Nei Vision Report.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Suppression of Keratoepithelin and Myocilin by Small Interfering Rnas (Sirna) in Vitro Ching Yuan University of Minnesota - Twin Cities
Washington University School of Medicine Digital Commons@Becker Open Access Publications 2007 Suppression of keratoepithelin and myocilin by small interfering RNAs (siRNA) in vitro Ching Yuan University of Minnesota - Twin Cities Emily J. Zins University of Minnesota - Twin Cities Abbott .F Clark Alcon Research Ltd. Andrew J.W. Huang Washington University School of Medicine in St. Louis Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Yuan, Ching; Zins, Emily J.; Clark, Abbott .;F and Huang, Andrew J.W., ,"Suppression of keratoepithelin and myocilin by small interfering RNAs (siRNA) in vitro." Molecular Vision.13,. 2083-2095. (2007). https://digitalcommons.wustl.edu/open_access_pubs/1812 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Molecular Vision 2007; 13:2083-95 <http://www.molvis.org/molvis/v13/a236/> ©2007 Molecular Vision Received 25 July 2007 | Accepted 24 October 2007 | Published 7 November 2007 Suppression of keratoepithelin and myocilin by small interfering RNAs (siRNA) in vitro Ching Yuan,1 Emily J. Zins,1 Abbott F. Clark,2 Andrew J.W. Huang1,3 1Department of Ophthalmology, University of Minnesota Minneapolis, MN; 2Alcon Research Ltd., Fort Worth, TX; 3Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO Purpose: Mutations of keratoepithelin (KE) and myocilin (MYOC) have been linked to certain types of inherited corneal stromal dystrophy and open-angle glaucoma, respectively. We investigated the potential use of small interfering RNAs (siRNAs) to suppress the expression of KE and MYOC and the related cytotoxicity of mutant myocilins in vitro. -
Skin Patterning in Octopus Vulgaris and Its Importance for Camouflage
Skin patterning in Octopus vulgaris anditsimportance for camouflage DORSAL ANTERiOR POSTERIOR VENTRAL Wilma Meijer-Kuiper D490 Dqo "Scriptie"entitled: j Skin patterning in Octopus vulgaris and its importance for camouflage Author: Wilma Meijer-Kuiper. Supervisor: Dr. P.J. Geerlink. April, 1993. Cover figure from Wells, 1978. Department of Marine Biology, University of Groningen, Kerklaan 30, 9750 AA Haren, The Netherlands. TABLE OF CONTENTS PAGE Abstract 1 1. Introduction 2 1.1. Camouflage in marine invertebrates 2 1 .2. Cephalopods 2 2. General biology of the octopods 4 2.1. Octopus vulgar/s 4 3. Skin patterning in Octopus 6 3.1. Patterns 6 3.2. Components 8 3.3. Units 9 3.4. Elements 10 3.4.1. Chromatophores 10 3.4.2. Reflector cells and iridophores 16 3.4.3. Leucophores 18 4. The chromatic unit 20 5. Nervous system 22 5.1. Motor units 22 5.2. Electrical stimulation 22 5.3. Projection of nerves on the skin surface 24 5.4. The nervous control system 25 5.5. Neurotransmitters 27 6. Vision in cephalopods, particularly in O.vu!garis 28 6.1. Electro-physiological experiments 28 6.2. Photopigments and receptor cells 28 6.3. Behavioural (training) experiments 29 6.4. Eye movements and optomotor responses 29 7. Camouflage in a colour-blind animal 31 7.1. Matching methods 31 7.2. Countershading reflex 35 8. Conclusive remarks 36 Literature 38 ABSTRACT Camouflage is a method by which animals obtain concealment from other animals by blending in with their environment. Of the cephalopods, the octopods have an extra-ordinary ability to match their surroundings by changing the colour and texture of their skin. -
Supplementary Table 3 Complete List of RNA-Sequencing Analysis of Gene Expression Changed by ≥ Tenfold Between Xenograft and Cells Cultured in 10%O2
Supplementary Table 3 Complete list of RNA-Sequencing analysis of gene expression changed by ≥ tenfold between xenograft and cells cultured in 10%O2 Expr Log2 Ratio Symbol Entrez Gene Name (culture/xenograft) -7.182 PGM5 phosphoglucomutase 5 -6.883 GPBAR1 G protein-coupled bile acid receptor 1 -6.683 CPVL carboxypeptidase, vitellogenic like -6.398 MTMR9LP myotubularin related protein 9-like, pseudogene -6.131 SCN7A sodium voltage-gated channel alpha subunit 7 -6.115 POPDC2 popeye domain containing 2 -6.014 LGI1 leucine rich glioma inactivated 1 -5.86 SCN1A sodium voltage-gated channel alpha subunit 1 -5.713 C6 complement C6 -5.365 ANGPTL1 angiopoietin like 1 -5.327 TNN tenascin N -5.228 DHRS2 dehydrogenase/reductase 2 leucine rich repeat and fibronectin type III domain -5.115 LRFN2 containing 2 -5.076 FOXO6 forkhead box O6 -5.035 ETNPPL ethanolamine-phosphate phospho-lyase -4.993 MYO15A myosin XVA -4.972 IGF1 insulin like growth factor 1 -4.956 DLG2 discs large MAGUK scaffold protein 2 -4.86 SCML4 sex comb on midleg like 4 (Drosophila) Src homology 2 domain containing transforming -4.816 SHD protein D -4.764 PLP1 proteolipid protein 1 -4.764 TSPAN32 tetraspanin 32 -4.713 N4BP3 NEDD4 binding protein 3 -4.705 MYOC myocilin -4.646 CLEC3B C-type lectin domain family 3 member B -4.646 C7 complement C7 -4.62 TGM2 transglutaminase 2 -4.562 COL9A1 collagen type IX alpha 1 chain -4.55 SOSTDC1 sclerostin domain containing 1 -4.55 OGN osteoglycin -4.505 DAPL1 death associated protein like 1 -4.491 C10orf105 chromosome 10 open reading frame 105 -4.491 -
Myocilin Is Involved in Ngr1/Lingo-1-Mediated Oligodendrocyte Differentiation and Myelination of the Optic Nerve
The Journal of Neuroscience, April 16, 2014 • 34(16):5539–5551 • 5539 Cellular/Molecular Myocilin Is Involved in NgR1/Lingo-1-Mediated Oligodendrocyte Differentiation and Myelination of the Optic Nerve Heung Sun Kwon,1 Naoki Nakaya,1 Mones Abu-Asab,2 Hong Sug Kim,3 and Stanislav I. Tomarev1 1Retinal Ganglion Cell Biology Section, Laboratory of Retinal Cell and Molecular Biology and 2Histology Core, National Eye Institute, National Institutes of Health (NIH), Bethesda, Maryland 20892, and 3Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland 20892 Myocilin is a secreted glycoprotein that belongs to a family of olfactomedin domain-containing proteins. Although myocilin is detected in several ocular and nonocular tissues, the only reported human pathology related to mutations in the MYOCILIN gene is primary open-angle glaucoma. Functions of myocilin are poorly understood. Here we demonstrate that myocilin is a mediator of oligodendrocyte differentiation and is involved in the myelination of the optic nerve in mice. Myocilin is expressed and secreted by optic nerve astrocytes. Differentiation of optic nerve oligodendrocytes is delayed in Myocilin-null mice. Optic nerves of Myocilin-null mice contain reduced levels of several myelin-associated proteins including myelin basic protein, myelin proteolipid protein, and 2Ј3Ј-cyclic nucleotide 3Ј- phosphodiesterase compared with those of wild-type littermates. This leads to reduced myelin sheath thickness of optic nerve axons in Myocilin-null mice compared with wild-type littermates, and this difference is more pronounced at early postnatal stages compared with adult mice. Myocilin also affects differentiation of oligodendrocyte precursors in vitro. Its addition to primary cultures of differentiating oligodendrocyte precursors increases levels of tested markers of oligodendrocyte differentiation and stimulates elongation of oligoden- drocyte processes. -
CRISPR-Cas9–Based Treatment of Myocilin-Associated Glaucoma
CRISPR-Cas9–based treatment of myocilin- associated glaucoma Ankur Jaina, Gulab Zodeb,1, Ramesh B. Kasettib, Fei A. Ranc, Winston Yanc, Tasneem P. Sharmad, Kevin Buggea, Charles C. Searbya, John H. Fingertd, Feng Zhangc, Abbot F. Clarkb, and Val C. Sheffielda,d,1 aDepartment of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; bNorth Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107; cMcGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02142; and dStephen A. Wynn Institute for Vision Research, Department of Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 Edited by Donald J. Zack, Johns Hopkins University, Baltimore, MD, and accepted by Editorial Board Member Jeremy Nathans August 25, 2017 (received for review April 22, 2017) Primary open-angle glaucoma (POAG) is a leading cause of protein itself (transcription or translational inhibition). While irreversible vision loss worldwide, with elevated intraocular pres- siRNA and shRNA provide potentially viable treatment op- sure (IOP) a major risk factor. Myocilin (MYOC) dominant gain-of- tions (31), we elected to directly target the MYOC gene using function mutations have been reported in ∼4% of POAG cases. gene editing with clustered regularly interspaced short palindromic MYOC mutations result in protein misfolding, leading to endoplas- repeats (CRISPR)-Cas9 technology to treat myocilin-associated mic reticulum (ER) stress in the trabecular meshwork (TM), the tis- glaucoma. sue that regulates IOP. We use CRISPR-Cas9–mediated genome Originally part of the prokaryotic adaptive immune system, the editing in cultured human TM cells and in a MYOC mouse model CRISPR-Cas9 system has been adapted as a genome-editing tool, of POAG to knock down expression of mutant MYOC, resulting in in which the Cas9 endonuclease is directed by a guide RNA relief of ER stress. -
Davi Cunha Sales Rizério Síndrome Glaucomatosa Felina
UNIVERSIDADE DE BRASÍLIA FACULDADE DE AGRONOMIA E MEDICINA VETERINÁRIA SÍNDROME GLAUCOMATOSA FELINA: REVISÃO DE LITERATURA Davi Cunha Sales Rizério Orientadora: Dr. Paula Diniz Galera BRASÍLIA - DF DEZEMBRO/2018 ii DAVI CUNHA SALES RIZÉRIO SÍNDROME GLAUCOMATOSA FELINA: REVISÃO DE LITERATURA Trabalho de conclusão de curso de graduação em Medicina Veterinária apresentado junto à Faculdade de Agronomia e Medicina Veterinária da Universidade de Brasília Orientador(a): Profª. Paula Diniz Galera BRASÍLIA – DF DEZEMBRO/2018 iii Rizério, Davi Cunha Sales Glaucoma Felino: Revisão de Literatura / Davi Cunha Sales Rizério; orientação de Paula Diniz Galera. – Brasília, 2018. 12 p. : 0 il. Trabalho de conclusão de curso de graduação – Universidade de Brasília/Faculdade de Agronomia e Medicina Veterinária, 2018. Cessão de Direitos Nome do Autor: Davi Cunha Sales Rizério Título do Trabalho de Conclusão de Curso: Glaucoma Felino: Revisão de Literatura. Ano: 2018 É concedida à Universidade de Brasília permissão para reproduzir cópias desta monografia e para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. O autor reserva-se a outros direitos de publicação e nenhuma parte desta monografia pode ser reproduzida sem a autorização por escrito do autor. _______________________________ Davi Cunha Sales Rizério iv FOLHA DE APROVAÇÃO Nome do autor: Davi Cunha Sales Rizério Título: Glaucoma Felino: Revisão de Literatura Trabalho de conclusão do curso de graduação em Medicina Veterinária apresentado junto à Faculdade de Agronomia -
[Thesis Title Goes Here]
STRUCTURAL AND BIOPHYSICAL CHARACTERIZATION OF THE MYOCILIN OLFACTOMEDIN DOMAIN A Dissertation Presented to The Academic Faculty by Rebecca K. Donegan In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Chemistry and Biochemistry at Georgia Institute of Technology Georgia Institute of Technology August 2015 Copyright 2015 by Rebecca Donegan STRUCTURAL AND BIOPHYSICAL CHARACTERIZATION OF THE MYOCILIN OLFACTOMEDIN DOMAIN Approved by: Dr. Raquel L. Lieberman, Ph.D., Advisor Dr. Adegboyega Oyelere, Ph.D. School of Chemistry and Biochemistry School of Chemistry and Biochemistry Georgia Institute of Technology Georgia Institute of Technology Dr. Ingeborg Schmidt-Krey, Ph.D. Dr. Loren Williams, Ph.D. School of Biology and School of Chemistry and Biochemistry School of Chemistry and Biochemistry Georgia Institute of Technology Georgia Institute of Technology Dr. Cheng Zhu, Ph.D. School of Biomedical Engineering Georgia Institute of Technology Date Approved: April 30, 2015 ACKNOWLEDGEMENTS First, I would like to thank my husband Brad for always supporting and encouraging me. I also wish to thank my mom and dad for encouraging me to work towards this goal since I first started college. I want to thank my siblings, grandparents, and in-laws for their constant encouragement. All of you have offered help and reassurance along the way, and I would not have reached this goal without you. I would also like to thank my lab mates, current and former, for all of their advice, instruction and help throughout the years. I would especially like to thank Dana Freeman for all of her help during her time as an undergraduate researcher. -
Spectral Discrimination in “Color Blind” Animals Via Chromatic Aberration and Pupil Shape Alexander L
bioRxiv preprint doi: https://doi.org/10.1101/017756; this version posted October 26, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Spectral Discrimination in “Color Blind” Animals via Chromatic Aberration and Pupil Shape Alexander L. Stubbs1*†, Christopher W. Stubbs2† 1Museum of Vertebrate Zoology, Department of Integrative Biology, University of California, Berkeley CA, USA. 2Departments of Physics and of Astronomy, Harvard University, Cambridge MA, USA. *Correspondence to: [email protected]. † Both authors contributed equally to the writing of the manuscript. Abstract We present a mechanism by which organisms with only a single photoreceptor, that have a monochromatic view of the world, can achieve color discrimination. The combination of an off- axis pupil and the principle of chromatic aberration (where light of different colors focus at different distances behind a lens) can combine to provide “color-blind” animals with a way to distinguish colors. As a specific example we constructed a computer model of the visual system of cephalopods, (octopus, squid, and cuttlefish) that have a single unfiltered photoreceptor type. Nevertheless, cephalopods dramatically change color both to produce chromatically-matched camouflage and to signal conspecifics. This presents a paradox – an apparent ability to determine color in organisms with a monochromatic visual system – that has been a long-standing puzzle. We demonstrate that chromatic blurring dominates the visual acuity in these animals, and we quantitatively show how chromatic aberration can be exploited, especially through non-axial pupils that are characteristic of cephalopods, to obtain spectral information. -
The Effects of Myocilin Expression on Functionally Relevant Trabecular Meshwork Genes: a Mini-Review
JOURNAL OF OCULAR PHARMACOLOGY AND THERAPEUTICS Volume 30, Numbers 2 and 3, 2014 ª Mary Ann Liebert, Inc. DOI: 10.1089/jop.2013.0218 The Effects of Myocilin Expression on Functionally Relevant Trabecular Meshwork Genes: A Mini-Review Teresa Borra´s Abstract Myocilin is a secreted glaucoma-associated protein, specifically induced by dexamethasone in human trabecular meshwork cells, where it was discovered. Myocilin is expressed in several tissues of the body, but it causes disease only in the eye. The protein contains two domains: an N-terminal region with significant homologies to nonmuscle myosin, and a C-terminal region, which is similar to the olfactomedin proteins. Forty percent of myocilin undergoes an intracellular endoproteolytic cleavage by calpain II, a calcium-dependent cysteine pro- tease, which releases the 2 domains. The protein is known to interact with intracellular and extracellular matrix proteins, and some is released into the extracellular space associated with exosomes. Myocilin mutations are linked to glaucoma and induce elevated intraocular pressure. Most of the glaucoma-causative mutations map to the olfactomedin domain, which appears to be a critical domain for the function of the protein. Myocilin mutants are misfolded, aggregate in the endoplasmic reticulum, and are not secreted. Overexpression of myocilin and of its mutants in primary human trabecular meshwork cells triggers changes in the expression of numerous genes, many of which have been known to be involved in mechanisms important for the physiology and pathology of the tissue. Here we review recent studies from our laboratory and those of others that deal with trabecular meshwork genes, which are altered by the overexpression of wild-type and glaucoma-causative mutant myocilin genes. -
Glaucoma : Science and Practice
www.dbeBooks.com - An Ebook Library MRSNFM-i-xiv 8/30/02 9:40 AM Page i Glaucoma Science and Practice MRSNFM-i-xiv 8/30/02 9:40 AM Page ii This page intentionally left blank MRSNFM-i-xiv 8/30/02 9:40 AM Page iii Glaucoma Science and Practice Edited by John C. Morrison, M.D. Irvin P. Pollack, M.D. Professor of Ophthalmology Professor of Ophthalmology Oregon Health and Science University The Johns Hopkins University And And Director of the Glaucoma Service Emeritus The Fred P. Thompson Glaucoma Clinic Ophthalmologist-In-Chief and and Casey Eye Institute Director Krieger Eye Institute Portland, Oregon Sinai Hospital of Baltimore Baltimore Maryland Thieme New York • Stuttgart MRSNFM-i-xiv 8/30/02 9:40 AM Page iv Consulting Editor: Esther Gumpert Editorial Assistant: Owen Zurhellen Director, Production and Manufacturing: Anne Vinnicombe Production Editor: Becky Dille Marketing Director: Phyllis Gold Sales Manager: Ross Lumpkin Chief Financial Officer: Peter van Woerden President: Brian D. Scanlan Compositor: Emilcomp\Prepare Ltd. Printer: Four Colour Imports, Ltd. Library of Congress Cataloging-in-Publication Data Glaucoma : a clinical guide / [edited by] John C. Morrison, Irvin P. Pollack p. ; cm. Includes bibliograpical references. ISBN 0-86577-915-5 (TMP : alk. paper) -- ISBN 3131246715 (GTV : alk. paper) 1. Glaucoma. I. Morrison, John C., 1951 - II. Pollack, Irvin P. [DNLM: 1. Glaucoma. WW 290 G54935 2003] RE871 .G5437 2003 617.7'41--dc21 2002075001 Copyright © 2003 by Thieme Medical Publishers, Inc. This book, including all parts thereof, is legally protected by copyright. Any use, exploitation or commercialization outside the narrow limits set by copyright legislation, without the publisher’s consent, is illegal and liable to prosecution. -
2016 ANNUAL REPORT 2017 CALENDAR Dear Friends
MCPHERSON EYE RESEARCH INSTITUTE 2016 ANNUAL REPORT 2017 CALENDAR Dear Friends, During the 2015-2016 academic year, the McPherson Eye Research Institute passed its frst ten-year milestone, and did so in our customary way – by looking towards the future as well as the past. The Institute’s growth over the past ten years, outlined on the page below, has been remarkable and full of individual and collaborative research achievements. All of us who have worked to establish and grow the McPherson ERI know full well, however, that much work remains to be done in fnding cures for the most intractable blinding diseases, such as age-related macular degeneration and retinitis pigmentosa. We celebrate our successes – and there are important new discoveries each year, as you’ll see outlined in the research pages of this report – but we keep our eyes focused on building the Institute and its path ahead. The people who form the community around the Institute are the foundation for the work that we do. Collaborative research is the Institute’s goal and core belief, but we know that extraordinary collaborative teams are composed of extraordinary individuals. This is true of the world-class scientists who form our unparalleled lab research teams. It’s also true of our dedicated donors and other supporters – from the teams of blind and sighted riders who participate in Cycle for Sight each year, to our Advisory Board, to connected individuals and families who support the Institute with both resources and advice. Sandra and Dr. Monroe Trout have been true friends of the McPherson ERI since we were introduced to them in 2012. -
Targeting the ER-Autophagy System in the Trabecular Meshwork to Treat Glaucoma
Experimental Eye Research 144 (2016) 38e45 Contents lists available at ScienceDirect Experimental Eye Research journal homepage: www.elsevier.com/locate/yexer Review Targeting the ER-autophagy system in the trabecular meshwork to treat glaucoma * Andrew R. Stothert, Sarah N. Fontaine, Jonathan J. Sabbagh, Chad A. Dickey Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL 33613, USA article info abstract Article history: A major drainage network involved in aqueous humor dynamics is the conventional outflow pathway, Received 10 March 2015 which is gated by the trabecular meshwork (TM). The TM acts as a molecular sieve, providing resistance Received in revised form to aqueous outflow, which is responsible for regulating intraocular pressure (IOP). If the TM is damaged, 23 July 2015 aqueous outflow is impaired, IOP increases and glaucoma can manifest. Mutations in the MYOC gene Accepted in revised form 18 August 2015 cause hereditary primary open-angle glaucoma (POAG) by promoting the abnormal amyloidosis of the Available online 22 August 2015 myocilin protein in the endoplasmic reticulum (ER), leading to ER stress-induced TM cell death. Myocilin accumulation is observed in approximately 70e80% of all glaucoma cases suggesting that environmental Keywords: Myocilin or other genetic factors may also promote myocilin toxicity. For example, simply preventing myocilin fi Glaucoma glycosylation is suf cient to promote its abnormal accretion. These myocilin amyloids are unique as there Trabecular meshwork are no other known pathogenic proteins that accumulate within the ER of TM cells and cause toxicity. Grp94 Moreover, this pathogenic accumulation only kills TM cells, despite expression of this protein in other Autophagy cell types, suggesting that another modifier exclusive to the TM participates in the proteotoxicity of myocilin.