Visualization for Constructing and Sharing Geo-Scientific Concepts

Total Page:16

File Type:pdf, Size:1020Kb

Visualization for Constructing and Sharing Geo-Scientific Concepts Colloquium Visualization for constructing and sharing geo-scientific concepts Alan M. MacEachren*, Mark Gahegan, and William Pike GeoVISTA Center, Department of Geography, Pennsylvania State University, 302 Walker, University Park, PA 16802 Representations of scientific knowledge must reflect the dynamic their instantiation in data. These visual representations can nature of knowledge construction and the evolving networks of provide insight into the similarities and differences among relations between scientific concepts. In this article, we describe scientific concepts held by a community of researchers. More- initial work toward dynamic, visual methods and tools that sup- over, visualization can serve as a vehicle through which groups port the construction, communication, revision, and application of of researchers share and refine concepts and even negotiate scientific knowledge. Specifically, we focus on tools to capture and common conceptualizations. Our approach integrates geovisu- explore the concepts that underlie collaborative science activities, alization for data exploration and hypothesis generation, col- with examples drawn from the domain of human–environment laborative tools that facilitate structured discourse among re- interaction. These tools help individual researchers describe the searchers, and electronic notebooks that store records of process of knowledge construction while enabling teams of col- individual and group investigation. By detecting and displaying laborators to synthesize common concepts. Our visualization ap- similarity and structure in the data, methods, perspectives, and proach links geographic visualization techniques with concept- analysis procedures used by scientists, we are able to synthesize mapping tools and allows the knowledge structures that result to visual depictions of the core concepts involved in a domain at be shared through a Web portal that helps scientists work collec- several levels of abstraction. tively to advance their understanding. Our integration of geovi- sualization and knowledge representation methods emphasizes To contextualize our own work, and make the problem the process through which abstract concepts can be contextualized tractable, we focus on applicability of visual knowledge capture by the data, methods, people, and perspectives that produced and representation methods for use in the science domain of them. This contextualization is a critical component of a knowl- human–environment interaction. Specifically, emphasis is on edge structure, without which much of the meaning that guides science work associated with the local human impacts of global the sharing of concepts is lost. By using the tools we describe here, environmental change. Knowledge about human–environment human–environment scientists are given a visual means to build interaction is contextualized or ‘‘situated’’ by factors such as the concepts from data (individually and collectively) and to connect places to which scientists direct their research, their aims, and these concepts to each other at appropriate levels of abstraction. their underlying theories. The structure of human–environment knowledge also depends on the choice of relevant datasets and cientific knowledge is dynamic. Its continuous evolution is methods and the scientist’s experience applying them. Vulner- Smarked by branches that diverge and converge and by ability to environmental changes, for example, is assessed (and conceptual frameworks that expand until they no longer support possibly even conceptualized) quite differently in Massachusetts new insights, triggering dramatic reorganizations. In the earth and Arizona. However, at certain levels of abstraction, some sciences, perhaps the most poignant example is the theory of agreement among researchers in different locations about what ͞ plate tectonics, originating in the early twentieth century with constitutes vulnerability is essential for joint work. Geographic the work of Alfred Wegener, and eventually causing a massive information visualization can help collaborators construct and reconceptualization of geological knowledge. Wilson (1) offers communicate knowledge structures that reflect the multidimen- insight into this restructuring from a conceptual and philosoph- sional connections among people, perspectives, data, and con- ical perspective, and Giere (2) offers insight from a cognitive cepts at different conceptual scales. perspective. Although most changes in science are not as dra- The research we report is part of a science infrastructure matic as those stimulated by the theory of plate tectonics, the project within which we are building a distributed collaboratory concepts used by geologists, environmental scientists, and ge- to support the work of four research sites that make up the ographers to understand the Earth’s complex systems and their Human Environment Regional Observatory (HERO) network. interaction with human activities are nevertheless evolving as This developing collaboratory is an ideal ‘‘living laboratory’’ in understanding evolves and as the needs of society change. which we can explore the construction of scientific knowledge ͞ Information geographic visualization can play a vital role in and the role of visualization in enabling that construction. stimulating and communicating the evolution of conceptual HERO collaborators are developing protocols to guide the structures. The case of plate tectonics provides a compelling collection of geospatial data for environmental monitoring and example of the potential. In this case, visual representations applying these protocols and data to problems such as assessing influenced eventual acceptance of the theory (2). Specifically, the vulnerability of local places to global environmental change the visual representations that provided evidence of tectonic activity interacted with geologists’ different conceptualizations of the problem domain to produce both new concepts and new This paper results from the Arthur M. Sackler Colloquium of the National Academy of explanations for existing data (3). Sciences, ‘‘Mapping Knowledge Domains,’’ held May 9–11, 2003, at the Arnold and Mabel Here, we focus on dynamic visual representations of concep- Beckman Center of the National Academies of Sciences and Engineering in Irvine, CA. tual frameworks that support (i) the process of knowledge Abbreviation: HERO, Human Environment Regional Observatory. construction and the application of that knowledge to scientific *To whom correspondence should be addressed. E-mail: [email protected]. work and (ii) the connections between concepts in the mind and © 2004 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0307755101 PNAS ͉ April 6, 2004 ͉ vol. 101 ͉ suppl. 1 ͉ 5279–5286 Downloaded by guest on September 28, 2021 and the relationship between global environmental processes relationships among concepts. Such representations can enable and local-scale land use͞land cover change. computational environments to visualize and reason with con- In the first section below we review previous research in both cepts by integrating knowledge structures within an individual’s concept representation and the geographic͞information visual- concept space and across multiple users and domains. Natural ization methods and tools on which our work builds. Then, we language is one medium for representing conceptual informa- introduce the HERO problem context, review the concept of tion, and in later sections we describe a visualization tool that scientific collaboratories, and provide an overview of the HERO helps reveal structure in natural discourse. However, it is (at collaboratory. Next, we outline methods we have developed and present) difficult for systems that track the construction of implemented to support visually enabled concept building, shar- concepts to reason with knowledge presented linguistically. As a ing, and application. In the final section, we discuss future work. result, our research relies on computational representations of knowledge and corresponding visual languages that allow infer- Background ences to be drawn more efficiently from complex bodies of A critical component of science work involves developing, scientific knowledge. These representations, as a complement to sharing, and comparing concepts and then applying those con- sharing knowledge through natural language, also support shar- cepts to data to generate new knowledge. Within the HERO ing and negotiation among scientists about the concepts that project, for example, a core concept is vulnerability of people and underpin joint work. We propose that the visually enabled places to environmental change. This concept serves as a focal concept representation and sharing methods we are developing point that guides the process of posing research questions, will be particularly useful for asynchronous collaboration. collecting data, and producing communicable results. Vulnera- Typically, knowledge representation systems derive from first- bility is also typical of many concepts in the social and environ- order logic and its variants; popular examples include Prolog (5), mental sciences; it is a complex, multifaceted, and context- Loom (6), and more recent developments such as frame logic (7). dependent concept that has both everyday and scientific Despite (or perhaps because of) enforced decidability and meaning. Despite the lack of apparent consistency in the mean- consistency that can make knowledge representations
Recommended publications
  • Maintaining Spatial Relations in an Incremental Diagrammatic Reasoner
    Maintaining Spatial Relations in an Incremental Diagrammatic Reasoner Ronald W. Ferguson, Joseph L. Bokor, Rudolph L. Mappus IV and Adam Feldman College of Computing Georgia Institute of Technology 801 Atlantic Avenue Atlanta, GA 30332 {rwf, jlbokor, cmappus, storm} @cc.gatech.edu Abstract gram. This work extends the GeoRep diagrammatic rea- soner (Ferguson & Forbus, 2000), which is described in Because diagrams are often created incrementally, a qualitative section 3. After describing GeoRep, we discuss how Ge o- diagrammatic reasoning system must dynamically manage a po- Rep was modified to allow incremental processing, and tentially large set of spatial interpretations. This paper describes cover a number of implementation issues: how to handle an architecture for handling spatial relations in an incremental, nonmonotonic diagrammatic reasoning system. The architecture composite objects, the interface between low-level and represents jointly exhaustive and pairwise disjoint (JEPD) spatial high-level reasoning, and a modified default assumption relation sets as nodes in a dependency network. Examples of these mechanism. We also describe extensions to a user interface spatial relation sets are interval relations, relative orientation rela- allowing a user to create diagrams and update the infer- tions, and connectivity relations. The network caches dependen- ences of the reasoner. We then discuss future challenges cies between low-level spatial relations, allowing those relations for this architecture. to be easily assumed or retracted as visual elements are added or removed from a diagram. We also describe how the system sup- ports high-level reasoning, including support for creating default 2. Related Work assumptions. Finally, we show how this system was integrated In qualitative spatial reasoning, researchers have explored with an existing drawing program and discuss its possible use in how to process qualitative spatial vocabularies incremen- diagrammatic and geographic reasoning.
    [Show full text]
  • Graph-Based Reasoning in Collaborative Knowledge Management for Industrial Maintenance Bernard Kamsu-Foguem, Daniel Noyes
    Graph-based reasoning in collaborative knowledge management for industrial maintenance Bernard Kamsu-Foguem, Daniel Noyes To cite this version: Bernard Kamsu-Foguem, Daniel Noyes. Graph-based reasoning in collaborative knowledge manage- ment for industrial maintenance. Computers in Industry, Elsevier, 2013, Vol. 64, pp. 998-1013. 10.1016/j.compind.2013.06.013. hal-00881052 HAL Id: hal-00881052 https://hal.archives-ouvertes.fr/hal-00881052 Submitted on 7 Nov 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 9587 To link to this article: doi.org/10.1016/j.compind.2013.06.013 http://www.sciencedirect.com/science/article/pii/S0166361513001279 To cite this version: Kamsu Foguem, Bernard and Noyes, Daniel Graph-based reasoning in collaborative knowledge management for industrial
    [Show full text]
  • Improving Knowledge Development and Exchange Via Transformative Pictogram Design
    2020 24th International Conference Information Visualisation (IV) Visual Design Thinking for Public Education: Improving knowledge development and exchange via transformative pictogram design 1st Nana Wang 2nd Leah Burns Sichuan University Aalto Univeristy China Finland 0000-0003-3902-7393 leah.burns@aalto.fi Abstract—How might the exchange and development of knowl- edge improve through a critical examination of pictogram- based methods of information visualization? In this article, we investigate the International System of TYpographic Picture Education(ISOTYPE), an influential model of pictorial diagram design theory and practice. Given ISOTYPE’s continuing impact on information design, we use it as a critical case study to assess the potential and limitations of pictorial diagrams(PD) for knowl- edge development and exchange. The goal of this study is not to evaluate artistic quality, style, or designer talent; rather, our focus is on analysis of the learning functions of pictograms and their potential for knowledge transmission and supporting reasoning behaviour among diverse audiences. We explore the different features of a pictogram, and how these features might support knowledge development through diagrammatic reasoning(DR). Three key questions are posed: 1. What are the advantages and disadvantages of pictograms for promoting learning and reasoning behaviour versus more abstract or representational visual information design? 2. What are the criteria for choosing the visual characteristics of pictograms? 3. How can the visual characteristics of pictograms be evaluated and revised base on the goal of supporting learning and reasoning behaviour? Index Terms Fig. 1. ISOTYPE, Atlas, Gesellschaft und Wirtschaft,1930, reproduced from —ISOTYPE; Pictorial diagram(PD); Public ed- Osterreichisches¨ Gesellschafts - und Wirtschaftsmuseum ucation; Informal learning; Knowledge visualization(KV); dia- grammatic reasoning(DR) I.
    [Show full text]
  • Knowledge Representation in Bicategories of Relations
    Knowledge Representation in Bicategories of Relations Evan Patterson Department of Statistics, Stanford University Abstract We introduce the relational ontology log, or relational olog, a knowledge representation system based on the category of sets and relations. It is inspired by Spivak and Kent’s olog, a recent categorical framework for knowledge representation. Relational ologs interpolate between ologs and description logic, the dominant formalism for knowledge representation today. In this paper, we investigate relational ologs both for their own sake and to gain insight into the relationship between the algebraic and logical approaches to knowledge representation. On a practical level, we show by example that relational ologs have a friendly and intuitive—yet fully precise—graphical syntax, derived from the string diagrams of monoidal categories. We explain several other useful features of relational ologs not possessed by most description logics, such as a type system and a rich, flexible notion of instance data. In a more theoretical vein, we draw on categorical logic to show how relational ologs can be translated to and from logical theories in a fragment of first-order logic. Although we make extensive use of categorical language, this paper is designed to be self-contained and has considerable expository content. The only prerequisites are knowledge of first-order logic and the rudiments of category theory. 1. Introduction arXiv:1706.00526v2 [cs.AI] 1 Nov 2017 The representation of human knowledge in computable form is among the oldest and most fundamental problems of artificial intelligence. Several recent trends are stimulating continued research in the field of knowledge representation (KR).
    [Show full text]
  • What's in a Diagram?
    What’s in a Diagram? On the Classification of Symbols, Figures and Diagrams Mikkel Willum Johansen Abstract In this paper I analyze the cognitive function of symbols, figures and diagrams. The analysis shows that although all three representational forms serve to externalize mental content, they do so in radically different ways, and conse- quently they have qualitatively different functions in mathematical cognition. Symbols represent by convention and allow mental computations to be replaced by epistemic actions. Figures and diagrams both serve as material anchors for con- ceptual structures. However, figures do so by having a direct likeness to the objects they represent, whereas diagrams have a metaphorical likeness. Thus, I claim that diagrams can be seen as material anchors for conceptual mappings. This classi- fication of diagrams is of theoretical importance as it sheds light on the functional role played by conceptual mappings in the production of new mathematical knowledge. 1 Introduction After the formalistic ban on figures, a renewed interest in the visual representation used in mathematics has grown during the last few decades (see e.g. [11–13, 24, 27, 28, 31]). It is clear that modern mathematics relies heavily on the use of several different types of representations. Using a rough classification, modern mathe- maticians use: written words, symbols, figures and diagrams. But why do math- ematicians use different representational forms and not only, say, symbols or written words? In this paper I will try to answer this question by analyzing the cognitive function of the different representational forms used in mathematics. Especially, I will focus on the somewhat mysterious category of diagrams and M.
    [Show full text]
  • Exploring the Components of Dynamic Modeling Techniques
    Old Dominion University ODU Digital Commons Computational Modeling & Simulation Computational Modeling & Simulation Engineering Theses & Dissertations Engineering Spring 2012 Exploring the Components of Dynamic Modeling Techniques Charles Daniel Turnitsa Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/msve_etds Part of the Computer Engineering Commons, and the Computer Sciences Commons Recommended Citation Turnitsa, Charles D.. "Exploring the Components of Dynamic Modeling Techniques" (2012). Doctor of Philosophy (PhD), Dissertation, Computational Modeling & Simulation Engineering, Old Dominion University, DOI: 10.25777/99hf-vx67 https://digitalcommons.odu.edu/msve_etds/38 This Dissertation is brought to you for free and open access by the Computational Modeling & Simulation Engineering at ODU Digital Commons. It has been accepted for inclusion in Computational Modeling & Simulation Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. EXPLORING THE COMPONENTS OF DYNAMIC MODELING TECHNIQUES by Charles Daniel Turnitsa B.S. December 1991, Christopher Newport University M.S. May 2006, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirement for the Degree of DOCTOR OF PHILOSOPHY MODELING AND SIMULATION OLD DOMINION UNIVERSITY May 2012 Approved b, Andreas Tolk (Director) Frederic D. MctCefizie (Member) Patrick T. Hester (Member) Robert H. Kewley, Jr. (Member) / UMI Number: 3511005 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Downloaded at the Address: Predicates in the Ontology
    Ontology-Supported and Ontology-Driven Conceptual Navigation on the World Wide Web Michel Crampes and Sylvie Ranwez Laboratoire de Génie Informatique et d’Ingénierie de Production (LGI2P) EERIE-EMA, Parc Scientifique Georges Besse 30 000 NIMES (FRANCE) Tel: (33) 4 66 38 7000 E-mail: {Michel.Crampes, Sylvie Ranwez}@site-eerie.ema.fr ABSTRACT It is accepted that there is no ideal solution to a complex This paper presents the principles of ontology-supported problem and a coherent paradigm may present limits and ontology-driven conceptual navigation. Conceptual when considering the complexity and the variety of the navigation realizes the independence between resources users' needs. Let’s recall some of the traditional criticisms and links to facilitate interoperability and reusability. An about hypertext. The readers get lost in hyperspace. The engine builds dynamic links, assembles resources under links are predefined by the authors and the author's an argumentative scheme and allows optimization with a intention does not necessary match the readers' intentions. possible constraint, such as the user’s available time. There may be other interesting links to other resources Among several strategies, two are discussed in detail with that are not given. The narrative construction which is the examples of applications. On the one hand, conceptual result of link following may present argumentative specifications for linking and assembling are embedded in pitfalls. the resource meta-description with the support of the ontology of the domain to facilitate meta-communication. As regards the IR paradigm, there are other criticisms. Resources are like agents looking for conceptual The search engines leave the readers with a list of acquaintances with intention.
    [Show full text]
  • Argumentation Graphs with Constraint-Based Reasoning for Collaborative Expertise
    Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/21334 To cite this version: Doumbouya, Mamadou Bilo and Kamsu-Foguem, Bernard and Kenfack, Hugues and Foguem, Clovis Argumentation graphs with constraint-based reasoning for collaborative expertise. (2018) Future Generation Computer Systems, 81. 16-29. ISSN 0167-739X Any correspondence concerning this service should be sent to the repository administrator: [email protected] Argumentation graphs with constraint-based reasoning for collaborative expertise Mamadou Bilo Doumbouya a,b , Bernard Kamsu-Foguem a,*, Hugues Kenfack b, Clovis Foguem c,d a Université de Toulouse, Laboratoire de Génie de Production (LGP), EA 1905, ENIT-INPT, 47 Avenue d'Azereix, BP 1629, 65016, Tarbes Cedex, France b Université de Toulouse, Faculté de droit, 2 rue du Doyen Gabriel Marty, 31042 Toulouse cedex 9, France c Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation (CSGA), UMR 6265 CNRS, UMR 1324 INRA, 9 E Boulevard Jeanne d'Arc, 21000 Dijon, France d Auban Moët Hospital, 137 rue de l’hôpital, 51200 Epernay, France h i g h l i g h t s • Reasoning underlying the remote collaborative processes in complex decision making. • Abstract argumentation framework with the directed graphs to represent propositions • Conceptual graphs for ontological knowledge modelling and formal visual reasoning. • Competencies and information sources for the weighting of shared advices/opinions. • Constraints checking for conflicts detection according to medical–legal obligations.
    [Show full text]
  • Discipline-Based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering
    This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=13362 Discipline-Based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering ISBN Susan R. Singer, Natalie R. Nielsen, and Heidi A. Schweingruber, Editors; 978-0-309-25411-3 Committee on the Status, Contributions, and Future Directions of Discipline-Based Education Research; Board on Science Education; 282 pages Division of Behavioral and Social Sciences and Education; National 6 x 9 PAPERBACK (2012) Research Council Visit the National Academies Press online and register for... Instant access to free PDF downloads of titles from the NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCIL 10% off print titles Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Request reprint permission for this book Copyright © National Academy of Sciences. All rights reserved. Discipline-Based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering DISCIPLINE!BASED EDUCATION RESEARCH Understanding and Improving Learning in Undergraduate Science and Engineering Committee on the Status, Contributions, and Future Directions of Discipline-Based Education Research Board on Science Education Division of Behavioral
    [Show full text]
  • When Everything Goes Wrong Make a Diagram Focusing on Visualising Reasoning and Trying to Reclaim the Power of Logical Thinking and Good Argumentation
    https://doi.org/10.25145/b.2COcommunicating.2020.006 34 COmmunicating COmplexity When Everything goes wrong Make a Diagram focusing on visualising reasoning and trying to reclaim the power of logical thinking and good argumentation. It might feel a small action, but diagrams are actually really powerful. Maria Rosaria Digregorio De Montfort University, Leicester Media School, Faculty of Technology, 2 The Power of Diagrams The Gateway, Leicester, LE1 9BH, United Kingdom focusing on visualising reasoning and trying to reclaim the power of logical thinking [email protected] and good argumentation. It might feel a small action, but diagrams are actually reallyVisual inferences. In math and geometry, visual configurations are used as proper powerful.inferences to demonstrate the validity of reasoning – for instance in the case of the Pythagoras’s Theorem and the binomial theorem. Despite written words or Abstract. Looking at historical examples, this research explores the power of notations can also be used to visually represent theorems, the diagram is able to diagrams and visual reasoning. It focuses on their ability to make knowledge show at glance the reasons behind the rule (Perondi, 2012). more accessible, train critical thinking and trigger a form of intellectual 2 The Power of Diagrams resistance in a post-truth world; it encourages a deeper integration between diagrams and writing, and the diffusion of information design approaches Visual inferences. In math and geometry, visual configurations are used as proper outside the design realm. inferences to demonstrate the validity of reasoning – for instance in the case of the Keywords: post-truth / diagrammatic reasoning / non-linear writing / visual Pythagoras’s Theorem and the binomial theorem.
    [Show full text]
  • Do We Really Reason About a Picture As the Referent?
    Do We Really Reason about a Picture as the Referent? Atsushi Shimojima1,2 and Takugo Fukaya 1School of Knowledge Science, Japan Advanced Institute of Science and Technology 1-1 Asahi-dai, Tatsunokuchi, Nomi-gun, Ishikawa 923-1292, Japan 2ATR Media Information Science Laboratories 2-2-2 Hikari-dai, Keihanna Science City, Kyoto 619-0288, Japan [email protected] [email protected] Abstract the previous case, however, the hypothesized operation is not an operation on the hinge picture, but an operation A significant portion of the previous accounts of infer- on the physical hinge the picture depicts. You may refer ential utilities of graphical representations (e.g., Sloman, 1971; Larkin & Simon, 1987) implicitly relies on the exis- back to the hinge picture now and then, but what your in- tence of what may be called inferences through hypothet- ference is about is the movement of the upper leg of the ical drawing. However, conclusive detections of them by hinge, not the movement of the upper line of the hinge means of standard performance measures have turned out picture. You are reasoning about the picture’s referent, to be difficult (Schwartz, 1995). This paper attempts to fill rather than the picture itself. the gap and provide positive evidence to their existence on the basis of eye-tracking data of subjects who worked Well, the concept of “reasoning about the picture it- with external diagrams in transitive inferential tasks. self” is thus clear, but is it real? Are we really engaged in that type of inferences in some cases? If so, how do Schwartz (1995) cites an intriguing example to dis- we tell when we are? tinguish what he calls “reasoning about a picture as the Schwartz (1995) himself assumed the existence of that referent” from “reasoning about the picture’s referent.” type of inferences, and went on to investigate what fea- Suppose you are given the picture of a hinge in Figure tures of pictorial representations encourage it.
    [Show full text]
  • The Mystery of Deduction and Diagrammatic Aspects of Representation
    Rev.Phil.Psych. (2015) 6:49–67 DOI 10.1007/s13164-014-0212-5 The Mystery of Deduction and Diagrammatic Aspects of Representation Sun-Joo Shin Published online: 20 January 2015 © Springer Science+Business Media Dordrecht 2015 Abstract Deduction is decisive but nonetheless mysterious, as I argue in the intro- duction. I identify the mystery of deduction as surprise-effect and demonstration- difficulty. The first section delves into how the mystery of deduction is connected with the representation of information and lays the groundwork for our further discussions of various kinds of representation. The second and third sections, respec- tively, present a case study for the comparison between symbolic and diagrammatic representation systems in terms of how two aspects of the mystery of deduction – surprise-effect and demonstration-difficulty – are handled. The fourth section illustrates several well-known examples to show how diagrammatic representation suggests more clues to the mystery of deduction than symbolic representation and suggests some conjectures and further work. When we have a choice to get from given premises to a conclusion either by deduc- tion or by induction, the choice is obvious: deduction is the way to go. With a correctly carried out deduction, the truth of the conclusion is guaranteed by the truth of the premises. Hence, after accepting premises to be true and checking each deduc- tive step, we embrace the truth of the conclusion. It is one sure way to secure the certainty of the truth of a proposition. This is the strength of deduction. Hence, math- ematics, the discipline where deduction plays a crucial role, has enjoyed its special status in the world of knowledge.
    [Show full text]