Mouse Eml4 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Eml4 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Eml4 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Eml4 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Eml4 gene (NCBI Reference Sequence: NM_001114361 ; Ensembl: ENSMUSG00000032624 ) is located on Mouse chromosome 17. 24 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 24 (Transcript: ENSMUST00000096766). Exon 5~7 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Eml4 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-456J9 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 5 starts from about 17.31% of the coding region. The knockout of Exon 5~7 will result in frameshift of the gene. The size of intron 4 for 5'-loxP site insertion: 1791 bp, and the size of intron 7 for 3'-loxP site insertion: 11782 bp. The size of effective cKO region: ~1526 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 4 5 6 7 24 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Eml4 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(8026bp) | A(28.32% 2273) | C(19.1% 1533) | T(34.08% 2735) | G(18.5% 1485) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN -------------------------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr17 + 83423974 83426973 3000 browser details YourSeq 87 2 565 3000 74.0% chr2 - 168968704 168969077 374 browser details YourSeq 85 2 377 3000 72.5% chr6 - 38380308 38380497 190 browser details YourSeq 82 1 105 3000 86.5% chr6 + 10827886 10827988 103 browser details YourSeq 81 8 105 3000 88.6% chr5 - 34329261 34329356 96 browser details YourSeq 81 2 105 3000 86.3% chr12 - 99976476 99976577 102 browser details YourSeq 81 2 116 3000 86.8% chr5 + 111638223 111638338 116 browser details YourSeq 81 2 105 3000 86.3% chr11 + 84021051 84021152 102 browser details YourSeq 80 2 112 3000 83.5% chr3 - 74157416 74157524 109 browser details YourSeq 79 2 105 3000 87.0% chrX - 40250616 40250718 103 browser details YourSeq 79 2 107 3000 84.7% chr3 - 88275745 88275848 104 browser details YourSeq 79 2 105 3000 85.3% chrX + 152790182 152790283 102 browser details YourSeq 78 2 105 3000 82.9% chr8 + 107340215 107340313 99 browser details YourSeq 77 2 105 3000 84.4% chr19 - 4905385 4905486 102 browser details YourSeq 77 2 105 3000 84.4% chr6 + 125199633 125199734 102 browser details YourSeq 77 2 104 3000 83.4% chr10 + 93133542 93133638 97 browser details YourSeq 76 2 105 3000 89.1% chr15 - 34337025 34337126 102 browser details YourSeq 76 2 105 3000 86.5% chr4 + 143496678 143496779 102 browser details YourSeq 76 2 105 3000 86.5% chr16 + 75395743 75395844 102 browser details YourSeq 75 2 114 3000 84.5% chrX + 115999457 115999568 112 Note: The 3000 bp section upstream of Exon 5 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr17 + 83428500 83431499 3000 browser details YourSeq 148 848 1466 3000 84.8% chrX + 165019970 165020255 286 browser details YourSeq 139 847 1048 3000 94.3% chr8 - 35026040 35026336 297 browser details YourSeq 139 2261 2719 3000 78.3% chr3 - 65202800 65203150 351 browser details YourSeq 133 853 1048 3000 94.6% chr11 + 79000375 79000824 450 browser details YourSeq 132 843 1315 3000 81.7% chr4 + 38263603 38263804 202 browser details YourSeq 131 429 980 3000 83.3% chr12 + 28287206 28287374 169 browser details YourSeq 130 847 998 3000 89.6% chr15 - 99962501 99962644 144 browser details YourSeq 129 845 981 3000 94.9% chr11 + 19239412 19239546 135 browser details YourSeq 127 847 1314 3000 81.6% chr10 + 51755376 51755528 153 browser details YourSeq 127 840 1315 3000 79.4% chr10 + 49859289 49859506 218 browser details YourSeq 125 847 1048 3000 90.3% chr11 - 52410323 52410637 315 browser details YourSeq 124 2238 2490 3000 84.4% chr8 - 18192254 18192566 313 browser details YourSeq 124 841 981 3000 94.3% chr1 - 33759871 33760017 147 browser details YourSeq 124 847 980 3000 94.8% chr17 + 29060569 29060701 133 browser details YourSeq 124 852 1315 3000 81.2% chr15 + 39916639 39916803 165 browser details YourSeq 123 847 979 3000 94.7% chr7 - 55978280 55978411 132 browser details YourSeq 123 848 978 3000 95.4% chr18 - 32649000 32649129 130 browser details YourSeq 123 848 980 3000 94.7% chr17 - 33837280 33837411 132 browser details YourSeq 123 847 979 3000 94.7% chr15 - 85124520 85124651 132 Note: The 3000 bp section downstream of Exon 7 is BLAT searched against the genome. No significant similarity is found. Page 4 of 8 https://www.alphaknockout.com Gene and protein information: Eml4 echinoderm microtubule associated protein like 4 [ Mus musculus (house mouse) ] Gene ID: 78798, updated on 24-Oct-2019 Gene summary Official Symbol Eml4 provided by MGI Official Full Name echinoderm microtubule associated protein like 4 provided by MGI Primary source MGI:MGI:1926048 See related Ensembl:ENSMUSG00000032624 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as AI644019; 4930443C24Rik Expression Ubiquitous expression in CNS E11.5 (RPKM 20.0), CNS E14 (RPKM 14.6) and 28 other tissues See more Orthologs human all Genomic context Location: 17; 17 E4 See Eml4 in Genome Data Viewer Exon count: 27 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 17 NC_000083.6 (83350891..83480361) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 17 NC_000083.5 (83750271..83879701) Chromosome 17 - NC_000083.6 Page 5 of 8 https://www.alphaknockout.com Transcript information: This gene has 6 transcripts Gene: Eml4 ENSMUSG00000032624 Description echinoderm microtubule associated protein like 4 [Source:MGI Symbol;Acc:MGI:1926048] Gene Synonyms 4930443C24Rik Location Chromosome 17: 83,350,931-83,480,361 forward strand. GRCm38:CM001010.2 About this gene This gene has 6 transcripts (splice variants), 207 orthologues, 9 paralogues and is a member of 1 Ensembl protein family. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Eml4-202 ENSMUST00000096766.11 5441 988aa ENSMUSP00000094528.4 Protein coding CCDS50192 F8WJ93 TSL:1 GENCODE basic APPRIS ALT2 Eml4-203 ENSMUST00000112363.9 5081 919aa ENSMUSP00000107982.2 Protein coding CCDS50193 A0A0R4J1G7 TSL:1 GENCODE basic APPRIS ALT2 Eml4-201 ENSMUST00000049503.9 5052 876aa ENSMUSP00000041880.8 Protein coding CCDS37708 A0A0R4J0H0 TSL:1 GENCODE basic APPRIS P3 Eml4-204 ENSMUST00000234460.1 5286 941aa ENSMUSP00000157143.1 Protein coding - A0A3Q4EHV9 GENCODE basic APPRIS ALT2 Eml4-205 ENSMUST00000234584.1 2934 977aa ENSMUSP00000157195.1 Protein coding - A7ISP9 GENCODE basic APPRIS ALT2 Eml4-206 ENSMUST00000235121.1 3814 No protein - Retained intron - - - 149.43 kb Forward strand 83.36Mb 83.38Mb 83.40Mb 83.42Mb 83.44Mb 83.46Mb 83.48Mb Genes (Comprehensive set... Eml4-202 >protein coding Eml4-201 >protein coding Eml4-203 >protein coding Eml4-204 >protein coding Eml4-205 >protein coding Eml4-206 >retained intron Contigs AC167969.2 > < AC164634.3 Regulatory Build 83.36Mb 83.38Mb 83.40Mb 83.42Mb 83.44Mb 83.46Mb 83.48Mb Reverse strand 149.43 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Non-Protein Coding processed transcript Page 6 of 8 https://www.alphaknockout.com Page 7 of 8 https://www.alphaknockout.com Transcript: ENSMUST00000096766 129.43 kb Forward strand Eml4-202 >protein coding ENSMUSP00000094... MobiDB lite Low complexity (Seg) Coiled-coils (Ncoils) Superfamily Quinoprotein alcohol dehydrogenase-like superfamily SMART WD40 repeat Pfam HELP WD40 repeat PROSITE profiles WD40 repeat WD40-repeat-containing domain PROSITE patterns WD40 repeat, conserved site PANTHER PTHR13720 PTHR13720:SF11 Gene3D WD40/YVTN repeat-like-containing domain superfamily All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant splice region variant synonymous variant Scale bar 0 100 200 300 400 500 600 700 800 988 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 8 of 8.
Recommended publications
  • "The Genecards Suite: from Gene Data Mining to Disease Genome Sequence Analyses". In: Current Protocols in Bioinformat
    The GeneCards Suite: From Gene Data UNIT 1.30 Mining to Disease Genome Sequence Analyses Gil Stelzer,1,5 Naomi Rosen,1,5 Inbar Plaschkes,1,2 Shahar Zimmerman,1 Michal Twik,1 Simon Fishilevich,1 Tsippi Iny Stein,1 Ron Nudel,1 Iris Lieder,2 Yaron Mazor,2 Sergey Kaplan,2 Dvir Dahary,2,4 David Warshawsky,3 Yaron Guan-Golan,3 Asher Kohn,3 Noa Rappaport,1 Marilyn Safran,1 and Doron Lancet1,6 1Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 2LifeMap Sciences Ltd., Tel Aviv, Israel 3LifeMap Sciences Inc., Marshfield, Massachusetts 4Toldot Genetics Ltd., Hod Hasharon, Israel 5These authors contributed equally to the paper 6Corresponding author GeneCards, the human gene compendium, enables researchers to effectively navigate and inter-relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways. Our recently launched Version 4 has a revamped infrastructure facilitating faster data updates, better-targeted data queries, and friendlier user experience. It also provides a stronger foundation for the GeneCards suite of companion databases and analysis tools. Improved data unification includes gene-disease links via MalaCards and merged biological pathways via PathCards, as well as drug information and proteome expression. VarElect, another suite member, is a phenotype prioritizer for next-generation sequencing, leveraging the GeneCards and MalaCards knowledgebase. It au- tomatically infers direct and indirect scored associations between hundreds or even thousands of variant-containing genes and disease phenotype terms. Var- Elect’s capabilities, either independently or within TGex, our comprehensive variant analysis pipeline, help prepare for the challenge of clinical projects that involve thousands of exome/genome NGS analyses.
    [Show full text]
  • ALK Gene ALK Receptor Tyrosine Kinase
    ALK gene ALK receptor tyrosine kinase Normal Function The ALK gene provides instructions for making a protein called ALK receptor tyrosine kinase, which is part of a family of proteins called receptor tyrosine kinases (RTKs). Receptor tyrosine kinases transmit signals from the cell surface into the cell through a process called signal transduction. The process begins when the kinase is stimulated at the cell surface and then attaches to a similar kinase (dimerizes). After dimerization, the kinase is tagged with a marker called a phosphate group (a cluster of oxygen and phosphorus atoms) in a process called phosphorylation. Phosphorylation turns on ( activates) the kinase. The activated kinase is able to transfer a phosphate group to another protein inside the cell, which is activated as a result. The activation continues through a series of proteins in a signaling pathway. These signaling pathways are important in many cellular processes such as cell growth and division (proliferation) or maturation (differentiation). Although the specific function of ALK receptor tyrosine kinase is unknown, it is thought to act early in development to help regulate the proliferation of nerve cells. Health Conditions Related to Genetic Changes Neuroblastoma At least 16 mutations in the ALK gene have been identified in some people with neuroblastoma, a type of cancerous tumor composed of immature nerve cells ( neuroblasts). Neuroblastoma and other cancers occur when a buildup of genetic mutations in critical genes—those that control cell proliferation or differentiation—allows cells to grow and divide uncontrollably to form a tumor. In most cases, these genetic changes are acquired during a person's lifetime and are called somatic mutations.
    [Show full text]
  • Crystal Structure of EML1 Reveals the Basis for Hsp90 Dependence of Oncogenic EML4-ALK by Disruption of an Atypical Β-Propeller Domain
    Crystal structure of EML1 reveals the basis for Hsp90 dependence of oncogenic EML4-ALK by disruption of an atypical β-propeller domain Mark W. Richardsa, Edward W. P. Lawb,La’Verne P. Rennallsc, Sara Busaccab, Laura O’Regana, Andrew M. Frya, Dean A. Fennellb, and Richard Baylissa,1 aDepartment of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom; bDepartment of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 9HN, United Kingdom; and cSection of Structural Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom Edited by Charles David Stout, The Scripps Research Institute, La Jolla, CA, and accepted by the Editorial Board February 24, 2014 (received for review December 9, 2013) Proteins of the echinoderm microtubule-associated protein (EMAP)- variant 1 and regression in some EML4-ALK–positive tumor like (EML) family contribute to formation of the mitotic spindle and models (7, 9, 10). Furthermore, clinical efficacy of an Hsp90 in- interphase microtubule network. They contain a unique hydropho- hibitor in EML4-ALK NSCLC has been confirmed (11), and bic EML protein (HELP) motif and a variable number of WD40 clinical trials are ongoing. However, because neither ALK nor repeats. Recurrent gene rearrangements in nonsmall cell lung cancer EML4 are native Hsp90 clients, it was proposed that Hsp90 sen- fuse EML4 to anaplastic lymphoma kinase (ALK), causing expression sitivity of EML4-ALK fusions was due to their protein-folding of several fusion oncoprotein variants. We have determined a 2.6-Å properties, which might expose hydrophobic residues that lead to crystal structure of the representative ∼70-kDa core of EML1, re- Hsp90 recruitment (12).
    [Show full text]
  • S12967-021-02982-4.Pdf
    Xia et al. J Transl Med (2021) 19:308 https://doi.org/10.1186/s12967-021-02982-4 Journal of Translational Medicine RESEARCH Open Access Molecular characteristics and clinical outcomes of complex ALK rearrangements identifed by next-generation sequencing in non-small cell lung cancers Peiyi Xia1†, Lan Zhang1†, Pan Li1†, Enjie Liu1, Wencai Li1, Jianying Zhang2, Hui Li3, Xiaoxing Su3 and Guozhong Jiang1* Abstract Background: Complex kinase rearrangement, a mutational process involving one or two chromosomes with clustered rearrangement breakpoints, interferes with the accurate detection of kinase fusions by DNA-based next- generation sequencing (NGS). We investigated the characteristics of complex ALK rearrangements in non-small cell lung cancers using multiple molecular tests. Methods: Samples of non-small cell lung cancer patients were analyzed by targeted-capture DNA-based NGS with probes tilling the selected intronic regions of fusion partner genes, RNA-based NGS, RT-PCR, immunohistochemistry (IHC) and fuorescence in situ hybridization (FISH). Results: In a large cohort of 6576 non-small cell lung cancer patients, 343 (5.2%) cases harboring ALK rearrange- ments were identifed. Fourteen cases with complex ALK rearrangements were identifed by DNA-based NGS and classifed into three types by integrating various genomic features, including intergenic (n 3), intragenic (n 5) and “bridge joint” rearrangements (n 6). All thirteen cases with sufcient samples actually expressed= canonical EML4-ALK= fusion transcripts confrmed by RNA-based= NGS. Besides, positive ALK IHC was detected in 13 of 13 cases, and 9 of 11 cases were positive in FISH testing. Patients with complex ALK rearrangements who received ALK inhibitors treatment (n 6), showed no diference in progression-free survival (PFS) compared with patients with canonical ALK fusions n = 36, P 0.9291).
    [Show full text]
  • Aggressive Differentiated Thyroid Cancer Due to Eml4e13-Alke20 Fusion: a Case Presentation and Review of the Literature
    Hindawi Case Reports in Endocrinology Volume 2021, Article ID 8837399, 7 pages https://doi.org/10.1155/2021/8837399 Case Report Aggressive Differentiated Thyroid Cancer due to EML4e13-ALKe20 Fusion: A Case Presentation and Review of the Literature Rodhan Khthir ,1 Zainab Shaheen ,1 Prasanna Santhanam,2 and Saroj Sigdel1 1Marshall University, School of Medicine, Huntington, WV, USA 2Johns Hopkins University, School of Medicine, Baltimore, MD, USA Correspondence should be addressed to Rodhan Khthir; [email protected] Received 5 August 2020; Revised 14 January 2021; Accepted 28 January 2021; Published 15 February 2021 Academic Editor: Toshihiro Kita Copyright © 2021 Rodhan Khthir et al. (is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Differentiated thyroid cancer (DTC) is an indolent malignancy. It rarely presents with aggressive local invasion and/or distant metastatic disease. Patient findings. We describe a case of a 30-year-old man with a locally aggressive form of papillary thyroid cancer with EML4e13-ALKe20 fusion (EML4: echinoderm microtubule-associated protein-like 4; ALK: anaplastic lymphoma kinase). He presented with right-side cervical lymphadenopathy with a highly suspicious right-side thyroid nodule. Total thyroidectomy and level IV lymph node resection showed extensive bilateral disease, with extra- thyroidal and extranodal extension. FDG-PET CT scan following surgery confirmed the presence of significant residual disease in the neck area. He underwent bilateral lateral lymph node dissection followed by radioactive iodine treatment. Somatic mutation testing showed EML4e13-ALKe20 fusion.
    [Show full text]
  • Anaplastic Lymphoma Kinase (ALK): Structure, Oncogenic Activation, and Pharmacological Inhibition
    Pharmacological Research 68 (2013) 68–94 Contents lists available at SciVerse ScienceDirect Pharmacological Research jo urnal homepage: www.elsevier.com/locate/yphrs Invited review Anaplastic lymphoma kinase (ALK): Structure, oncogenic activation, and pharmacological inhibition ∗ Robert Roskoski Jr. Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC 28742, USA a r t i c l e i n f o a b s t r a c t Article history: Anaplastic lymphoma kinase was first described in 1994 as the NPM-ALK fusion protein that is expressed Received 14 November 2012 in the majority of anaplastic large-cell lymphomas. ALK is a receptor protein-tyrosine kinase that was Accepted 18 November 2012 more fully characterized in 1997. Physiological ALK participates in embryonic nervous system develop- ment, but its expression decreases after birth. ALK is a member of the insulin receptor superfamily and Keywords: is most closely related to leukocyte tyrosine kinase (Ltk), which is a receptor protein-tyrosine kinase. Crizotinib Twenty different ALK-fusion proteins have been described that result from various chromosomal rear- Drug discovery rangements, and they have been implicated in the pathogenesis of several diseases including anaplastic Non-small cell lung cancer large-cell lymphoma, diffuse large B-cell lymphoma, and inflammatory myofibroblastic tumors. The Protein kinase inhibitor EML4-ALK fusion protein and four other ALK-fusion proteins play a fundamental role in the development Targeted cancer therapy Acquired drug resistance in about 5% of non-small cell lung cancers. The formation of dimers by the amino-terminal portion of the ALK fusion proteins results in the activation of the ALK protein kinase domain that plays a key role in the tumorigenic process.
    [Show full text]
  • Improved Detection of Gene Fusions by Applying Statistical Methods Reveals Oncogenic RNA Cancer Drivers Roozbeh Dehghannasiria, Donald E
    Improved detection of gene fusions by applying statistical methods reveals oncogenic RNA cancer drivers Roozbeh Dehghannasiria, Donald E. Freemana,b, Milos Jordanskic, Gillian L. Hsieha, Ana Damljanovicd, Erik Lehnertd, and Julia Salzmana,b,e,1 aDepartment of Biochemistry, Stanford University, Stanford, CA 94305; bDepartment of Biomedical Data Science, Stanford University, Stanford, CA 94305; cDepartment of Computer Science, University of Belgrade, 11000 Belgrade, Serbia; dSeven Bridges Genomics Inc., Cambridge, MA 02142; and eStanford Cancer Institute, Stanford University, Stanford, CA 94305 Edited by Ali Torkamani, The Scripps Research Institute, La Jolla, CA, and accepted by Editorial Board Member Peter K. Vogt June 14, 2019 (received for review January 10, 2019) The extent to which gene fusions function as drivers of can- of multiple algorithms and filtering lists of fusions using manual cer remains a critical open question. Current algorithms do not approaches (13–15). These approaches lead to what third-party sufficiently identify false-positive fusions arising during library reviews agree is imprecise fusion discovery and bias against dis- preparation, sequencing, and alignment. Here, we introduce Data- covering novel oncogenes (15–17). This suboptimal performance Enriched Efficient PrEcise STatistical fusion detection (DEEPEST), becomes more problematic when fusion detection is deployed on an algorithm that uses statistical modeling to minimize false- large cancer sequencing datasets that contain thousands or tens positives while increasing the sensitivity of fusion detection. In of thousands of samples. In such scenarios, precise fusion detec- 9,946 tumor RNA-sequencing datasets from The Cancer Genome tion must overcome the problem of multiple hypothesis testing: Atlas (TCGA) across 33 tumor types, DEEPEST identifies 31,007 each algorithm is testing for fusions thousands of times, a regime fusions, 30% more than identified by other methods, while known to introduce FPs.
    [Show full text]
  • Exon Array Profiling Detects EML4-ALK Fusion in Breast, Colorectal, and Non–Small Cell Lung Cancers
    Published OnlineFirst September 8, 2009; DOI: 10.1158/1541-7786.MCR-08-0522 Exon Array Profiling Detects EML4-ALK Fusion in Breast, Colorectal, and Non–Small Cell Lung Cancers Eva Lin,1 Li Li,2 Yinghui Guan,1 Robert Soriano,1 Celina Sanchez Rivers,1 Sankar Mohan,3 Ajay Pandita,3 Jerry Tang,2 and Zora Modrusan1 Departments of 1Molecular Biology, 2Bioinformatics, and 3Research Oncology Diagnostics, Genentech, Inc., South San Francisco, California Abstract identified in chronic myeloid leukemia resulting in the discov- The echinoderm microtubule-associated protein-like ery of Philadelphia chromosome (2). This translocation juxta- 4–anaplastic lymphoma kinase (EML4-ALK) fusion gene has poses the 5′ portion of the BCR gene with the 3′ portion of the been identified as an oncogene in a subset of non–small tyrosine kinase ABL1, generating the BCR-ABL1 fusion gene cell lung cancers (NSCLC). We used profiling of cancer with constitutive kinase activity. Similar to ABL1, a substantial genomes on an exon array to develop a novel computational number of genes involved in translocations have been causally method for the global search of gene rearrangements. implicated in carcinogenesis (3). However, the biological and This approach led to the detection of EML4-ALK fusion in clinical significance of translocations in solid tumors has been breast and colorectal carcinomas in addition to NSCLC. less appreciated compared with hematologic malignancies Screening of a large collection of patient tumor samples mainly due to their karyotypic complexity (4, 5). showed the presence of EML4-ALK fusion in 2.4% of breast An increasing number of translocations have been identi- (5 of 209), 2.4% of colorectal (2 of 83), and in 11.3% of NSCLC fied in the past two decades using technologies based on fluo- (12 of 106).
    [Show full text]
  • The Transcriptional Roles of ALK Fusion Proteins in Tumorigenesis
    cancers Review The Transcriptional Roles of ALK Fusion Proteins in Tumorigenesis 1, 2, , 1, Stephen P. Ducray y , Karthikraj Natarajan y z, Gavin D. Garland z, 1, , 2,3, , Suzanne D. Turner * y and Gerda Egger * y 1 Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK 2 Department of Pathology, Medical University Vienna, 1090 Vienna, Austria 3 Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria * Correspondence: [email protected] (S.D.T.); [email protected] (G.E.) European Research Initiative for ALK-related malignancies; www.erialcl.net. y These authors contributed equally to this work. z Received: 7 June 2019; Accepted: 23 July 2019; Published: 30 July 2019 Abstract: Anaplastic lymphoma kinase (ALK) is a tyrosine kinase involved in neuronal and gut development. Initially discovered in T cell lymphoma, ALK is frequently affected in diverse cancers by oncogenic translocations. These translocations involve different fusion partners that facilitate multimerisation and autophosphorylation of ALK, resulting in a constitutively active tyrosine kinase with oncogenic potential. ALK fusion proteins are involved in diverse cellular signalling pathways, such as Ras/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/Akt and Janus protein tyrosine kinase (JAK)/STAT. Furthermore, ALK is implicated in epigenetic regulation, including DNA methylation and miRNA expression, and an interaction with nuclear proteins has been described. Through these mechanisms, ALK fusion proteins enable a transcriptional programme that drives the pathogenesis of a range of ALK-related malignancies. Keywords: ALK; ALCL; NPM-ALK; EML4-ALK; NSCLC; ALK-translocation proteins; epigenetics 1. Introduction Anaplastic lymphoma kinase (ALK) was first successfully cloned in 1994 when it was reported in the context of a fusion protein in cases of anaplastic large cell lymphoma (ALCL) [1].
    [Show full text]
  • Genomic Heterogeneity of ALK Fusion Breakpoints in Non-Small-Cell Lung
    Modern Pathology (2018) 31, 791–808 © 2018 USCAP, Inc All rights reserved 0893-3952/18 $32.00 791 Genomic heterogeneity of ALK fusion breakpoints in non-small-cell lung cancer Jason N Rosenbaum1, Ryan Bloom2, Jason T Forys3, Jeff Hiken3, Jon R Armstrong3, Julie Branson4, Samantha McNulty4, Priya D Velu1, Kymberlie Pepin5, Haley Abel6, Catherine E Cottrell7, John D Pfeifer4, Shashikant Kulkarni8, Ramaswamy Govindan5, Eric Q Konnick9, Christina M Lockwood9 and Eric J Duncavage4 1Department of Pathology and Laboratory Medicine, University of Pennsylvania, The University of Pennsylvania Center for Personalized Diagnostics, Philadelphia, PA, USA; 2Unum Therapeutics, Cambridge, MA, USA; 3Cofactor Genomics, St Louis, MO, USA; 4Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St Louis, MO, USA; 5Department of Internal Medicine, Division of Medical Oncology, Washington University School of Medicine, St Louis, MO, USA; 6McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA; 7Nationwide Children’s Hospital, Institute for Genomic Medicine, Columbus, OH, USA; 8Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA and 9Department of Laboratory Medicine, University of Washington, Seattle, WA, USA In lung adenocarcinoma, canonical EML4-ALK inversion results in a fusion protein with a constitutively active ALK kinase domain. Evidence of ALK rearrangement occurs in a minority (2–7%) of lung adenocarcinoma, and only ~ 60% of these patients will respond to targeted ALK inhibition by drugs such as crizotinib and ceritinib. Clinically, targeted anti-ALK therapy is often initiated based on evidence of an ALK genomic rearrangement detected by fluorescence in situ hybridization (FISH) of interphase cells in formalin-fixed, paraffin-embedded tissue sections.
    [Show full text]
  • Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes
    Published OnlineFirst April 1, 2020; DOI: 10.1158/2159-8290.CD-19-1030 RESEARCH ARTICLE Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes Matthew Clarke1, Alan Mackay1, Britta Ismer2,3,4, Jessica C. Pickles5, Ruth G. Tatevossian6, Scott Newman7, Tejus A. Bale8, Iris Stoler9, Elisa Izquierdo1, Sara Temelso1, Diana M. Carvalho1, Valeria Molinari1, Anna Burford1, Louise Howell1, Alex Virasami5, Amy R. Fairchild5, Aimee Avery5, Jane Chalker5, Mark Kristiansen5, Kelly Haupfear6, James D. Dalton6, Wilda Orisme6, Ji Wen6, Michael Hubank10, Kathreena M. Kurian11, Catherine Rowe11, Mellissa Maybury12,13,14, Stephen Crosier15, Jeffrey Knipstein16, Ulrich Schüller17,18, Uwe Kordes18, David E. Kram19, Matija Snuderl20, Leslie Bridges21, Andrew J. Martin22, Lawrence J. Doey23, Safa Al-Sarraj23, Christopher Chandler24, Bassel Zebian24, Claire Cairns24, Rachael Natrajan25, Jessica K.R. Boult26, Simon P. Robinson26, Martin Sill2, Ira J. Dunkel27, Stephen W. Gilheeney27, Marc K. Rosenblum8, Debbie Hughes10, Paula Z. Proszek10, Tobey J. Macdonald28, Matthias Preusser29, Christine Haberler29,30, Irene Slavc31, Roger Packer32, Ho-Keung Ng33, Shani Caspi34, Mara Popović35, Barbara Faganel Kotnik36, Matthew D. Wood37, Lissa Baird38, Monika Ashok Davare39, David A. Solomon40,41, Thale Kristin Olsen42, Petter Brandal43, Michael Farrell44, Jane B. Cryan44, Michael Capra45, Michael Karremann46, Jens Schittenhelm47, Martin U. Schuhmann48, Martin Ebinger49, Winand N.M. Dinjens50, Kornelius Kerl51, Simone Hettmer52, Torsten Pietsch53, Felipe Andreiuolo53, Pablo Hernáiz Driever54, Andrey Korshunov55, Lotte Hiddingh2, Barbara C. Worst2,4,56, Dominik Sturm2,4,56, Marc Zuckermann2,4, Olaf Witt2,4,56, Tabitha Bloom57, Clare Mitchell57, Evelina Miele58, Giovanna Stefania Colafati59, Francesca Diomedi-Camassei60, Simon Bailey15, Andrew S. Moore12,13,14, Timothy E.G.
    [Show full text]
  • Inflammatory Myofibroblastic Tumor Driven by Novel NUMA1-ALK Fusion Responds to ALK Inhibition
    115 Molecular Insights in Patient Care Inflammatory Myofibroblastic Tumor Driven by Novel NUMA1-ALK Fusion Responds to ALK Inhibition Nisha Rao, MDa,†; Hans Iwenofu, MDb; Bingfeng Tang, MDc; Jennifer Woyach, MDd; and David A. Liebner, MDe,f Abstract Inflammatory myofibroblastic tumors (IMTs) are soft tissue neoplasms with rare metastatic potential. Approximately half of IMTs are posi- tive for an ALK rearrangement, and ALK inhibitors have been used successfully in the treatment of IMTs with a variety of ALK fusions. This report describes a 21-year-old woman with an aggressive, metastatic IMT with a novel NUMA1-ALK fusion that showed a dramatic response to the ALK inhibitors crizotinib and alectinib. To our knowledge, this report provides the first published description of an IMT with a NUMA1-ALK fusion. The patient’s aggressive IMT responded favorably to crizotinib and alectinib, suggesting that ALK inhibitors may be effective in IMT with NUMA1-ALK fusions. We review published reports of ALK-driven IMTs that have received ALK inhibitor therapy and suggest characteristics that may be associated with favorable response to treatment. We also discuss the strengths and limitations of im- munohistochemistry, fluorescence in situ hybridization, and next-generation sequencing in the diagnosis and management of IMTs. J Natl Compr Canc Netw 2018;16(2):115–121 doi: 10.6004/jnccn.2017.7031 Inflammatory myofibroblastic tumors (IMTs) are rare mary management modality; however, lesions may recur soft tissue neoplasms that usually arise in the lung, abdo- after surgical resection.2 men, or pelvis and affect primarily children and young Recent evidence suggests that the anaplastic lym- 1 adults.
    [Show full text]