extra-solar this method, and a few were discovered using transit and gravi- moons. tational lensing methods. Ground-based telescopes were used for these discoveries and the search region was confined to about 300 light-years from the Earth. On December 27, 2006, the European Space Agency launched 1The movement of the star a space telescope called CoRoT (Convection, Rotation and plan- towards the observer due to etary Transits) and on March 6, 2009, NASA launched another the gravitational effect of the space telescope called Kepler2 to hunt for exoplanets. Conse- planet. See Sujan Sengupta, The Search for Another Earth, quently, the search extended to about 3000 light-years. Both Resonance, Vol.21, No.7, these telescopes used the transit method in order to detect exo- pp.641–652, 2016. planets. Although Kepler’s field of view was only 105 square de- grees along the Cygnus arm of the Milky Way Galaxy, it detected a whooping 2326 exoplanets out of a total 3493 discovered till 2Kepler Telescope has a pri- date.
    [Show full text]
  • The Subsurface Habitability of Small, Icy Exomoons J
    A&A 636, A50 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937035 & © ESO 2020 Astrophysics The subsurface habitability of small, icy exomoons J. N. K. Y. Tjoa1,?, M. Mueller1,2,3, and F. F. S. van der Tak1,2 1 Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands e-mail: [email protected] 2 SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands 3 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2300 RA Leiden, The Netherlands Received 1 November 2019 / Accepted 8 March 2020 ABSTRACT Context. Assuming our Solar System as typical, exomoons may outnumber exoplanets. If their habitability fraction is similar, they would thus constitute the largest portion of habitable real estate in the Universe. Icy moons in our Solar System, such as Europa and Enceladus, have already been shown to possess liquid water, a prerequisite for life on Earth. Aims. We intend to investigate under what thermal and orbital circumstances small, icy moons may sustain subsurface oceans and thus be “subsurface habitable”. We pay specific attention to tidal heating, which may keep a moon liquid far beyond the conservative habitable zone. Methods. We made use of a phenomenological approach to tidal heating. We computed the orbit averaged flux from both stellar and planetary (both thermal and reflected stellar) illumination. We then calculated subsurface temperatures depending on illumination and thermal conduction to the surface through the ice shell and an insulating layer of regolith. We adopted a conduction only model, ignoring volcanism and ice shell convection as an outlet for internal heat.
    [Show full text]
  • Comparative Habitability of Transiting Exoplanets
    Draft version October 1, 2015 A Preprint typeset using LTEX style emulateapj v. 04/17/13 COMPARATIVE HABITABILITY OF TRANSITING EXOPLANETS Rory Barnes1,2,3, Victoria S. Meadows1,2, Nicole Evans1,2 Draft version October 1, 2015 ABSTRACT Exoplanet habitability is traditionally assessed by comparing a planet’s semi-major axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass-radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler Objects of Interest and find that planets that receive between 60–90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable.
    [Show full text]
  • PLANETARY CANDIDATES OBSERVED by Kepler. VIII. a FULLY AUTOMATED CATALOG with MEASURED COMPLETENESS and RELIABILITY BASED on DATA RELEASE 25
    Draft version October 13, 2017 Typeset using LATEX twocolumn style in AASTeX61 PLANETARY CANDIDATES OBSERVED BY Kepler. VIII. A FULLY AUTOMATED CATALOG WITH MEASURED COMPLETENESS AND RELIABILITY BASED ON DATA RELEASE 25 Susan E. Thompson,1, 2, 3, ∗ Jeffrey L. Coughlin,2, 1 Kelsey Hoffman,1 Fergal Mullally,1, 2, 4 Jessie L. Christiansen,5 Christopher J. Burke,2, 1, 6 Steve Bryson,2 Natalie Batalha,2 Michael R. Haas,2, y Joseph Catanzarite,1, 2 Jason F. Rowe,7 Geert Barentsen,8 Douglas A. Caldwell,1, 2 Bruce D. Clarke,1, 2 Jon M. Jenkins,2 Jie Li,1 David W. Latham,9 Jack J. Lissauer,2 Savita Mathur,10 Robert L. Morris,1, 2 Shawn E. Seader,11 Jeffrey C. Smith,1, 2 Todd C. Klaus,2 Joseph D. Twicken,1, 2 Jeffrey E. Van Cleve,1 Bill Wohler,1, 2 Rachel Akeson,5 David R. Ciardi,5 William D. Cochran,12 Christopher E. Henze,2 Steve B. Howell,2 Daniel Huber,13, 14, 1, 15 Andrej Prša,16 Solange V. Ramírez,5 Timothy D. Morton,17 Thomas Barclay,18 Jennifer R. Campbell,2, 19 William J. Chaplin,20, 15 David Charbonneau,9 Jørgen Christensen-Dalsgaard,15 Jessie L. Dotson,2 Laurance Doyle,21, 1 Edward W. Dunham,22 Andrea K. Dupree,9 Eric B. Ford,23, 24, 25, 26 John C. Geary,9 Forrest R. Girouard,27, 2 Howard Isaacson,28 Hans Kjeldsen,15 Elisa V. Quintana,18 Darin Ragozzine,29 Avi Shporer,30 Victor Silva Aguirre,15 Jason H. Steffen,31 Martin Still,8 Peter Tenenbaum,1, 2 William F.
    [Show full text]
  • Recipe for a Habitable Planet
    Recipe for a Habitable Planet Aomawa Shields Clare Boothe Luce Associate Professor Shields Center for Exoplanet Climate and Interdisciplinary Education (SCECIE) University of California, Irvine ASU School of Earth and Space Exploration (SESE) December 2, 2020 A moment to pause… Leading effectively during COVID-19 • Employees Need Trust and Compassion: Be Present, Even When You're Distant • Employees Need Stability: Prioritize Wellbeing Amid Disruption • Employees Need Hope: Anchor to Your "True North" From “3 strategies for leading effectively during COVID-19” (https://www.gallup.com/workplace/306503/strategies-leading-effectively-amid-covid.aspx) Hobbies: reading movies, shows knitting mixed media/collage violin tea yoga good restaurants spa days the beach hiking smelling flowers hanging with family BINGO Ill. Niklas Elmehed. Ill. Niklas Elmehed. © Nobel Media. © Nobel Media. RadialVelocity (m/s) Nobel Prize in Physics 2019 Mayor & Queloz 1995 https://exoplanets.nasa.gov/ As of December 2, 2020 Aomawa Shields Recipe for a Habitable World Credit: NASA NNASA’sASA’s KKeplerepler MMissionission TESS Transiting Exoplanet Survey Satellite Credit: NASA-JPL/Caltech Proxima Centauri b Credit: ESO/M. Kornmesser LHS 1140b Credit: ESO TOI 700d Credit: NASA TESS planets in the Earth-sized regime Credit: NASA’s Goddard Space Flight Center Which ones do we follow up on? 20 The Habitable Zone (Kasting et al. 1993, Kopparapu et al. 2013) ) Runaway greenhouse Maximum CO2 greenhouse Stellar Mass (M Mass Stellar Distance from Star (AU) Snowball Earth Many factors can affect planetary habitability Aomawa Shields Recipe for a Habitable World Liquid water Aomawa Shields Recipe for a Habitable World Isotopic Birth Tides Orbit Abundance Environ.
    [Show full text]
  • Erosion of an Exoplanetary Atmosphere Caused by Stellar Winds J
    A&A 630, A52 (2019) https://doi.org/10.1051/0004-6361/201935543 Astronomy & © ESO 2019 Astrophysics Erosion of an exoplanetary atmosphere caused by stellar winds J. M. Rodríguez-Mozos1 and A. Moya2,3 1 University of Granada (UGR), Department of Theoretical Physics and Cosmology, 18071 Granada, Spain 2 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK e-mail: [email protected]; [email protected] 3 Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark Received 26 March 2019 / Accepted 8 August 2019 ABSTRACT Aims. We present a formalism for a first-order estimation of the magnetosphere radius of exoplanets orbiting stars in the range from 0.08 to 1.3 M . With this radius, we estimate the atmospheric surface that is not protected from stellar winds. We have analyzed this unprotected surface for the most extreme environment for exoplanets: GKM-type and very low-mass stars at the two limits of the habitable zone. The estimated unprotected surface makes it possible to define a likelihood for an exoplanet to retain its atmosphere. This function can be incorporated into the new habitability index SEPHI. Methods. Using different formulations in the literature in addition to stellar and exoplanet physical characteristics, we estimated the stellar magnetic induction, the main characteristics of the stellar wind, and the different star-planet interaction regions (sub- and super- Alfvénic, sub- and supersonic). With this information, we can estimate the radius of the exoplanet magnetopause and thus the exoplanet unprotected surface.
    [Show full text]
  • Early Mars As a Key to Understanding Planetary Habitability
    Early Mars as a Key to Understanding Planetary Habitability Bethany Ehlmann Professor of Planetary Science, Geological & Planetary Sciences Research Scientist, Jet Propulsion Laboratory California Institute of Technology July 13, 2017 | Midterm Review Planetary Decadal Survey Outline: Early Mars as a Key to Understanding Planetary Habitability • What we have learned and what we can learn about early Mars [15 min] • Suggested exploration plans [5 min] • Questions/Discussion [10 min] Key Discoveries in Mars Science since 2010 *Publication date of last Mars references in V&V • Extent and diversity of potential ancient habitats (lakes, rivers, aquifers, hydrothermal systems, soil formation) • Mafic, Ultramafic, and Felsic igneous rocks • Modern liquid water • Recent Ice Ages and Episodicity of Climates above the Triple Point of Water • Modern active methane, likely with local sources • Modern active surface processes • Modern atmospheric loss rates See also MEPAG report to V&V Decadal Midterm (May 4, 2017): https://mepag.jpl.nasa.gov/meeting/2017-07/MEPAG_Johnson_MTDS_v04.pdf Key Discoveries in Mars Science since 2010 *Publication date of last Mars references in V&V • Extent and diversity of potential ancient habitats (lakes, Ancient rivers, aquifers, hydrothermal systems, soil formation) • Mafic, Ultramafic, and Felsic igneous rocks • Modern liquid water • Recent Ice Ages and Episodicity of Climates above the Triple Point of Water [see also Byrne talk, next] • Modern active methane, likely with local sources • Modern active surface processes • Modern atmospheric loss rates [see Jakosky talk, next] Modern See also MEPAG report to V&V Decadal Midterm (May 4, 2017): https://mepag.jpl.nasa.gov/meeting/2017-07/MEPAG_Johnson_MTDS_v04.pdf Key Finding since V&V: Modern Mars is active (methane, geomorphology, ice, water) Bridges et al., 2011; 2012 Mass wasting of the N.
    [Show full text]
  • A Seminar Named: EARTH 2.0
    Syrian Arabic Republic Ministry of Education National Center for the Distinguished` A Seminar Named: EARTH 2.0 Presented by: Amir Najjar Supervised by: Ms. Wafaa 11th grade 2015-2016 0 Contents Introduction:............................................................................... 2 Kepler Spacecraft and its mission: ............................................. 3 The spacecraft's specifications: ............................................... 3 Camera: .................................................................................... 3 Primary Mirror: ........................................................................ 4 Communications: ..................................................................... 4 Kepler’s Story: .......................................................................... 4 Kepler-452b: ............................................ 8 Conclusion: .............................................. 9 References: ............................................ 11 1 Introduction: -Is it true that we are finding new planets that are similar to Earth’s specifications? -Is it possible to live there? -What is the famous spacecraft that is finding such planets? -Who is Earth’s Older Cousin? Can we move and live there? -Is this planet larger or smaller than Earth? Is its distance from its star the same as the distance between Earth and Sun? -Are there any forms of life on this planet? Or we could implant forms of life in this planet? -Is this planet a rocky world in the first place? -We’re going to discuss all this in
    [Show full text]
  • A More Comprehensive Habitable Zone for Finding Life on Other Planets
    Review A more comprehensive habitable zone for finding life on other planets Ramses M. Ramirez 1* 1 Earth-Life Science Institute, Tokyo Institute of Technology; [email protected] * Correspondence: [email protected]; Tel.: +03-5734-2183 Received: June 13, 2018; Accepted: July 26, 2018; Published: July 28, 2018 Abstract: The habitable zone (HZ) is the circular region around a star(s) where standing bodies of water could exist on the surface of a rocky planet. Space missions employ the HZ to select promising targets for follow-up habitability assessment. The classical HZ definition assumes that the most important greenhouse gases for habitable planets orbiting main-sequence stars are CO2 and H2O. Although the classical HZ is an effective navigational tool, recent HZ formulations demonstrate that it cannot thoroughly capture the diversity of habitable exoplanets. Here, I review the planetary and stellar processes considered in both classical and newer HZ formulations. Supplementing the classical HZ with additional considerations from these newer formulations improves our capability to filter out worlds that are unlikely to host life. Such improved HZ tools will be necessary for current and upcoming missions aiming to detect and characterize potentially habitable exoplanets. Keywords: astrobiology; planetary atmospheres; habitable zones; extraterrestrial life 1. Introduction The habitable zone (HZ) is the circular region around a star (or multiple stars) where standing bodies of liquid water could exist on the surface of a rocky planet (e.g., [1,2]). Principally, the HZ is a navigational tool used by space missions to select promising planetary targets for follow-up observations. Although a planet located within the HZ is not necessarily inhabited, and additional information would be required to make such a determination, it remains the most useful roadmap for targeting potentially habitable worlds.
    [Show full text]
  • Is Anybody out There? Julia Bandura, Michael Chong, Ross Edwards
    Is Anybody Out There? Julia Bandura, Michael Chong, Ross Edwards ISCI 3A12 - LUE March 23rd, 2017 -graphic of scientists believe that with our rapid technological advancement, there may be ways to “We stand on a great communicate with them. This article will explore attempts to transmit threshold in the human messages to potential intelligent life forms, history of space attempts to search for incoming alien signals, and analyze explanations for the silence that we have exploration” (Sara Seager, 2014) insofar encountered. However, before considering any form of communication, whether receiving or radiation levels (since high UV radiation can be transmitting, we must first consider where to look. damaging to replication molecules like DNA), and Where is Life in the Universe? liquid water. Water is especially important: all known life on Earth requires liquid water to Logically, a scientist that hopes to communicate survive. As such, within a solar system, the with extraterrestrial beings must assume that: 1) traditional ‘habitable zone’ is defined as the extraterrestrial intelligent life exists in the universe, imaginary disc around the host star where water 2) it exists in high enough abundance that radio will remain in liquid form. A significant number of communication is possible, 3) a transmitted radio exoplanets have been discovered within this zone signal from Earth will be picked up by a receiver, around their host star, but only a fraction of them and 4) the message will be translated successfully. are considered ‘Earth-like’, meaning that their Each assumption comes with challenges that make surface conditions and sizes are similar to Earth’s the process of creating a radio message appropriate (Rekola, 2009).
    [Show full text]
  • 15 Exoplanets: Habitability and Characterization
    15 Exoplanets: Habitability and Characterization Until recently, the study of planetary atmospheres was 15.1 The Circumstellar Habitable Zone largely confined to the planets within our Solar System We focus our attention on Earth-like planets and on the plus the one moon (Titan) that has a dense atmosphere. possibility of remotely detecting life. We begin by defin- But, since 1991, thousands of planets have been identi- ing what life is and how we might look for it. As we shall fied orbiting stars other than our own. Lists of exopla- see, life may need to be defined differently for an astron- nets are currently maintained on the Extrasolar Planets omer using a telescope than for a biologist looking Encyclopedia (http://exoplanet.eu/), NASA’s Exoplanet through a microscope or using other in situ techniques. Archive (http://exoplanetarchive.ipac.caltech.edu/) and the Exoplanets Data Explorer (http://www.exoplanets .org/). At the time of writing (2016), over 3500 exopla- nets have been detected using a variety of methods that 15.1.1 Requirements for Life: the Importance of we discuss in Sec. 15.2. Furthermore, NASA’s Kepler Liquid Water telescope mission has reported a few thousand add- Biologists have offered various definitions of life, none of itional planetary “candidates” (unconfirmed exopla- them entirely satisfying (Benner, 2010; Tirard et al., nets), most of which are probably real. Of these 2010). One is that given by Gerald Joyce, following a detected exoplanets, a handful that are smaller than suggestion by Carl Sagan: “Life is a self-sustained chem- 1.5 Earth radii, and probably rocky, are at the right ical system capable of undergoing Darwinian evolution” distance from their stars to have conditions suitable (Joyce, 1994).
    [Show full text]
  • Astro2020 Science White Paper Planetary Habitability Informed By
    Astro2020 Science White Paper Planetary Habitability Informed by Planet Formation and Exoplanet Demographics Thematic Areas: Planetary Systems Star and Planet Formation Principal Author: Name: Daniel´ Apai Institution: Steward Observatory and Lunar and Planetary Laboratory, The University of Arizona Email: [email protected] Phone: 520-621-6534 Co-authors: Andrea Banzatti (University of Arizona), Nicholas P. Ballering (University of Arizona), Edwin A. Bergin (University of Michigan), Alex Bixel (University of Arizona), Til Birnstiel (LMU Munich, Germany), Maitrayee Bose (Arizona State University), Sean Brittain (Clemson University), Hinsby Cadillo-Quiroz (Arizona State University), Daniel Carrera (Pennsylvania State University), Fred Ciesla (University of Chicago), Laird Close (University of Arizona), Steven J Desch (Arizona State University), Chuanfei Dong (Princeton University), Courtney D. Dressing (University of California, Berkeley), Rachel B. Fernandes (University of Arizona), Kevin France (University of Colorado), Ehsan Gharib-Nezhad (Arizona State University), Nader Haghighipour (University of Hawaii), Hilairy E. Hartnett (Arizona State University), Yasuhiro Hasegawa (JPL/Caltech), Hannah Jang-Condell (University of Wyoming), Paul Kalas (UC Berkeley), Stephen R. Kane (University of California, Riverside), Jinyoung Serena Kim (University of Arizona), Sebastiaan Krijt (University of Arizona), Carey Lisse (Johns Hopkins University Applied Physics Laboratory), Mercedes Lopez-Morales´ (Center for Astrophysics j Harvard & Smithsonian),
    [Show full text]