A Radio Census of Nuclear Activity in Nearby Galaxies
Total Page:16
File Type:pdf, Size:1020Kb
Astronomy & Astrophysics manuscript no. 4510 June 26, 2018 (DOI: will be inserted by hand later) A Radio Census of Nuclear Activity in Nearby Galaxies Mercedes E. Filho1,2,3, Peter D. Barthel3 and Luis C. Ho4 1 Centro de Astrof´ısica da Universidade do Porto, Rua das Estrelas, 4150 – 762 Porto, Portugal 2 Istituto di Radioastronomia, CNR, Via P. Gobetti, 101, 40129 Bologna, Italy 3 Kapteyn Astronomical Institute, P.O. Box 800, 9700 AV Groningen, The Netherlands 4 The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA Received XX; accepted XX Abstract. In order to determine the incidence of black hole accretion-driven nuclear activity in nearby galax- ies, as manifested by their radio emission, we have carried out a high-resolution Multi-Element Radio-Linked Interferometer Network (MERLIN) survey of LINERs and composite LINER/Hii galaxies from a complete magnitude-limited sample of bright nearby galaxies (Palomar sample) with unknown arcsecond-scale radio proper- ties. There are fifteen radio detections, of which three are new subarcsecond-scale radio core detections, all being candidate AGN. The detected galaxies supplement the already known low-luminosity AGN – low-luminosity Seyferts, LINERs and composite LINER/Hii galaxies – in the Palomar sample. Combining all radio-detected Seyferts, LINERs and composite LINER/Hii galaxies (LTS sources), we obtain an overall radio detection rate of 54% (22% of all bright nearby galaxies) and we estimate that at least ∼50% (∼20% of all bright nearby galaxies) are true AGN. The radio powers of the LTS galaxies allow the construction of a local radio luminosity function. By comparing the luminosity function with those of selected moderate-redshift AGN, selected from the 2dF/NVSS survey, we find that LTS sources naturally extend the RLF of powerful AGN down to powers of about 10 times that of Sgr A*. Key words. galaxies: active — galaxies: nuclei — galaxies: luminosity function 1. Introduction & Wilson 2003). In the absence of spectral AGN signa- tures such as a Seyfert or quasar-type continuum or broad The search for low-luminosity active galactic nuclei emission lines, radio observations can offer an alternative (LLAGN) in nearby galaxies has been the subject of many method for determining the LLAGN incidence in nearby optical surveys. Results show that nuclear activity may galaxies. Measurements of radio flux, compactness, radio arXiv:astro-ph/0601080v1 4 Jan 2006 be a common phenomenon. The Palomar survey (Ho, spectral index1 and brightness temperatures provide the Filippenko & Sargent 1995, 1997a, b) has been very useful necessary diagnostic tools for determining the nature of in this regard by providing a sensitive magnitude-limited the radio emission. (B <12.5 mag) sample of almost 500 bright nearby galax- T Several important radio surveys have been conducted ies. About half of the sources are emission-line nuclei, on the magnitude-limited Palomar bright nearby galaxy classified as Seyferts, LINERs or composite LINER/Hii sample (Ho, Filippenko & Sargent 1995, 1997a, b), re- galaxies, the last category displaying both LINER and Hii vealing a large fraction of radio cores, not only in el- properties. However, characterizing the powering mecha- lipticals but also in bulge-dominated spirals. In a re- nisms of the sources is not straightforward, particularly ′′ cent Very Large Array (VLA) 5 and 1.4GHz, 1 resolu- in low-luminosity sources. Many of these galaxies possess tion survey of the low-luminosity Seyferts of the Palomar circum-nuclear star-forming regions which blend with and sample (Ho & Ulvestad 2001; HU01 hereafter), it was may even drown out the presence of a weak active galactic found that over 80% of the sources harbour a radio nucleus (AGN). core. In a distance-limited sample of low- luminosity Optimally it is necessary to pick spectral regions where Seyferts, LINERs and composite LINER/Hii galaxies ob- the contrast between any hypothetical LLAGN compo- served with the VLA at 15GHz, 0.′′ 25 resolution (Nagar nent and circum-nuclear stellar component is maximized. et al. 2000, 2002; VLA/N00 and VLA/N02 hereafter; X-rays are very useful in this regard as shown by the Nagar, Falcke & Wilson 2005; VLA/N05 hereafter), it was hard X-ray studies of LLAGN (Terashima et al. 2000; 1 −α Terashima, Ho & Ptak 2000; Ho et al. 2001; Terashima Fν ∝ ν throughout. 2 Filho et al.: A Radio Census of Nuclear Activity in Nearby Galaxies Table 1. Target MERLIN sources. Col. 1 Source name. Col. 2 and 3: Optical position from NASA/IPAC Extragalactic Database (NED). Col. 4: Adopted −1 −1 distance from Ho, Filippenko & Sargent (1997a) with H0=75 km s Mpc . Col. 5: Spectral Type from Ho, Filippenko & Sargent (1997a). L = LINERs, S = Seyferts, and T = composite LINER/Hii galaxies. Colons refer to uncertain (:) or highly uncertain (::) spectral classification. The number 1.9 refers to the presence of broad Hα detection and 2 refers to the absence of broad Hα emission. Col. 6: Hubble type from Ho, Filippenko & Sargent (1997a). RA(J2000) Dec(J2000) D Galaxy (h ms ) (◦ ′ ′′ ) (Mpc) SpectralType HubbleType (1) (2) (3) (4) (5) (6) IC 356 04 07 46.9 +69 48 45 18.1 T2 SA(s)ab pec IC 520 08 53 42.2 +73 29 27 47.0 T2: SAB(rs)ab? NGC 428 01 12 55.6 +00 58 54 14.9 L2/T2: SAB(s)m NGC 488 01 21 46.8 +05 15 25 29.3 T2:: SA(r)b NGC 521 01 24 33.8 +01 43 52 67.0 T2/H: SB(r)bc NGC 718 01 53 13.3 +04 11 44 21.4 L2 SAB(s)a NGC 777 02 00 14.9 +31 25 46 66.5 S2/L2:: E1 NGC 841 02 11 17.3 +37 29 50 59.5 L1.9: (R’)SAB(s)ab NGC 1169 03 03 34.7 +46 23 09 33.7 L2 SAB(r)b NGC 1961 05 42 04.8 +69 22 43 53.1 L2 SAB(rs)c NGC 2336 07 27 03.7 +80 10 42 2.9 L2/S2 SAB(r)bc NGC 2681 08 53 32.8 +51 18 50 13.3 L1.9 (R’)SAB(rs)0/a NGC 2768 09 11 37.5 +60 02 15 23.7 L2 E6: NGC 2832 09 19 46.9 +33 44 59 91.6 L2:: E+2: NGC 2841 09 22 02.6 +50 58 35 12.0 L2 SA(r)b: NGC 2985 09 50 21.6 +72 16 44 22.4 T1.9 (R’)SA(rs)ab NGC 3166 10 13 45.6 +03 25 32 22.0 L2 SAB(rs)0/a NGC 3169 10 14 15.0 +03 27 57 19.7 L2 SA(s)a pec NGC 3190 10 18 05.8 +21 49 56 22.4 L2 SA(s)a pec spin NGC 3226 10 23 27.0 +19 53 54 23.4 L1.9 E2: pec NGC 3301 10 36 55.8 +21 52 55 23.3 L2 (R’)SB(rs)0/a NGC 3368 (M 96) 10 46 45.7 +11 49 12 8.1 L2 SAB(rs)ab NGC 3414 10 51 16.2 +27 58 30 24.9 L2 S0 pec NGC 3433 10 52 03.9 +10 08 54 39.5 L2/T2:: SA(s)c NGC 3507 11 03 25.4 +18 08 12 19.8 L2 SB(s)b NGC 3607 11 16 54.3 +18 03 10 19.9 L2 SA(s)0: NGC 3623 (M 65) 11 18 55.9 +13 05 32 7.3 L2: SAB(rs)a NGC 3626 11 20 03.8 +18 21 25 26.3 L2: (R)SA(rs)0+ NGC 3627 (M 66) 11 20 15.0 +12 59 30 6.6 T2/S2 SAB(s)b NGC 3628 11 20 17.0 +13 35 22 7.7 T2 SAb pec spin NGC 3646 11 22 14.7 +20 12 31 56.8 H/T2: SB(s)a NGC 3675 11 26 07.9 +43 35 10 12.8 T2 SA(S)b NGC 3718 11 32 35.3 +53 04 01 17.0 L1.9 SB(s)a pec NGC 3780 11 39 22.3 +56 16 14 37.2 L2:: SA(s)c: NGC 3884a 11 46 12.2 +20 23 30 91.6 L1.9 SA(r)0/a; NGC 3898 11 49 15.2 +56 05 04 21.9 T2 SA(s)ab; NGC 3945 11 53 13.6 +60 40 32 22.5 L2 SB(rs)0+ NGC 4013 11 58 31.3 +43 56 49 17.0 T2 SAb NGC 4036 12 01 26.9 +61 53 44 24.6 L1.9 S0− NGC 4143 12 09 36.1 +42 32 03 17.0 L1.9 SAB(s)0 NGC 4203 12 15 05.0 +33 11 50 9.7 L1.9 SAB0−: NGC 4293 12 21 12.8 +18 22 58 17.0 L2 (R)SB(s)0/a NGC 4321 (M 100) 12 22 54.9 +15 49 21 16.8 T2 SAB(s)bc NGC 4414 12 26 27.1 +31 13 24 9.7 T2: SA(rs)c? NGC 4435 12 27 40.5 +13 04 44 16.8 T2/H: SB(s)0 NGC 4438 12 27 45.6 +13 00 32 16.8 L1.9 SA(s)0/a NGC 4450 12 28 29.5 +17 05 06 16.8 L1.9 SA(s)ab NGC 4457 12 28 59.1 +03 34 14 17.4 L2 (R)SAB(s)0/a NGC 4548 (M 91) 12 35 26.4 +14 29 47 16.8 L2 SBb(rs) NGC 4589 12 37 25.0 +74 11 31 30.0 L2 E2 NGC 4636 12 42 50.0 +02 41 17 17.0 L1.9 E0+ NGC 4736 (M 94) 12 50 53.0 +41 07 14 4.3 L2 (R)SA(r)ab NGC 4750 12 50 07.1 +72 52 30 26.1 L1.9 (R)SA(rs)ab NGC 4772 12 53 29.0 +02 10 02 16.3 L1.9 SA(s)a NGC 4826 (M 64) 12 56 43.7 +21 40 52 4.1 T2 (R)SA(rs)ab NGC 5077b 13 19 31.6 −12 39 26 40.6 L1.9 E3+ NGC 5297 13 46 23.7 +43 52 20 37.8 L2 SAB(s)c: spin NGC 5322 13 49 15.2 +60 11 26 31.6 L2:: E3+ NGC 5353 13 53 26.7 +40 16 59 37.8 L2/T2: SA0 spin NGC 5363 13 56 07.1 +05 15 20 22.4 L2 IA0? NGC 5371 13 55 39.9 +40 27 43 37.8 L2 SAB(rs)bc NGC 5377 13 56 16.6 +47 14 08 31.0 L2 (R)SB(s)a NGC 5448 14 02 49.7 +49 10 21 32.6 L2 (R)SAB(r)a NGC 5678 14 32 05.8 +57 55 17 35.6 T2 SAB(rs)b NGC 5813 15 01 11.2 +01 42 08 28.5 L2: E1+ NGC 5838 15 05 26.2 +02 05 58 28.5 T2:: SA0− NGC 6340 17 10 24.9 +72 18 16 22.0 L2 SA(s)0/a NGC 6501 17 56 03.7 +18 22 23 39.6 L2:: SA0+: NGC 6702 18 46 57.6 +45 42 20 62.8 L2:: E: NGC 6703 18 47 18.8 +45 33 02 35.9 L2:: SA0− a Does not fulfill the magnitude criterion for the Palomar sample.